tinyusb/hw/bsp/board.c
2023-01-18 10:31:00 +07:00

161 lines
4.0 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2018, hathach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "board.h"
#if 0
#define LED_PHASE_MAX 8
static struct
{
uint32_t phase[LED_PHASE_MAX];
uint8_t phase_count;
bool led_state;
uint8_t current_phase;
uint32_t current_ms;
}led_pattern;
void board_led_pattern(uint32_t const phase_ms[], uint8_t count)
{
memcpy(led_pattern.phase, phase_ms, 4*count);
led_pattern.phase_count = count;
// reset with 1st phase is on
led_pattern.current_ms = board_millis();
led_pattern.current_phase = 0;
led_pattern.led_state = true;
board_led_on();
}
void board_led_task(void)
{
if ( led_pattern.phase_count == 0 ) return;
uint32_t const duration = led_pattern.phase[led_pattern.current_phase];
// return if not enough time
if (board_millis() - led_pattern.current_ms < duration) return;
led_pattern.led_state = !led_pattern.led_state;
board_led_write(led_pattern.led_state);
led_pattern.current_ms += duration;
led_pattern.current_phase++;
if (led_pattern.current_phase == led_pattern.phase_count)
{
led_pattern.current_phase = 0;
led_pattern.led_state = true;
board_led_on();
}
}
#endif
//--------------------------------------------------------------------+
// newlib read()/write() retarget
//--------------------------------------------------------------------+
#ifdef __ICCARM__
#define sys_write __write
#define sys_read __read
#elif defined(__MSP430__) || defined(__RX__)
#define sys_write write
#define sys_read read
#else
#define sys_write _write
#define sys_read _read
#endif
#if defined(LOGGER_RTT)
// Logging with RTT
// If using SES IDE, use the Syscalls/SEGGER_RTT_Syscalls_SES.c instead
#if !(defined __SES_ARM) && !(defined __SES_RISCV) && !(defined __CROSSWORKS_ARM)
#include "SEGGER_RTT.h"
TU_ATTR_USED int sys_write (int fhdl, const void *buf, size_t count)
{
(void) fhdl;
SEGGER_RTT_Write(0, (const char*) buf, (int) count);
return count;
}
TU_ATTR_USED int sys_read (int fhdl, char *buf, size_t count)
{
(void) fhdl;
int rd = (int) SEGGER_RTT_Read(0, buf, count);
return (rd > 0) ? rd : -1;
}
#endif
#elif defined(LOGGER_SWO)
// Logging with SWO for ARM Cortex
#include "board_mcu.h"
TU_ATTR_USED int sys_write (int fhdl, const void *buf, size_t count)
{
(void) fhdl;
uint8_t const* buf8 = (uint8_t const*) buf;
for(size_t i=0; i<count; i++)
{
ITM_SendChar(buf8[i]);
}
return count;
}
TU_ATTR_USED int sys_read (int fhdl, char *buf, size_t count)
{
(void) fhdl;
(void) buf;
(void) count;
return 0;
}
#else
// Default logging with on-board UART
TU_ATTR_USED int sys_write (int fhdl, const void *buf, size_t count)
{
(void) fhdl;
return board_uart_write(buf, (int) count);
}
TU_ATTR_USED int sys_read (int fhdl, char *buf, size_t count)
{
(void) fhdl;
int rd = board_uart_read((uint8_t*) buf, (int) count);
return (rd > 0) ? rd : -1;
}
#endif
int board_getchar(void)
{
char c;
return ( sys_read(0, &c, 1) > 0 ) ? (int) c : (-1);
}