tinyusb/src/host/usbh.c
2022-12-22 19:17:09 +07:00

1623 lines
48 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUH_ENABLED
#include "host/hcd.h"
#include "tusb.h"
#include "host/usbh_classdriver.h"
#include "hub.h"
//--------------------------------------------------------------------+
// USBH Configuration
//--------------------------------------------------------------------+
#ifndef CFG_TUH_TASK_QUEUE_SZ
#define CFG_TUH_TASK_QUEUE_SZ 16
#endif
#ifndef CFG_TUH_INTERFACE_MAX
#define CFG_TUH_INTERFACE_MAX 8
#endif
// Debug level, TUSB_CFG_DEBUG must be at least this level for debug message
#define USBH_DEBUG 2
#define TU_LOG_USBH(...) TU_LOG(USBH_DEBUG, __VA_ARGS__)
//--------------------------------------------------------------------+
// USBH-HCD common data structure
//--------------------------------------------------------------------+
// device0 struct must be strictly a subset of normal device struct
// TODO refactor later
typedef struct
{
// port
uint8_t rhport;
uint8_t hub_addr;
uint8_t hub_port;
uint8_t speed;
struct TU_ATTR_PACKED
{
volatile uint8_t connected : 1;
volatile uint8_t addressed : 1;
volatile uint8_t configured : 1;
volatile uint8_t suspended : 1;
};
} usbh_dev0_t;
typedef struct {
// port, must be same layout as usbh_dev0_t
uint8_t rhport;
uint8_t hub_addr;
uint8_t hub_port;
uint8_t speed;
// Device State
struct TU_ATTR_PACKED {
volatile uint8_t connected : 1;
volatile uint8_t addressed : 1;
volatile uint8_t configured : 1;
volatile uint8_t suspended : 1;
};
// Device Descriptor
uint8_t ep0_size;
uint16_t vid;
uint16_t pid;
uint8_t i_manufacturer;
uint8_t i_product;
uint8_t i_serial;
// Configuration Descriptor
// uint8_t interface_count; // bNumInterfaces alias
// Endpoint & Interface
uint8_t itf2drv[CFG_TUH_INTERFACE_MAX]; // map interface number to driver (0xff is invalid)
uint8_t ep2drv[CFG_TUH_ENDPOINT_MAX][2]; // map endpoint to driver ( 0xff is invalid ), can use only 4-bit each
tu_edpt_state_t ep_status[CFG_TUH_ENDPOINT_MAX][2];
#if CFG_TUH_API_EDPT_XFER
// TODO array can be CFG_TUH_ENDPOINT_MAX-1
struct {
tuh_xfer_cb_t complete_cb;
uintptr_t user_data;
}ep_callback[CFG_TUH_ENDPOINT_MAX][2];
#endif
} usbh_device_t;
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
// Invalid driver ID in itf2drv[] ep2drv[][] mapping
enum { DRVID_INVALID = 0xFFu };
enum { CONTROLLER_INVALID = 0xFFu };
#if CFG_TUSB_DEBUG >= 2
#define DRIVER_NAME(_name) .name = _name,
#else
#define DRIVER_NAME(_name)
#endif
static usbh_class_driver_t const usbh_class_drivers[] =
{
#if CFG_TUH_CDC
{
DRIVER_NAME("CDC")
.init = cdch_init,
.open = cdch_open,
.set_config = cdch_set_config,
.xfer_cb = cdch_xfer_cb,
.close = cdch_close
},
#endif
#if CFG_TUH_MSC
{
DRIVER_NAME("MSC")
.init = msch_init,
.open = msch_open,
.set_config = msch_set_config,
.xfer_cb = msch_xfer_cb,
.close = msch_close
},
#endif
#if CFG_TUH_HID
{
DRIVER_NAME("HID")
.init = hidh_init,
.open = hidh_open,
.set_config = hidh_set_config,
.xfer_cb = hidh_xfer_cb,
.close = hidh_close
},
#endif
#if CFG_TUH_HUB
{
DRIVER_NAME("HUB")
.init = hub_init,
.open = hub_open,
.set_config = hub_set_config,
.xfer_cb = hub_xfer_cb,
.close = hub_close
},
#endif
#if CFG_TUH_VENDOR
{
DRIVER_NAME("VENDOR")
.init = cush_init,
.open = cush_open_subtask,
.xfer_cb = cush_isr,
.close = cush_close
}
#endif
};
enum { USBH_CLASS_DRIVER_COUNT = TU_ARRAY_SIZE(usbh_class_drivers) };
enum { RESET_DELAY = 500 }; // 200 USB specs say only 50ms but many devices require much longer
enum { CONFIG_NUM = 1 }; // default to use configuration 1
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
// sum of end device + hub
#define TOTAL_DEVICES (CFG_TUH_DEVICE_MAX + CFG_TUH_HUB)
static uint8_t _usbh_controller = CONTROLLER_INVALID;
// Device with address = 0 for enumeration
static usbh_dev0_t _dev0;
// all devices excluding zero-address
// hub address start from CFG_TUH_DEVICE_MAX+1
// TODO: hub can has its own simpler struct to save memory
CFG_TUSB_MEM_SECTION usbh_device_t _usbh_devices[TOTAL_DEVICES];
// Mutex for claiming endpoint
#if OSAL_MUTEX_REQUIRED
static osal_mutex_def_t _usbh_mutexdef;
static osal_mutex_t _usbh_mutex;
#else
#define _usbh_mutex NULL
#endif
// Event queue
// usbh_int_set is used as mutex in OS NONE config
OSAL_QUEUE_DEF(usbh_int_set, _usbh_qdef, CFG_TUH_TASK_QUEUE_SZ, hcd_event_t);
static osal_queue_t _usbh_q;
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN
static uint8_t _usbh_ctrl_buf[CFG_TUH_ENUMERATION_BUFSIZE];
// Control transfer: since most controller does not support multiple control transfer
// on multiple devices concurrently. And control transfer is not used much except enumeration
// We will only execute control transfer one at a time.
struct
{
tusb_control_request_t request TU_ATTR_ALIGNED(4);
uint8_t* buffer;
tuh_xfer_cb_t complete_cb;
uintptr_t user_data;
uint8_t daddr;
volatile uint8_t stage;
volatile uint16_t actual_len;
}_ctrl_xfer;
//------------- Helper Function -------------//
TU_ATTR_ALWAYS_INLINE
static inline usbh_device_t* get_device(uint8_t dev_addr)
{
TU_VERIFY(dev_addr > 0 && dev_addr <= TOTAL_DEVICES, NULL);
return &_usbh_devices[dev_addr-1];
}
static bool enum_new_device(hcd_event_t* event);
static void process_device_unplugged(uint8_t rhport, uint8_t hub_addr, uint8_t hub_port);
static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size);
static bool usbh_control_xfer_cb (uint8_t daddr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
#if CFG_TUSB_OS == OPT_OS_NONE
// TODO rework time-related function later
void osal_task_delay(uint32_t msec)
{
const uint32_t start = hcd_frame_number(_usbh_controller);
while ( ( hcd_frame_number(_usbh_controller) - start ) < msec ) {}
}
#endif
//--------------------------------------------------------------------+
// PUBLIC API (Parameter Verification is required)
//--------------------------------------------------------------------+
bool tuh_configure(uint8_t rhport, uint32_t cfg_id, const void* cfg_param)
{
if (hcd_configure)
{
return hcd_configure(rhport, cfg_id, cfg_param);
}else
{
return false;
}
}
bool tuh_mounted(uint8_t dev_addr)
{
usbh_device_t* dev = get_device(dev_addr);
TU_VERIFY(dev);
return dev->configured;
}
bool tuh_vid_pid_get(uint8_t dev_addr, uint16_t* vid, uint16_t* pid)
{
*vid = *pid = 0;
usbh_device_t const* dev = get_device(dev_addr);
TU_VERIFY(dev && dev->configured);
*vid = dev->vid;
*pid = dev->pid;
return true;
}
tusb_speed_t tuh_speed_get (uint8_t dev_addr)
{
usbh_device_t* dev = get_device(dev_addr);
return (tusb_speed_t) (dev ? get_device(dev_addr)->speed : _dev0.speed);
}
static void clear_device(usbh_device_t* dev)
{
tu_memclr(dev, sizeof(usbh_device_t));
memset(dev->itf2drv, DRVID_INVALID, sizeof(dev->itf2drv)); // invalid mapping
memset(dev->ep2drv , DRVID_INVALID, sizeof(dev->ep2drv )); // invalid mapping
}
bool tuh_inited(void)
{
return _usbh_controller != CONTROLLER_INVALID;
}
bool tuh_init(uint8_t controller_id)
{
// skip if already initialized
if ( tuh_inited() ) return true;
TU_LOG_USBH("USBH init on controller %u\r\n", controller_id);
TU_LOG_INT(USBH_DEBUG, sizeof(usbh_device_t));
TU_LOG_INT(USBH_DEBUG, sizeof(hcd_event_t));
TU_LOG_INT(USBH_DEBUG, sizeof(_ctrl_xfer));
TU_LOG_INT(USBH_DEBUG, sizeof(tuh_xfer_t));
TU_LOG_INT(USBH_DEBUG, sizeof(tu_fifo_t));
TU_LOG_INT(USBH_DEBUG, sizeof(tu_edpt_stream_t));
// Event queue
_usbh_q = osal_queue_create( &_usbh_qdef );
TU_ASSERT(_usbh_q != NULL);
#if OSAL_MUTEX_REQUIRED
// Init mutex
_usbh_mutex = osal_mutex_create(&_usbh_mutexdef);
TU_ASSERT(_usbh_mutex);
#endif
// Device
tu_memclr(&_dev0, sizeof(_dev0));
tu_memclr(_usbh_devices, sizeof(_usbh_devices));
tu_memclr(&_ctrl_xfer, sizeof(_ctrl_xfer));
for(uint8_t i=0; i<TOTAL_DEVICES; i++)
{
clear_device(&_usbh_devices[i]);
}
// Class drivers
for (uint8_t drv_id = 0; drv_id < USBH_CLASS_DRIVER_COUNT; drv_id++)
{
TU_LOG_USBH("%s init\r\n", usbh_class_drivers[drv_id].name);
usbh_class_drivers[drv_id].init();
}
_usbh_controller = controller_id;;
TU_ASSERT(hcd_init(controller_id));
hcd_int_enable(controller_id);
return true;
}
/* USB Host Driver task
* This top level thread manages all host controller event and delegates events to class-specific drivers.
* This should be called periodically within the mainloop or rtos thread.
*
@code
int main(void)
{
application_init();
tusb_init();
while(1) // the mainloop
{
application_code();
tuh_task(); // tinyusb host task
}
}
@endcode
*/
void tuh_task_ext(uint32_t timeout_ms, bool in_isr)
{
(void) in_isr; // not implemented yet
// Skip if stack is not initialized
if ( !tusb_inited() ) return;
// Loop until there is no more events in the queue
while (1)
{
hcd_event_t event;
if ( !osal_queue_receive(_usbh_q, &event, timeout_ms) ) return;
switch (event.event_id)
{
case HCD_EVENT_DEVICE_ATTACH:
// TODO due to the shared _usbh_ctrl_buf, we must complete enumerating
// one device before enumerating another one.
TU_LOG_USBH("[%u:] USBH DEVICE ATTACH\r\n", event.rhport);
enum_new_device(&event);
break;
case HCD_EVENT_DEVICE_REMOVE:
TU_LOG_USBH("[%u:%u:%u] USBH DEVICE REMOVED\r\n", event.rhport, event.connection.hub_addr, event.connection.hub_port);
process_device_unplugged(event.rhport, event.connection.hub_addr, event.connection.hub_port);
#if CFG_TUH_HUB
// TODO remove
if ( event.connection.hub_addr != 0)
{
// done with hub, waiting for next data on status pipe
(void) hub_edpt_status_xfer( event.connection.hub_addr );
}
#endif
break;
case HCD_EVENT_XFER_COMPLETE:
{
uint8_t const ep_addr = event.xfer_complete.ep_addr;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const ep_dir = tu_edpt_dir(ep_addr);
TU_LOG_USBH("on EP %02X with %u bytes\r\n", ep_addr, (unsigned int) event.xfer_complete.len);
if (event.dev_addr == 0)
{
// device 0 only has control endpoint
TU_ASSERT(epnum == 0, );
usbh_control_xfer_cb(event.dev_addr, ep_addr, event.xfer_complete.result, event.xfer_complete.len);
}
else
{
usbh_device_t* dev = get_device(event.dev_addr);
TU_ASSERT(dev, );
dev->ep_status[epnum][ep_dir].busy = 0;
dev->ep_status[epnum][ep_dir].claimed = 0;
if ( 0 == epnum )
{
usbh_control_xfer_cb(event.dev_addr, ep_addr, event.xfer_complete.result, event.xfer_complete.len);
}else
{
uint8_t drv_id = dev->ep2drv[epnum][ep_dir];
if(drv_id < USBH_CLASS_DRIVER_COUNT)
{
TU_LOG_USBH("%s xfer callback\r\n", usbh_class_drivers[drv_id].name);
usbh_class_drivers[drv_id].xfer_cb(event.dev_addr, ep_addr, event.xfer_complete.result, event.xfer_complete.len);
}
else
{
#if CFG_TUH_API_EDPT_XFER
tuh_xfer_cb_t complete_cb = dev->ep_callback[epnum][ep_dir].complete_cb;
if ( complete_cb )
{
tuh_xfer_t xfer =
{
.daddr = event.dev_addr,
.ep_addr = ep_addr,
.result = event.xfer_complete.result,
.actual_len = event.xfer_complete.len,
.buflen = 0, // not available
.buffer = NULL, // not available
.complete_cb = complete_cb,
.user_data = dev->ep_callback[epnum][ep_dir].user_data
};
complete_cb(&xfer);
}else
#endif
{
// no driver/callback responsible for this transfer
TU_ASSERT(false, );
}
}
}
}
}
break;
case USBH_EVENT_FUNC_CALL:
if ( event.func_call.func ) event.func_call.func(event.func_call.param);
break;
default: break;
}
#if CFG_TUSB_OS != OPT_OS_NONE && CFG_TUSB_OS != OPT_OS_PICO
// return if there is no more events, for application to run other background
if (osal_queue_empty(_usbh_q)) return;
#endif
}
}
//--------------------------------------------------------------------+
// Control transfer
//--------------------------------------------------------------------+
static void _control_blocking_complete_cb(tuh_xfer_t* xfer)
{
// update result
*((xfer_result_t*) xfer->user_data) = xfer->result;
}
// TODO timeout_ms is not supported yet
bool tuh_control_xfer (tuh_xfer_t* xfer)
{
// EP0 with setup packet
TU_VERIFY(xfer->ep_addr == 0 && xfer->setup);
// pre-check to help reducing mutex lock
TU_VERIFY(_ctrl_xfer.stage == CONTROL_STAGE_IDLE);
uint8_t const daddr = xfer->daddr;
(void) osal_mutex_lock(_usbh_mutex, OSAL_TIMEOUT_WAIT_FOREVER);
bool const is_idle = (_ctrl_xfer.stage == CONTROL_STAGE_IDLE);
if (is_idle)
{
_ctrl_xfer.stage = CONTROL_STAGE_SETUP;
_ctrl_xfer.daddr = daddr;
_ctrl_xfer.actual_len = 0;
_ctrl_xfer.request = (*xfer->setup);
_ctrl_xfer.buffer = xfer->buffer;
_ctrl_xfer.complete_cb = xfer->complete_cb;
_ctrl_xfer.user_data = xfer->user_data;
}
(void) osal_mutex_unlock(_usbh_mutex);
TU_VERIFY(is_idle);
const uint8_t rhport = usbh_get_rhport(daddr);
TU_LOG_USBH("[%u:%u] %s: ", rhport, daddr,
(xfer->setup->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD && xfer->setup->bRequest <= TUSB_REQ_SYNCH_FRAME) ?
tu_str_std_request[xfer->setup->bRequest] : "Class Request");
TU_LOG_PTR(USBH_DEBUG, xfer->setup);
TU_LOG_USBH("\r\n");
if (xfer->complete_cb)
{
TU_ASSERT( hcd_setup_send(rhport, daddr, (uint8_t const*) &_ctrl_xfer.request) );
}else
{
// blocking if complete callback is not provided
// change callback to internal blocking, and result as user argument
volatile xfer_result_t result = XFER_RESULT_INVALID;
// use user_data to point to xfer_result_t
_ctrl_xfer.user_data = (uintptr_t) &result;
_ctrl_xfer.complete_cb = _control_blocking_complete_cb;
TU_ASSERT( hcd_setup_send(rhport, daddr, (uint8_t*) &_ctrl_xfer.request) );
while (result == XFER_RESULT_INVALID)
{
// only need to call task if not preempted RTOS
#if CFG_TUSB_OS == OPT_OS_NONE || CFG_TUSB_OS == OPT_OS_PICO
tuh_task();
#endif
// TODO probably some timeout to prevent hanged
}
// update transfer result
xfer->result = result;
xfer->actual_len = _ctrl_xfer.actual_len;
}
return true;
}
TU_ATTR_ALWAYS_INLINE static inline void _set_control_xfer_stage(uint8_t stage)
{
(void) osal_mutex_lock(_usbh_mutex, OSAL_TIMEOUT_WAIT_FOREVER);
_ctrl_xfer.stage = stage;
(void) osal_mutex_unlock(_usbh_mutex);
}
static void _xfer_complete(uint8_t daddr, xfer_result_t result)
{
TU_LOG_USBH("\r\n");
// duplicate xfer since user can execute control transfer within callback
tusb_control_request_t const request = _ctrl_xfer.request;
tuh_xfer_t xfer_temp =
{
.daddr = daddr,
.ep_addr = 0,
.result = result,
.setup = &request,
.actual_len = (uint32_t) _ctrl_xfer.actual_len,
.buffer = _ctrl_xfer.buffer,
.complete_cb = _ctrl_xfer.complete_cb,
.user_data = _ctrl_xfer.user_data
};
_set_control_xfer_stage(CONTROL_STAGE_IDLE);
if (xfer_temp.complete_cb)
{
xfer_temp.complete_cb(&xfer_temp);
}
}
static bool usbh_control_xfer_cb (uint8_t dev_addr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
{
(void) ep_addr;
const uint8_t rhport = usbh_get_rhport(dev_addr);
tusb_control_request_t const * request = &_ctrl_xfer.request;
if (XFER_RESULT_SUCCESS != result)
{
TU_LOG1("[%u:%u] Control %s, xferred_bytes = %lu\r\n", rhport, dev_addr, result == XFER_RESULT_STALLED ? "STALLED" : "FAILED", xferred_bytes);
#if CFG_TUSB_DEBUG == 1
TU_LOG1_PTR(request);
TU_LOG1("\r\n");
#endif
// terminate transfer if any stage failed
_xfer_complete(dev_addr, result);
}else
{
switch(_ctrl_xfer.stage)
{
case CONTROL_STAGE_SETUP:
if (request->wLength)
{
// DATA stage: initial data toggle is always 1
_set_control_xfer_stage(CONTROL_STAGE_DATA);
TU_ASSERT( hcd_edpt_xfer(rhport, dev_addr, tu_edpt_addr(0, request->bmRequestType_bit.direction), _ctrl_xfer.buffer, request->wLength) );
return true;
}
TU_ATTR_FALLTHROUGH;
case CONTROL_STAGE_DATA:
if (request->wLength)
{
TU_LOG_USBH("[%u:%u] Control data:\r\n", rhport, dev_addr);
TU_LOG_MEM(USBH_DEBUG, _ctrl_xfer.buffer, xferred_bytes, 2);
}
_ctrl_xfer.actual_len = (uint16_t) xferred_bytes;
// ACK stage: toggle is always 1
_set_control_xfer_stage(CONTROL_STAGE_ACK);
TU_ASSERT( hcd_edpt_xfer(rhport, dev_addr, tu_edpt_addr(0, 1-request->bmRequestType_bit.direction), NULL, 0) );
break;
case CONTROL_STAGE_ACK:
_xfer_complete(dev_addr, result);
break;
default: return false;
}
}
return true;
}
//--------------------------------------------------------------------+
//
//--------------------------------------------------------------------+
bool tuh_edpt_xfer(tuh_xfer_t* xfer)
{
uint8_t const daddr = xfer->daddr;
uint8_t const ep_addr = xfer->ep_addr;
TU_VERIFY(daddr && ep_addr);
TU_VERIFY(usbh_edpt_claim(daddr, ep_addr));
if ( !usbh_edpt_xfer_with_callback(daddr, ep_addr, xfer->buffer, (uint16_t) xfer->buflen, xfer->complete_cb, xfer->user_data) )
{
usbh_edpt_release(daddr, ep_addr);
return false;
}
return true;
}
//--------------------------------------------------------------------+
// USBH API For Class Driver
//--------------------------------------------------------------------+
uint8_t usbh_get_rhport(uint8_t dev_addr)
{
usbh_device_t* dev = get_device(dev_addr);
return dev ? dev->rhport : _dev0.rhport;
}
uint8_t* usbh_get_enum_buf(void)
{
return _usbh_ctrl_buf;
}
void usbh_int_set(bool enabled)
{
// TODO all host controller if multiple is used
if (enabled)
{
hcd_int_enable(_usbh_controller);
}else
{
hcd_int_disable(_usbh_controller);
}
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
// TODO has some duplication code with device, refactor later
bool usbh_edpt_claim(uint8_t dev_addr, uint8_t ep_addr)
{
usbh_device_t* dev = get_device(dev_addr);
// addr0 only use tuh_control_xfer
TU_ASSERT(dev);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return tu_edpt_claim(&dev->ep_status[epnum][dir], _usbh_mutex);
}
// TODO has some duplication code with device, refactor later
bool usbh_edpt_release(uint8_t dev_addr, uint8_t ep_addr)
{
usbh_device_t* dev = get_device(dev_addr);
// addr0 only use tuh_control_xfer
TU_ASSERT(dev);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return tu_edpt_release(&dev->ep_status[epnum][dir], _usbh_mutex);
}
// TODO has some duplication code with device, refactor later
bool usbh_edpt_xfer_with_callback(uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
(void) complete_cb;
(void) user_data;
usbh_device_t* dev = get_device(dev_addr);
TU_VERIFY(dev);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
tu_edpt_state_t* ep_state = &dev->ep_status[epnum][dir];
TU_LOG_USBH(" Queue EP %02X with %u bytes ... ", ep_addr, total_bytes);
// Attempt to transfer on a busy endpoint, sound like an race condition !
TU_ASSERT(ep_state->busy == 0);
// Set busy first since the actual transfer can be complete before hcd_edpt_xfer()
// could return and USBH task can preempt and clear the busy
ep_state->busy = 1;
#if CFG_TUH_API_EDPT_XFER
dev->ep_callback[epnum][dir].complete_cb = complete_cb;
dev->ep_callback[epnum][dir].user_data = user_data;
#endif
if ( hcd_edpt_xfer(dev->rhport, dev_addr, ep_addr, buffer, total_bytes) )
{
TU_LOG_USBH("OK\r\n");
return true;
}else
{
// HCD error, mark endpoint as ready to allow next transfer
ep_state->busy = 0;
ep_state->claimed = 0;
TU_LOG1("Failed\r\n");
TU_BREAKPOINT();
return false;
}
}
static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size)
{
TU_LOG_USBH("[%u:%u] Open EP0 with Size = %u\r\n", usbh_get_rhport(dev_addr), dev_addr, max_packet_size);
tusb_desc_endpoint_t ep0_desc =
{
.bLength = sizeof(tusb_desc_endpoint_t),
.bDescriptorType = TUSB_DESC_ENDPOINT,
.bEndpointAddress = 0,
.bmAttributes = { .xfer = TUSB_XFER_CONTROL },
.wMaxPacketSize = max_packet_size,
.bInterval = 0
};
return hcd_edpt_open(usbh_get_rhport(dev_addr), dev_addr, &ep0_desc);
}
bool tuh_edpt_open(uint8_t dev_addr, tusb_desc_endpoint_t const * desc_ep)
{
TU_ASSERT( tu_edpt_validate(desc_ep, tuh_speed_get(dev_addr)) );
return hcd_edpt_open(usbh_get_rhport(dev_addr), dev_addr, desc_ep);
}
bool usbh_edpt_busy(uint8_t dev_addr, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
usbh_device_t* dev = get_device(dev_addr);
TU_VERIFY(dev);
return dev->ep_status[epnum][dir].busy;
}
//--------------------------------------------------------------------+
// HCD Event Handler
//--------------------------------------------------------------------+
void hcd_devtree_get_info(uint8_t dev_addr, hcd_devtree_info_t* devtree_info)
{
usbh_device_t const* dev = get_device(dev_addr);
if (dev)
{
devtree_info->rhport = dev->rhport;
devtree_info->hub_addr = dev->hub_addr;
devtree_info->hub_port = dev->hub_port;
devtree_info->speed = dev->speed;
}else
{
devtree_info->rhport = _dev0.rhport;
devtree_info->hub_addr = _dev0.hub_addr;
devtree_info->hub_port = _dev0.hub_port;
devtree_info->speed = _dev0.speed;
}
}
TU_ATTR_FAST_FUNC void hcd_event_handler(hcd_event_t const* event, bool in_isr)
{
switch (event->event_id)
{
default:
osal_queue_send(_usbh_q, event, in_isr);
break;
}
}
//--------------------------------------------------------------------+
// Descriptors Async
//--------------------------------------------------------------------+
// generic helper to get a descriptor
// if blocking, user_data could be pointed to xfer_result
static bool _get_descriptor(uint8_t daddr, uint8_t type, uint8_t index, uint16_t language_id, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_IN
},
.bRequest = TUSB_REQ_GET_DESCRIPTOR,
.wValue = tu_htole16( TU_U16(type, index) ),
.wIndex = tu_htole16(language_id),
.wLength = tu_htole16(len)
};
tuh_xfer_t xfer =
{
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = buffer,
.complete_cb = complete_cb,
.user_data = user_data
};
bool const ret = tuh_control_xfer(&xfer);
// if blocking, user_data could be pointed to xfer_result
if ( !complete_cb && user_data )
{
*((xfer_result_t*) user_data) = xfer.result;
}
return ret;
}
bool tuh_descriptor_get(uint8_t daddr, uint8_t type, uint8_t index, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
return _get_descriptor(daddr, type, index, 0x0000, buffer, len, complete_cb, user_data);
}
bool tuh_descriptor_get_device(uint8_t daddr, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
len = tu_min16(len, sizeof(tusb_desc_device_t));
return tuh_descriptor_get(daddr, TUSB_DESC_DEVICE, 0, buffer, len, complete_cb, user_data);
}
bool tuh_descriptor_get_configuration(uint8_t daddr, uint8_t index, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
return tuh_descriptor_get(daddr, TUSB_DESC_CONFIGURATION, index, buffer, len, complete_cb, user_data);
}
//------------- String Descriptor -------------//
bool tuh_descriptor_get_string(uint8_t daddr, uint8_t index, uint16_t language_id, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
return _get_descriptor(daddr, TUSB_DESC_STRING, index, language_id, buffer, len, complete_cb, user_data);
}
// Get manufacturer string descriptor
bool tuh_descriptor_get_manufacturer_string(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
usbh_device_t const* dev = get_device(daddr);
TU_VERIFY(dev && dev->i_manufacturer);
return tuh_descriptor_get_string(daddr, dev->i_manufacturer, language_id, buffer, len, complete_cb, user_data);
}
// Get product string descriptor
bool tuh_descriptor_get_product_string(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
usbh_device_t const* dev = get_device(daddr);
TU_VERIFY(dev && dev->i_product);
return tuh_descriptor_get_string(daddr, dev->i_product, language_id, buffer, len, complete_cb, user_data);
}
// Get serial string descriptor
bool tuh_descriptor_get_serial_string(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
usbh_device_t const* dev = get_device(daddr);
TU_VERIFY(dev && dev->i_serial);
return tuh_descriptor_get_string(daddr, dev->i_serial, language_id, buffer, len, complete_cb, user_data);
}
// Get HID report descriptor
// if blocking, user_data could be pointed to xfer_result
bool tuh_descriptor_get_hid_report(uint8_t daddr, uint8_t itf_num, uint8_t desc_type, uint8_t index, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
TU_LOG_USBH("HID Get Report Descriptor\r\n");
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_IN
},
.bRequest = TUSB_REQ_GET_DESCRIPTOR,
.wValue = tu_htole16(TU_U16(desc_type, index)),
.wIndex = tu_htole16((uint16_t) itf_num),
.wLength = len
};
tuh_xfer_t xfer =
{
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = buffer,
.complete_cb = complete_cb,
.user_data = user_data
};
bool const ret = tuh_control_xfer(&xfer);
// if blocking, user_data could be pointed to xfer_result
if ( !complete_cb && user_data )
{
*((xfer_result_t*) user_data) = xfer.result;
}
return ret;
}
bool tuh_configuration_set(uint8_t daddr, uint8_t config_num,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
TU_LOG_USBH("Set Configuration = %d\r\n", config_num);
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_OUT
},
.bRequest = TUSB_REQ_SET_CONFIGURATION,
.wValue = tu_htole16(config_num),
.wIndex = 0,
.wLength = 0
};
tuh_xfer_t xfer =
{
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
};
return tuh_control_xfer(&xfer);
}
//--------------------------------------------------------------------+
// Descriptor Sync
//--------------------------------------------------------------------+
#define _CONTROL_SYNC_API(_async_func, ...) \
xfer_result_t result = XFER_RESULT_INVALID;\
TU_VERIFY(_async_func(__VA_ARGS__, NULL, (uintptr_t) &result), XFER_RESULT_TIMEOUT); \
return (uint8_t) result
uint8_t tuh_descriptor_get_sync(uint8_t daddr, uint8_t type, uint8_t index, void* buffer, uint16_t len)
{
_CONTROL_SYNC_API(tuh_descriptor_get, daddr, type, index, buffer, len);
}
uint8_t tuh_descriptor_get_device_sync(uint8_t daddr, void* buffer, uint16_t len)
{
_CONTROL_SYNC_API(tuh_descriptor_get_device, daddr, buffer, len);
}
uint8_t tuh_descriptor_get_configuration_sync(uint8_t daddr, uint8_t index, void* buffer, uint16_t len)
{
_CONTROL_SYNC_API(tuh_descriptor_get_configuration, daddr, index, buffer, len);
}
uint8_t tuh_descriptor_get_hid_report_sync(uint8_t daddr, uint8_t itf_num, uint8_t desc_type, uint8_t index, void* buffer, uint16_t len)
{
_CONTROL_SYNC_API(tuh_descriptor_get_hid_report, daddr, itf_num, desc_type, index, buffer, len);
}
uint8_t tuh_descriptor_get_string_sync(uint8_t daddr, uint8_t index, uint16_t language_id, void* buffer, uint16_t len)
{
_CONTROL_SYNC_API(tuh_descriptor_get_string, daddr, index, language_id, buffer, len);
}
uint8_t tuh_descriptor_get_manufacturer_string_sync(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len)
{
_CONTROL_SYNC_API(tuh_descriptor_get_manufacturer_string, daddr, language_id, buffer, len);
}
uint8_t tuh_descriptor_get_product_string_sync(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len)
{
_CONTROL_SYNC_API(tuh_descriptor_get_product_string, daddr, language_id, buffer, len);
}
uint8_t tuh_descriptor_get_serial_string_sync(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len)
{
_CONTROL_SYNC_API(tuh_descriptor_get_serial_string, daddr, language_id, buffer, len);
}
//--------------------------------------------------------------------+
//
//--------------------------------------------------------------------+
TU_ATTR_ALWAYS_INLINE
static inline bool is_hub_addr(uint8_t daddr)
{
return (CFG_TUH_HUB > 0) && (daddr > CFG_TUH_DEVICE_MAX);
}
// a device unplugged from rhport:hub_addr:hub_port
static void process_device_unplugged(uint8_t rhport, uint8_t hub_addr, uint8_t hub_port)
{
//------------- find the all devices (star-network) under port that is unplugged -------------//
// TODO mark as disconnected in ISR, also handle dev0
for ( uint8_t dev_id = 0; dev_id < TU_ARRAY_SIZE(_usbh_devices); dev_id++ )
{
usbh_device_t* dev = &_usbh_devices[dev_id];
uint8_t const dev_addr = dev_id+1;
// TODO Hub multiple level
if (dev->rhport == rhport &&
(hub_addr == 0 || dev->hub_addr == hub_addr) && // hub_addr = 0 means roothub
(hub_port == 0 || dev->hub_port == hub_port) && // hub_port = 0 means all devices of downstream hub
dev->connected)
{
TU_LOG_USBH(" Address = %u\r\n", dev_addr);
if (is_hub_addr(dev_addr))
{
TU_LOG(USBH_DEBUG, "HUB address = %u is unmounted\r\n", dev_addr);
// If the device itself is a usb hub, unplug downstream devices.
// FIXME un-roll recursive calls to prevent potential stack overflow
process_device_unplugged(rhport, dev_addr, 0);
}else
{
// Invoke callback before closing driver
if (tuh_umount_cb) tuh_umount_cb(dev_addr);
}
// Close class driver
for (uint8_t drv_id = 0; drv_id < USBH_CLASS_DRIVER_COUNT; drv_id++)
{
TU_LOG_USBH("%s close\r\n", usbh_class_drivers[drv_id].name);
usbh_class_drivers[drv_id].close(dev_addr);
}
hcd_device_close(rhport, dev_addr);
clear_device(dev);
// abort on-going control xfer if any
if (_ctrl_xfer.daddr == dev_addr) _set_control_xfer_stage(CONTROL_STAGE_IDLE);
}
}
}
//--------------------------------------------------------------------+
// Enumeration Process
// is a lengthy process with a series of control transfer to configure
// newly attached device.
// NOTE: due to the shared _usbh_ctrl_buf, we must complete enumerating
// one device before enumerating another one.
//--------------------------------------------------------------------+
enum {
ENUM_IDLE,
ENUM_RESET_1, // 1st reset when attached
//ENUM_HUB_GET_STATUS_1,
ENUM_HUB_CLEAR_RESET_1,
ENUM_ADDR0_DEVICE_DESC,
ENUM_RESET_2, // 2nd reset before set address (not used)
ENUM_HUB_GET_STATUS_2,
ENUM_HUB_CLEAR_RESET_2,
ENUM_SET_ADDR,
ENUM_GET_DEVICE_DESC,
ENUM_GET_9BYTE_CONFIG_DESC,
ENUM_GET_FULL_CONFIG_DESC,
ENUM_SET_CONFIG,
ENUM_CONFIG_DRIVER
};
static bool enum_request_set_addr(void);
static bool _parse_configuration_descriptor (uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg);
static void enum_full_complete(void);
// process device enumeration
static void process_enumeration(tuh_xfer_t* xfer)
{
// Retry a few times with transfers in enumeration since device can be unstable when starting up
enum {
ATTEMPT_COUNT_MAX = 3,
ATTEMPT_DELAY_MS = 100
};
static uint8_t failed_count = 0;
if (XFER_RESULT_SUCCESS != xfer->result)
{
// retry if not reaching max attempt
if ( failed_count < ATTEMPT_COUNT_MAX )
{
failed_count++;
osal_task_delay(ATTEMPT_DELAY_MS); // delay a bit
TU_ASSERT(tuh_control_xfer(xfer), );
}else
{
enum_full_complete();
}
return;
}
failed_count = 0;
uint8_t const daddr = xfer->daddr;
uintptr_t const state = xfer->user_data;
switch(state)
{
#if CFG_TUH_HUB
//case ENUM_HUB_GET_STATUS_1: break;
case ENUM_HUB_CLEAR_RESET_1:
{
hub_port_status_response_t port_status;
memcpy(&port_status, _usbh_ctrl_buf, sizeof(hub_port_status_response_t));
if ( !port_status.status.connection )
{
// device unplugged while delaying, nothing else to do
enum_full_complete();
return;
}
_dev0.speed = (port_status.status.high_speed) ? TUSB_SPEED_HIGH :
(port_status.status.low_speed ) ? TUSB_SPEED_LOW : TUSB_SPEED_FULL;
// Acknowledge Port Reset Change
if (port_status.change.reset)
{
hub_port_clear_reset_change(_dev0.hub_addr, _dev0.hub_port, process_enumeration, ENUM_ADDR0_DEVICE_DESC);
}
}
break;
case ENUM_HUB_GET_STATUS_2:
osal_task_delay(RESET_DELAY);
TU_ASSERT( hub_port_get_status(_dev0.hub_addr, _dev0.hub_port, _usbh_ctrl_buf, process_enumeration, ENUM_HUB_CLEAR_RESET_2), );
break;
case ENUM_HUB_CLEAR_RESET_2:
{
hub_port_status_response_t port_status;
memcpy(&port_status, _usbh_ctrl_buf, sizeof(hub_port_status_response_t));
// Acknowledge Port Reset Change if Reset Successful
if (port_status.change.reset)
{
TU_ASSERT( hub_port_clear_reset_change(_dev0.hub_addr, _dev0.hub_port, process_enumeration, ENUM_SET_ADDR), );
}
}
break;
#endif
case ENUM_ADDR0_DEVICE_DESC:
{
// TODO probably doesn't need to open/close each enumeration
uint8_t const addr0 = 0;
TU_ASSERT( usbh_edpt_control_open(addr0, 8), );
// Get first 8 bytes of device descriptor for Control Endpoint size
TU_LOG_USBH("Get 8 byte of Device Descriptor\r\n");
TU_ASSERT(tuh_descriptor_get_device(addr0, _usbh_ctrl_buf, 8, process_enumeration, ENUM_SET_ADDR), );
}
break;
#if 0
case ENUM_RESET_2:
// TODO not used by now, but may be needed for some devices !?
// Reset device again before Set Address
TU_LOG_USBH("Port reset2 \r\n");
if (_dev0.hub_addr == 0)
{
// connected directly to roothub
hcd_port_reset( _dev0.rhport );
osal_task_delay(RESET_DELAY); // TODO may not work for no-OS on MCU that require reset_end() since
// sof of controller may not running while resetting
hcd_port_reset_end(_dev0.rhport);
// TODO: fall through to SET ADDRESS, refactor later
}
#if CFG_TUH_HUB
else
{
// after RESET_DELAY the hub_port_reset() already complete
TU_ASSERT( hub_port_reset(_dev0.hub_addr, _dev0.hub_port, process_enumeration, ENUM_HUB_GET_STATUS_2), );
break;
}
#endif
TU_ATTR_FALLTHROUGH;
#endif
case ENUM_SET_ADDR:
enum_request_set_addr();
break;
case ENUM_GET_DEVICE_DESC:
{
uint8_t const new_addr = (uint8_t) tu_le16toh(xfer->setup->wValue);
usbh_device_t* new_dev = get_device(new_addr);
TU_ASSERT(new_dev, );
new_dev->addressed = 1;
// Close device 0
hcd_device_close(_dev0.rhport, 0);
// open control pipe for new address
TU_ASSERT( usbh_edpt_control_open(new_addr, new_dev->ep0_size), );
// Get full device descriptor
TU_LOG_USBH("Get Device Descriptor\r\n");
TU_ASSERT(tuh_descriptor_get_device(new_addr, _usbh_ctrl_buf, sizeof(tusb_desc_device_t), process_enumeration, ENUM_GET_9BYTE_CONFIG_DESC), );
}
break;
case ENUM_GET_9BYTE_CONFIG_DESC:
{
tusb_desc_device_t const * desc_device = (tusb_desc_device_t const*) _usbh_ctrl_buf;
usbh_device_t* dev = get_device(daddr);
TU_ASSERT(dev, );
dev->vid = desc_device->idVendor;
dev->pid = desc_device->idProduct;
dev->i_manufacturer = desc_device->iManufacturer;
dev->i_product = desc_device->iProduct;
dev->i_serial = desc_device->iSerialNumber;
// if (tuh_attach_cb) tuh_attach_cb((tusb_desc_device_t*) _usbh_ctrl_buf);
// Get 9-byte for total length
uint8_t const config_idx = CONFIG_NUM - 1;
TU_LOG_USBH("Get Configuration[0] Descriptor (9 bytes)\r\n");
TU_ASSERT( tuh_descriptor_get_configuration(daddr, config_idx, _usbh_ctrl_buf, 9, process_enumeration, ENUM_GET_FULL_CONFIG_DESC), );
}
break;
case ENUM_GET_FULL_CONFIG_DESC:
{
uint8_t const * desc_config = _usbh_ctrl_buf;
// Use offsetof to avoid pointer to the odd/misaligned address
uint16_t const total_len = tu_le16toh( tu_unaligned_read16(desc_config + offsetof(tusb_desc_configuration_t, wTotalLength)) );
// TODO not enough buffer to hold configuration descriptor
TU_ASSERT(total_len <= CFG_TUH_ENUMERATION_BUFSIZE, );
// Get full configuration descriptor
uint8_t const config_idx = CONFIG_NUM - 1;
TU_LOG_USBH("Get Configuration[0] Descriptor\r\n");
TU_ASSERT( tuh_descriptor_get_configuration(daddr, config_idx, _usbh_ctrl_buf, total_len, process_enumeration, ENUM_SET_CONFIG), );
}
break;
case ENUM_SET_CONFIG:
// Parse configuration & set up drivers
// Driver open aren't allowed to make any usb transfer yet
TU_ASSERT( _parse_configuration_descriptor(daddr, (tusb_desc_configuration_t*) _usbh_ctrl_buf), );
TU_ASSERT( tuh_configuration_set(daddr, CONFIG_NUM, process_enumeration, ENUM_CONFIG_DRIVER), );
break;
case ENUM_CONFIG_DRIVER:
{
TU_LOG_USBH("Device configured\r\n");
usbh_device_t* dev = get_device(daddr);
TU_ASSERT(dev, );
dev->configured = 1;
// Start the Set Configuration process for interfaces (itf = DRVID_INVALID)
// Since driver can perform control transfer within its set_config, this is done asynchronously.
// The process continue with next interface when class driver complete its sequence with usbh_driver_set_config_complete()
// TODO use separated API instead of using DRVID_INVALID
usbh_driver_set_config_complete(daddr, DRVID_INVALID);
}
break;
default:
// stop enumeration if unknown state
enum_full_complete();
break;
}
}
static bool enum_new_device(hcd_event_t* event)
{
_dev0.rhport = event->rhport;
_dev0.hub_addr = event->connection.hub_addr;
_dev0.hub_port = event->connection.hub_port;
if (_dev0.hub_addr == 0)
{
// connected/disconnected directly with roothub
// wait until device is stable TODO non blocking
hcd_port_reset(_dev0.rhport);
osal_task_delay(RESET_DELAY); // TODO may not work for no-OS on MCU that require reset_end() since
// sof of controller may not running while resetting
hcd_port_reset_end( _dev0.rhport);
// device unplugged while delaying
if ( !hcd_port_connect_status(_dev0.rhport) ) return true;
_dev0.speed = hcd_port_speed_get(_dev0.rhport );
TU_LOG_USBH("%s Speed\r\n", tu_str_speed[_dev0.speed]);
// fake transfer to kick-off the enumeration process
tuh_xfer_t xfer;
xfer.daddr = 0;
xfer.result = XFER_RESULT_SUCCESS;
xfer.user_data = ENUM_ADDR0_DEVICE_DESC;
process_enumeration(&xfer);
}
#if CFG_TUH_HUB
else
{
// connected/disconnected via external hub
// wait until device is stable
osal_task_delay(RESET_DELAY);
// ENUM_HUB_GET_STATUS
//TU_ASSERT( hub_port_get_status(_dev0.hub_addr, _dev0.hub_port, _usbh_ctrl_buf, enum_hub_get_status0_complete, 0) );
TU_ASSERT( hub_port_get_status(_dev0.hub_addr, _dev0.hub_port, _usbh_ctrl_buf, process_enumeration, ENUM_HUB_CLEAR_RESET_1) );
}
#endif // hub
return true;
}
static uint8_t get_new_address(bool is_hub)
{
uint8_t start;
uint8_t end;
if ( is_hub )
{
start = CFG_TUH_DEVICE_MAX;
end = start + CFG_TUH_HUB;
}else
{
start = 0;
end = start + CFG_TUH_DEVICE_MAX;
}
for ( uint8_t idx = start; idx < end; idx++)
{
if (!_usbh_devices[idx].connected) return (idx+1);
}
return 0; // invalid address
}
static bool enum_request_set_addr(void)
{
tusb_desc_device_t const * desc_device = (tusb_desc_device_t const*) _usbh_ctrl_buf;
// Get new address
uint8_t const new_addr = get_new_address(desc_device->bDeviceClass == TUSB_CLASS_HUB);
TU_ASSERT(new_addr != 0);
TU_LOG_USBH("Set Address = %d\r\n", new_addr);
usbh_device_t* new_dev = get_device(new_addr);
new_dev->rhport = _dev0.rhport;
new_dev->hub_addr = _dev0.hub_addr;
new_dev->hub_port = _dev0.hub_port;
new_dev->speed = _dev0.speed;
new_dev->connected = 1;
new_dev->ep0_size = desc_device->bMaxPacketSize0;
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_OUT
},
.bRequest = TUSB_REQ_SET_ADDRESS,
.wValue = tu_htole16(new_addr),
.wIndex = 0,
.wLength = 0
};
tuh_xfer_t xfer =
{
.daddr = 0, // dev0
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = process_enumeration,
.user_data = ENUM_GET_DEVICE_DESC
};
TU_ASSERT( tuh_control_xfer(&xfer) );
return true;
}
static bool _parse_configuration_descriptor(uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg)
{
usbh_device_t* dev = get_device(dev_addr);
uint16_t const total_len = tu_le16toh(desc_cfg->wTotalLength);
uint8_t const* desc_end = ((uint8_t const*) desc_cfg) + total_len;
uint8_t const* p_desc = tu_desc_next(desc_cfg);
TU_LOG_USBH("Parsing Configuration descriptor (wTotalLength = %u)\r\n", total_len);
// parse each interfaces
while( p_desc < desc_end )
{
uint8_t assoc_itf_count = 1;
// Class will always starts with Interface Association (if any) and then Interface descriptor
if ( TUSB_DESC_INTERFACE_ASSOCIATION == tu_desc_type(p_desc) )
{
tusb_desc_interface_assoc_t const * desc_iad = (tusb_desc_interface_assoc_t const *) p_desc;
assoc_itf_count = desc_iad->bInterfaceCount;
p_desc = tu_desc_next(p_desc); // next to Interface
// IAD's first interface number and class should match with opened interface
//TU_ASSERT(desc_iad->bFirstInterface == desc_itf->bInterfaceNumber &&
// desc_iad->bFunctionClass == desc_itf->bInterfaceClass);
}
TU_ASSERT( TUSB_DESC_INTERFACE == tu_desc_type(p_desc) );
tusb_desc_interface_t const* desc_itf = (tusb_desc_interface_t const*) p_desc;
#if CFG_TUH_MIDI
// MIDI has 2 interfaces (Audio Control v1 + MIDIStreaming) but does not have IAD
// manually increase the associated count
if (1 == assoc_itf_count &&
TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass &&
AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass &&
AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_itf->bInterfaceProtocol)
{
assoc_itf_count = 2;
}
#endif
uint16_t const drv_len = tu_desc_get_interface_total_len(desc_itf, assoc_itf_count, (uint16_t) (desc_end-p_desc));
TU_ASSERT(drv_len >= sizeof(tusb_desc_interface_t));
// Find driver for this interface
for (uint8_t drv_id = 0; drv_id < USBH_CLASS_DRIVER_COUNT; drv_id++)
{
usbh_class_driver_t const * driver = &usbh_class_drivers[drv_id];
if ( driver->open(dev->rhport, dev_addr, desc_itf, drv_len) )
{
// open successfully
TU_LOG_USBH(" %s opened\r\n", driver->name);
// bind (associated) interfaces to found driver
for(uint8_t i=0; i<assoc_itf_count; i++)
{
uint8_t const itf_num = desc_itf->bInterfaceNumber+i;
// Interface number must not be used already
TU_ASSERT( DRVID_INVALID == dev->itf2drv[itf_num] );
dev->itf2drv[itf_num] = drv_id;
}
// bind all endpoints to found driver
tu_edpt_bind_driver(dev->ep2drv, desc_itf, drv_len, drv_id);
break; // exit driver find loop
}
if( drv_id >= USBH_CLASS_DRIVER_COUNT )
{
TU_LOG(USBH_DEBUG, "Interface %u: class = %u subclass = %u protocol = %u is not supported\r\n",
desc_itf->bInterfaceNumber, desc_itf->bInterfaceClass, desc_itf->bInterfaceSubClass, desc_itf->bInterfaceProtocol);
}
}
// next Interface or IAD descriptor
p_desc += drv_len;
}
return true;
}
void usbh_driver_set_config_complete(uint8_t dev_addr, uint8_t itf_num)
{
usbh_device_t* dev = get_device(dev_addr);
for(itf_num++; itf_num < CFG_TUH_INTERFACE_MAX; itf_num++)
{
// continue with next valid interface
// IAD binding interface such as CDCs should return itf_num + 1 when complete
// with usbh_driver_set_config_complete()
uint8_t const drv_id = dev->itf2drv[itf_num];
if (drv_id != DRVID_INVALID)
{
usbh_class_driver_t const * driver = &usbh_class_drivers[drv_id];
TU_LOG_USBH("%s set config: itf = %u\r\n", driver->name, itf_num);
driver->set_config(dev_addr, itf_num);
break;
}
}
// all interface are configured
if (itf_num == CFG_TUH_INTERFACE_MAX)
{
enum_full_complete();
if (is_hub_addr(dev_addr))
{
TU_LOG(USBH_DEBUG, "HUB address = %u is mounted\r\n", dev_addr);
}else
{
// Invoke callback if available
if (tuh_mount_cb) tuh_mount_cb(dev_addr);
}
}
}
static void enum_full_complete(void)
{
#if CFG_TUH_HUB
// get next hub status
if (_dev0.hub_addr) hub_edpt_status_xfer(_dev0.hub_addr);
#endif
}
#endif