tinyusb/src/common/tusb_fifo.c

284 lines
8.9 KiB
C

/**************************************************************************/
/*!
@file tusb_fifo.c
@author hathach (tinyusb.org)
@section LICENSE
Software License Agreement (BSD License)
Copyright (c) 2018, hathach (tinyusb.org)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holders nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This file is part of the tinyusb stack.
*/
/**************************************************************************/
#include "tusb_fifo.h"
#include "common/tusb_verify.h" // for ASSERT
/*------------------------------------------------------------------*/
/*
*------------------------------------------------------------------*/
#if CFG_FIFO_MUTEX
#define mutex_lock_if_needed(_ff) if (_ff->mutex) tu_fifo_mutex_lock(_ff->mutex)
#define mutex_unlock_if_needed(_ff) if (_ff->mutex) tu_fifo_mutex_unlock(_ff->mutex)
#else
#define mutex_lock_if_needed(_ff)
#define mutex_unlock_if_needed(_ff)
#endif
static inline uint16_t min16_of(uint16_t x, uint16_t y)
{
return (x < y) ? x : y;
}
static inline bool tu_fifo_initalized(tu_fifo_t* f)
{
return (f->buffer != NULL) && (f->depth > 0) && (f->item_size > 0);
}
void tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_size, bool overwritable)
{
mutex_lock_if_needed(f);
f->buffer = (uint8_t*) buffer;
f->depth = depth;
f->item_size = item_size;
f->overwritable = overwritable;
f->rd_idx = f->wr_idx = f->count = 0;
mutex_unlock_if_needed(f);
}
/******************************************************************************/
/*!
@brief Read one byte out of the RX buffer.
This function will return the byte located at the array index of the
read pointer, and then increment the read pointer index. If the read
pointer exceeds the maximum buffer size, it will roll over to zero.
@param[in] f
Pointer to the FIFO buffer to manipulate
@param[in] p_buffer
Pointer to the place holder for data read from the buffer
@returns TRUE if the queue is not empty
*/
/******************************************************************************/
bool tu_fifo_read(tu_fifo_t* f, void * p_buffer)
{
if( !tu_fifo_initalized(f) ) return false;
if( tu_fifo_empty(f) ) return false;
mutex_lock_if_needed(f);
memcpy(p_buffer,
f->buffer + (f->rd_idx * f->item_size),
f->item_size);
f->rd_idx = (f->rd_idx + 1) % f->depth;
f->count--;
mutex_unlock_if_needed(f);
return true;
}
/******************************************************************************/
/*!
@brief This function will read n elements into the array index specified by
the write pointer and increment the write index. If the write index
exceeds the max buffer size, then it will roll over to zero.
@param[in] f
Pointer to the FIFO buffer to manipulate
@param[in] p_data
The pointer to data location
@param[in] count
Number of element that buffer can afford
@returns number of items read from the FIFO
*/
/******************************************************************************/
uint16_t tu_fifo_read_n (tu_fifo_t* f, void * p_buffer, uint16_t count)
{
if( !tu_fifo_initalized(f) ) return 0;
if( tu_fifo_empty(f) ) return 0;
/* Limit up to fifo's count */
count = min16_of(count, f->count);
if( count == 0 ) return 0;
mutex_lock_if_needed(f);
/* Could copy up to 2 portions marked as 'x' if queue is wrapped around
* case 1: ....RxxxxW.......
* case 2: xxxxxW....Rxxxxxx
*/
// uint16_t index2upper = min16_of(count, f->count-f->rd_idx);
uint8_t* p_buf = (uint8_t*) p_buffer;
uint16_t len = 0;
while( (len < count) && tu_fifo_read(f, p_buf) )
{
len++;
p_buf += f->item_size;
}
mutex_unlock_if_needed(f);
return len;
}
/******************************************************************************/
/*!
@brief Reads one item without removing it from the FIFO
@param[in] f
Pointer to the FIFO buffer to manipulate
@param[in] position
Position to read from in the FIFO buffer
@param[in] p_buffer
Pointer to the place holder for data read from the buffer
@returns TRUE if the queue is not empty
*/
/******************************************************************************/
bool tu_fifo_peek_at(tu_fifo_t* f, uint16_t position, void * p_buffer)
{
if ( !tu_fifo_initalized(f) ) return false;
if ( position >= f->count ) return false;
// rd_idx is position=0
uint16_t index = (f->rd_idx + position) % f->depth;
memcpy(p_buffer,
f->buffer + (index * f->item_size),
f->item_size);
return true;
}
/******************************************************************************/
/*!
@brief Write one element into the RX buffer.
This function will write one element into the array index specified by
the write pointer and increment the write index. If the write index
exceeds the max buffer size, then it will roll over to zero.
@param[in] f
Pointer to the FIFO buffer to manipulate
@param[in] p_data
The byte to add to the FIFO
@returns TRUE if the data was written to the FIFO (overwrittable
FIFO will always return TRUE)
*/
/******************************************************************************/
bool tu_fifo_write(tu_fifo_t* f, void const * p_data)
{
if ( !tu_fifo_initalized(f) ) return false;
// if ( tu_fifo_full(f) && !f->overwritable ) return false;
TU_ASSERT( !(tu_fifo_full(f) && !f->overwritable) );
mutex_lock_if_needed(f);
memcpy( f->buffer + (f->wr_idx * f->item_size),
p_data,
f->item_size);
f->wr_idx = (f->wr_idx + 1) % f->depth;
if (tu_fifo_full(f))
{
f->rd_idx = f->wr_idx; // keep the full state (rd == wr && len = size)
}
else
{
f->count++;
}
mutex_unlock_if_needed(f);
return true;
}
/******************************************************************************/
/*!
@brief This function will write n elements into the array index specified by
the write pointer and increment the write index. If the write index
exceeds the max buffer size, then it will roll over to zero.
@param[in] f
Pointer to the FIFO buffer to manipulate
@param[in] p_data
The pointer to data to add to the FIFO
@param[in] count
Number of element
@return Number of written elements
*/
/******************************************************************************/
uint16_t tu_fifo_write_n(tu_fifo_t* f, void const * p_data, uint16_t count)
{
if ( count == 0 ) return 0;
uint8_t* p_buf = (uint8_t*) p_data;
uint16_t len = 0;
while( (len < count) && tu_fifo_write(f, p_buf) )
{
len++;
p_buf += f->item_size;
}
return len;
}
/******************************************************************************/
/*!
@brief Clear the fifo read and write pointers and set length to zero
@param[in] f
Pointer to the FIFO buffer to manipulate
*/
/******************************************************************************/
void tu_fifo_clear(tu_fifo_t *f)
{
mutex_lock_if_needed(f);
f->rd_idx = f->wr_idx = f->count = 0;
mutex_unlock_if_needed(f);
}