tinyusb/test/test/test_fifo.c
2021-06-30 20:30:03 +02:00

318 lines
7.5 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include <string.h>
#include "unity.h"
#include "tusb_fifo.h"
#define FIFO_SIZE 10
TU_FIFO_DEF(tu_ff, FIFO_SIZE, uint8_t, false);
tu_fifo_t* ff = &tu_ff;
tu_fifo_buffer_info_t info;
void setUp(void)
{
tu_fifo_clear(ff);
memset(&info, 0, sizeof(tu_fifo_buffer_info_t));
}
void tearDown(void)
{
}
//--------------------------------------------------------------------+
// Tests
//--------------------------------------------------------------------+
void test_normal(void)
{
for(uint8_t i=0; i < FIFO_SIZE; i++) tu_fifo_write(ff, &i);
for(uint8_t i=0; i < FIFO_SIZE; i++)
{
uint8_t c;
tu_fifo_read(ff, &c);
TEST_ASSERT_EQUAL(i, c);
}
}
void test_item_size(void)
{
TU_FIFO_DEF(ff4, FIFO_SIZE, uint32_t, false);
tu_fifo_clear(&ff4);
uint32_t data[20];
for(uint32_t i=0; i<sizeof(data)/4; i++) data[i] = i;
tu_fifo_write_n(&ff4, data, 10);
uint32_t rd[10];
uint16_t rd_count;
// read 0 -> 4
rd_count = tu_fifo_read_n(&ff4, rd, 5);
TEST_ASSERT_EQUAL( 5, rd_count );
TEST_ASSERT_EQUAL_UINT32_ARRAY( data, rd, rd_count ); // 0 -> 4
tu_fifo_write_n(&ff4, data+10, 5);
// read 5 -> 14
rd_count = tu_fifo_read_n(&ff4, rd, 10);
TEST_ASSERT_EQUAL( 10, rd_count );
TEST_ASSERT_EQUAL_UINT32_ARRAY( data+5, rd, rd_count ); // 5 -> 14
}
void test_read_n(void)
{
// prepare data
uint8_t data[20];
for(int i=0; i<sizeof(data); i++) data[i] = i;
for(uint8_t i=0; i < FIFO_SIZE; i++) tu_fifo_write(ff, data+i);
uint8_t rd[10];
uint16_t rd_count;
// case 1: Read index + count < depth
// read 0 -> 4
rd_count = tu_fifo_read_n(ff, rd, 5);
TEST_ASSERT_EQUAL( 5, rd_count );
TEST_ASSERT_EQUAL_MEMORY( data, rd, rd_count ); // 0 -> 4
// case 2: Read index + count > depth
// write 10, 11, 12
tu_fifo_write(ff, data+10);
tu_fifo_write(ff, data+11);
tu_fifo_write(ff, data+12);
rd_count = tu_fifo_read_n(ff, rd, 7);
TEST_ASSERT_EQUAL( 7, rd_count );
TEST_ASSERT_EQUAL_MEMORY( data+5, rd, rd_count ); // 5 -> 11
// Should only read until empty
TEST_ASSERT_EQUAL( 1, tu_fifo_read_n(ff, rd, 100) );
}
void test_write_n(void)
{
// prepare data
uint8_t data[20];
for(int i=0; i<sizeof(data); i++) data[i] = i;
// case 1: wr + count < depth
tu_fifo_write_n(ff, data, 8); // wr = 8, count = 8
uint8_t rd[10];
uint16_t rd_count;
rd_count = tu_fifo_read_n(ff, rd, 5); // wr = 8, count = 3
TEST_ASSERT_EQUAL( 5, rd_count );
TEST_ASSERT_EQUAL_MEMORY( data, rd, rd_count ); // 0 -> 4
// case 2: wr + count > depth
tu_fifo_write_n(ff, data+8, 6); // wr = 3, count = 9
for(rd_count=0; rd_count<7; rd_count++) tu_fifo_read(ff, rd+rd_count); // wr = 3, count = 2
TEST_ASSERT_EQUAL_MEMORY( data+5, rd, rd_count); // 5 -> 11
TEST_ASSERT_EQUAL(2, tu_fifo_count(ff));
}
void test_peek(void)
{
uint8_t temp;
temp = 10; tu_fifo_write(ff, &temp);
temp = 20; tu_fifo_write(ff, &temp);
temp = 30; tu_fifo_write(ff, &temp);
temp = 0;
tu_fifo_peek(ff, &temp);
TEST_ASSERT_EQUAL(10, temp);
tu_fifo_read(ff, &temp);
tu_fifo_read(ff, &temp);
tu_fifo_peek(ff, &temp);
TEST_ASSERT_EQUAL(30, temp);
}
void test_get_read_info_when_no_wrap()
{
uint8_t ch = 1;
// write 6 items
for(uint8_t i=0; i < 6; i++) tu_fifo_write(ff, &ch);
// read 2 items
tu_fifo_read(ff, &ch);
tu_fifo_read(ff, &ch);
tu_fifo_get_read_info(ff, &info);
TEST_ASSERT_EQUAL(4, info.len_lin);
TEST_ASSERT_EQUAL(0, info.len_wrap);
TEST_ASSERT_EQUAL_PTR(ff->buffer+2, info.ptr_lin);
TEST_ASSERT_NULL(info.ptr_wrap);
}
void test_get_read_info_when_wrapped()
{
uint8_t ch = 1;
// make fifo full
for(uint8_t i=0; i < FIFO_SIZE; i++) tu_fifo_write(ff, &ch);
// read 6 items
for(uint8_t i=0; i < 6; i++) tu_fifo_read(ff, &ch);
// write 2 items
tu_fifo_write(ff, &ch);
tu_fifo_write(ff, &ch);
tu_fifo_get_read_info(ff, &info);
TEST_ASSERT_EQUAL(FIFO_SIZE-6, info.len_lin);
TEST_ASSERT_EQUAL(2, info.len_wrap);
TEST_ASSERT_EQUAL_PTR(ff->buffer+6, info.ptr_lin);
TEST_ASSERT_EQUAL_PTR(ff->buffer, info.ptr_wrap);
}
void test_get_write_info_when_no_wrap()
{
uint8_t ch = 1;
// write 2 items
tu_fifo_write(ff, &ch);
tu_fifo_write(ff, &ch);
tu_fifo_get_write_info(ff, &info);
TEST_ASSERT_EQUAL(FIFO_SIZE-2, info.len_lin);
TEST_ASSERT_EQUAL(0, info.len_wrap);
TEST_ASSERT_EQUAL_PTR(ff->buffer+2, info .ptr_lin);
// application should check len instead of ptr.
// TEST_ASSERT_NULL(info.ptr_wrap);
}
void test_get_write_info_when_wrapped()
{
uint8_t ch = 1;
// write 6 items
for(uint8_t i=0; i < 6; i++) tu_fifo_write(ff, &ch);
// read 2 items
tu_fifo_read(ff, &ch);
tu_fifo_read(ff, &ch);
tu_fifo_get_write_info(ff, &info);
TEST_ASSERT_EQUAL(FIFO_SIZE-6, info.len_lin);
TEST_ASSERT_EQUAL(2, info.len_wrap);
TEST_ASSERT_EQUAL_PTR(ff->buffer+6, info .ptr_lin);
TEST_ASSERT_EQUAL_PTR(ff->buffer, info.ptr_wrap);
}
void test_empty(void)
{
uint8_t temp;
TEST_ASSERT_TRUE(tu_fifo_empty(ff));
// read info
tu_fifo_get_read_info(ff, &info);
TEST_ASSERT_EQUAL(0, info.len_lin);
TEST_ASSERT_EQUAL(0, info.len_wrap);
TEST_ASSERT_NULL(info.ptr_lin);
TEST_ASSERT_NULL(info.ptr_wrap);
// write info
tu_fifo_get_write_info(ff, &info);
TEST_ASSERT_EQUAL(FIFO_SIZE, info.len_lin);
TEST_ASSERT_EQUAL(0, info.len_wrap);
TEST_ASSERT_EQUAL_PTR(ff->buffer, info .ptr_lin);
// application should check len instead of ptr.
// TEST_ASSERT_NULL(info.ptr_wrap);
// write 1 then re-check empty
tu_fifo_write(ff, &temp);
TEST_ASSERT_FALSE(tu_fifo_empty(ff));
}
void test_full(void)
{
TEST_ASSERT_FALSE(tu_fifo_full(ff));
for(uint8_t i=0; i < FIFO_SIZE; i++) tu_fifo_write(ff, &i);
TEST_ASSERT_TRUE(tu_fifo_full(ff));
// read info
tu_fifo_get_read_info(ff, &info);
TEST_ASSERT_EQUAL(FIFO_SIZE, info.len_lin);
TEST_ASSERT_EQUAL(0, info.len_wrap);
TEST_ASSERT_EQUAL_PTR(ff->buffer, info.ptr_lin);
// skip this, application must check len instead of buffer
// TEST_ASSERT_NULL(info.ptr_wrap);
// write info
}
void test_rd_idx_wrap()
{
tu_fifo_t ff10;
uint8_t buf[10];
uint8_t dst[10];
tu_fifo_config(&ff10, buf, 10, 1, 1);
uint16_t n;
ff10.wr_idx = 6;
ff10.rd_idx = 15;
n = tu_fifo_read_n(&ff10, dst, 4);
TEST_ASSERT_EQUAL(n, 4);
TEST_ASSERT_EQUAL(ff10.rd_idx, 0);
n = tu_fifo_read_n(&ff10, dst, 4);
TEST_ASSERT_EQUAL(n, 4);
TEST_ASSERT_EQUAL(ff10.rd_idx, 4);
n = tu_fifo_read_n(&ff10, dst, 4);
TEST_ASSERT_EQUAL(n, 2);
TEST_ASSERT_EQUAL(ff10.rd_idx, 6);
}