/* This file tests that the host correctly receives the keys the device sends to it. */ #include "usbx_test_common_hid.h" #include "ux_host_class_hid_keyboard.h" #define HOST_WAIT_TIME 1 #define SLAVE_WAIT_TIME (6*HOST_WAIT_TIME) #ifndef UX_HID_KEYBOARD_PHANTOM_STATE #define UX_HID_KEYBOARD_PHANTOM_STATE 0x01 #endif #define KEY_START (UX_HID_KEYBOARD_PHANTOM_STATE+1) static UCHAR ux_host_class_hid_keyboard_regular_array[] = { 0,0,0,0, 'a','b','c','d','e','f','g','h','i','j','k','l','m','n', 'o','p','q','r','s','t','u','v','w','x','y','z', '1','2','3','4','5','6','7','8','9','0', 0x0d,0x1b,0x08,0x07,0x20,'-','=','[',']', '\\','#',';',0x27,'`',',','.','/',0xf0, 0xbb,0xbc,0xbd,0xbe,0xbf,0xc0,0xc1,0xc2,0xc3,0xc4,0xc5,0xc6, 0x00,0xf1,0x00,0xd2,0xc7,0xc9,0xd3,0xcf,0xd1,0xcd,0xcb,0xd0,0xc8,0xf2, '/','*','-','+', 0x0d,'1','2','3','4','5','6','7','8','9','0','.','\\',0x00,0x00,'=', 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, }; static UCHAR ux_host_class_hid_keyboard_capslock_array[] = { 0,0,0,0, 'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z', '1','2','3','4','5','6','7','8','9','0', 0x0d,0x1b,0x08,0x07,0x20,'-','=','[',']', '\\','#',';',0x27,'`',',','.','/',0xf0, 0xbb,0xbc,0xbd,0xbe,0xbf,0xc0,0xc1,0xc2,0xc3,0xc4,0xc5,0xc6, 0x00,0xf1,0x00,0xd2,0xc7,0xc9,0xd3,0xcf,0xd1,0xcd,0xcb,0xd0,0xc8,0xf2, '/','*','-','+', 0x0d,'1','2','3','4','5','6','7','8','9','0','.','\\',0x00,0x00,'=', 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, }; static UCHAR ux_host_class_hid_keyboard_shift_array[] = { 0,0,0,0, 'A','B','C','D','E','F','G','H','I','J','K','L','M','N', 'O','P','Q','R','S','T','U','V','W','X','Y','Z', '!','@','#','$','%','^','&','*','(',')', 0x0d,0x1b,0x08,0x07,0x20,'_','+','{','}', '|','~',':','"','~','<','>','?',0xf0, 0xbb,0xbc,0xbd,0xbe,0xbf,0xc0,0xc1,0xc2,0xc3,0xc4,0xc5,0xc6, 0x00,0xf1,0x00,0xd2,0xc7,0xc9,0xd3,0xcf,0xd1,0xcd,0xcb,0xd0,0xc8,0xf2, '/','*','-','+', 0x0d,'1','2','3','4','5','6','7','8','9','0','.','\\',0x00,0x00,'=', 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, }; static UCHAR ux_host_class_hid_keyboard_shift_capslock_array[] = { 0,0,0,0, 'a','b','c','d','e','f','g','h','i','j', 'k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z', '!','@','#','$','%','^','&','*','(',')', 0x0d,0x1b,0x08,0x07,0x20,'_','+','{','}', '|','~',':','"','~','<','>','?',0xf0, 0xbb,0xbc,0xbd,0xbe,0xbf,0xc0,0xc1,0xc2,0xc3,0xc4,0xc5,0xc6, 0x00,0xf1,0x00,0xd2,0xc7,0xc9,0xd3,0xcf,0xd1,0xcd,0xcb,0xd0,0xc8,0xf2, '/','*','-','+', 0x0d,'1','2','3','4','5','6','7','8','9','0','.','\\',0x00,0x00,'=', 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, }; static UCHAR ux_host_class_hid_keyboard_numlock_on_array[] = { '/','*','-','+', 0x0d,'1','2','3','4','5','6','7','8','9','0','.','\\',0x00,0x00,'=', }; static UCHAR ux_host_class_hid_keyboard_numlock_off_array[] = { '/','*','-','+', 0x0d,0xcf,0xd0,0xd1,0xcb,'5',0xcd,0xc7,0xc8,0xc9,0xd2,0xd3,'\\',0x00,0x00,'=', }; #define DUMMY_USBX_MEMORY_SIZE (64*1024) static UCHAR dummy_usbx_memory[DUMMY_USBX_MEMORY_SIZE]; static volatile ULONG test_host_phase = 0; static volatile ULONG test_slave_phase = 0; static UCHAR hid_report_descriptor[] = { 0x05, 0x01, // USAGE_PAGE (Generic Desktop) 0x09, 0x06, // USAGE (Keyboard) 0xa1, 0x01, // COLLECTION (Application) 0x05, 0x07, // USAGE_PAGE (Keyboard) 0x19, 0xe0, // USAGE_MINIMUM (Keyboard LeftControl) 0x29, 0xe7, // USAGE_MAXIMUM (Keyboard Right GUI) 0x15, 0x00, // LOGICAL_MINIMUM (0) 0x25, 0x01, // LOGICAL_MAXIMUM (1) 0x75, 0x01, // REPORT_SIZE (1) 0x95, 0x08, // REPORT_COUNT (8) 0x81, 0x02, // INPUT (Data,Var,Abs) 0x95, 0x01, // REPORT_COUNT (1) 0x75, 0x08, // REPORT_SIZE (8) 0x81, 0x03, // INPUT (Cnst,Var,Abs) 0x95, 0x05, // REPORT_COUNT (5) 0x75, 0x01, // REPORT_SIZE (1) 0x05, 0x08, // USAGE_PAGE (LEDs) 0x19, 0x01, // USAGE_MINIMUM (Num Lock) 0x29, 0x05, // USAGE_MAXIMUM (Kana) 0x91, 0x02, // OUTPUT (Data,Var,Abs) 0x95, 0x01, // REPORT_COUNT (1) 0x75, 0x03, // REPORT_SIZE (3) 0x91, 0x03, // OUTPUT (Cnst,Var,Abs) 0x95, 0x06, // REPORT_COUNT (6) 0x75, 0x08, // REPORT_SIZE (8) 0x15, 0x00, // LOGICAL_MINIMUM (0) 0x25, ARRAY_COUNT(ux_host_class_hid_keyboard_regular_array) + 1, // LOGICAL_MAXIMUM () 0x05, 0x07, // USAGE_PAGE (Keyboard) 0x19, 0x00, // USAGE_MINIMUM (Reserved (no event indicated)) 0x29, ARRAY_COUNT(ux_host_class_hid_keyboard_regular_array) + 1, // USAGE_MAXIMUM () 0x81, 0x00, // INPUT (Data,Ary,Abs) 0xc0 // END_COLLECTION }; #define HID_REPORT_LENGTH sizeof(hid_report_descriptor)/sizeof(hid_report_descriptor[0]) #define DEVICE_FRAMEWORK_LENGTH_FULL_SPEED 52 static UCHAR device_framework_full_speed[DEVICE_FRAMEWORK_LENGTH_FULL_SPEED] = { /* Device descriptor */ 0x12, 0x01, 0x10, 0x01, 0x00, 0x00, 0x00, 0x08, 0x81, 0x0A, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, /* Configuration descriptor */ 0x09, 0x02, 0x22, 0x00, 0x01, 0x01, 0x00, 0xc0, 0x32, /* Interface descriptor */ 0x09, 0x04, 0x02, 0x00, 0x01, 0x03, 0x00, 0x00, 0x00, /* HID descriptor */ 0x09, 0x21, 0x10, 0x01, 0x21, 0x01, 0x22, LSB(HID_REPORT_LENGTH), MSB(HID_REPORT_LENGTH), /* Endpoint descriptor (Interrupt) */ 0x07, 0x05, 0x82, 0x03, 0x08, 0x00, 0x08 }; #define DEVICE_FRAMEWORK_LENGTH_HIGH_SPEED 62 static UCHAR device_framework_high_speed[DEVICE_FRAMEWORK_LENGTH_HIGH_SPEED] = { /* Device descriptor */ 0x12, 0x01, 0x00, 0x02, 0x00, 0x00, 0x00, 0x40, 0x0a, 0x07, 0x25, 0x40, 0x01, 0x00, 0x01, 0x02, 0x03, 0x01, /* Device qualifier descriptor */ 0x0a, 0x06, 0x00, 0x02, 0x00, 0x00, 0x00, 0x40, 0x01, 0x00, /* Configuration descriptor */ 0x09, 0x02, 0x22, 0x00, 0x01, 0x01, 0x00, 0xc0, 0x32, /* Interface descriptor */ 0x09, 0x04, 0x02, 0x00, 0x01, 0x03, 0x00, 0x00, 0x00, /* HID descriptor */ 0x09, 0x21, 0x10, 0x01, 0x21, 0x01, 0x22, LSB(HID_REPORT_LENGTH), MSB(HID_REPORT_LENGTH), /* Endpoint descriptor (Interrupt) */ 0x07, 0x05, 0x82, 0x03, 0x08, 0x00, 0x08 }; /* String Device Framework : Byte 0 and 1 : Word containing the language ID : 0x0904 for US Byte 2 : Byte containing the index of the descriptor Byte 3 : Byte containing the length of the descriptor string */ #define STRING_FRAMEWORK_LENGTH 40 static UCHAR string_framework[] = { /* Manufacturer string descriptor : Index 1 */ 0x09, 0x04, 0x01, 0x0c, 0x45, 0x78, 0x70, 0x72,0x65, 0x73, 0x20, 0x4c, 0x6f, 0x67, 0x69, 0x63, /* Product string descriptor : Index 2 */ 0x09, 0x04, 0x02, 0x0c, 0x55, 0x53, 0x42, 0x20, 0x4b, 0x65, 0x79, 0x62, 0x6f, 0x61, 0x72, 0x64, /* Serial Number string descriptor : Index 3 */ 0x09, 0x04, 0x03, 0x04, 0x30, 0x30, 0x30, 0x31 }; /* Multiple languages are supported on the device, to add a language besides english, the unicode language code must be appended to the language_id_framework array and the length adjusted accordingly. */ #define LANGUAGE_ID_FRAMEWORK_LENGTH 2 static UCHAR language_id_framework[] = { /* English. */ 0x09, 0x04 }; UINT _ux_hcd_sim_host_entry(UX_HCD *hcd, UINT function, VOID *parameter); static UINT ux_system_host_change_function(ULONG a, UX_HOST_CLASS *b, VOID *c) { return 0; } static VOID error_callback(UINT system_level, UINT system_context, UINT error_code) { /* @BUG_FIX_PENDING: ux_dcd_sim_slave_function.c doesn't support transfer aborts, which happen during device unregistration of a class. */ if (error_code != UX_FUNCTION_NOT_SUPPORTED && error_code != UX_BUFFER_OVERFLOW /* Key queue overflow! */) { /* Failed test. */ printf("Error on line %d, system_level: %d, system_context: %d, error code: 0x%x\n", __LINE__, system_level, system_context, error_code); test_control_return(1); } } /* Define what the initial system looks like. */ #ifdef CTEST void test_application_define(void *first_unused_memory) #else void usbx_hid_keyboard_key_test_application_define(void *first_unused_memory) #endif { UINT status; CHAR * stack_pointer; CHAR * memory_pointer; /* Inform user. */ printf("Running HID Keyboard Key Test....................................... "); /* Initialize the free memory pointer */ stack_pointer = (CHAR *) usbx_memory; memory_pointer = stack_pointer + (UX_DEMO_STACK_SIZE * 2); /* Initialize USBX. Memory */ status = ux_system_initialize(memory_pointer, UX_DEMO_MEMORY_SIZE, UX_NULL,0); /* Check for error. */ if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } /* Register the error callback. */ _ux_utility_error_callback_register(error_callback); /* The code below is required for installing the host portion of USBX */ status = ux_host_stack_initialize(ux_system_host_change_function); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } status = ux_host_stack_class_register(_ux_system_host_class_hid_name, ux_host_class_hid_entry); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } /* Register the HID client(s). */ status = ux_host_class_hid_client_register(_ux_system_host_class_hid_client_keyboard_name, ux_host_class_hid_keyboard_entry); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } /* The code below is required for installing the device portion of USBX. No call back for device status change in this example. */ status = ux_device_stack_initialize(device_framework_high_speed, DEVICE_FRAMEWORK_LENGTH_HIGH_SPEED, device_framework_full_speed, DEVICE_FRAMEWORK_LENGTH_FULL_SPEED, string_framework, STRING_FRAMEWORK_LENGTH, language_id_framework, LANGUAGE_ID_FRAMEWORK_LENGTH,UX_NULL); if(status!=UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } /* Initialize the hid class parameters. */ hid_parameter.ux_device_class_hid_parameter_report_address = hid_report_descriptor; hid_parameter.ux_device_class_hid_parameter_report_length = HID_REPORT_LENGTH; hid_parameter.ux_device_class_hid_parameter_callback = demo_thread_hid_callback; /* Initialize the device hid class. The class is connected with interface 2 */ status = ux_device_stack_class_register(_ux_system_slave_class_hid_name, ux_device_class_hid_entry, 1,2, (VOID *)&hid_parameter); if(status!=UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } /* Initialize the simulated device controller. */ status = _ux_dcd_sim_slave_initialize(); /* Check for error. */ if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } /* Register all the USB host controllers available in this system */ status = ux_host_stack_hcd_register(_ux_system_host_hcd_simulator_name, ux_hcd_sim_host_initialize,0,0); /* Check for error. */ if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } /* Create the main host simulation thread. */ status = tx_thread_create(&tx_demo_thread_host_simulation, "tx demo host simulation", tx_demo_thread_host_simulation_entry, 0, stack_pointer, UX_DEMO_STACK_SIZE, 20, 20, 1, TX_AUTO_START); /* Check for error. */ if (status != TX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } /* Create the main demo thread. */ status = tx_thread_create(&tx_demo_thread_slave_simulation, "tx demo slave simulation", tx_demo_thread_slave_simulation_entry, 0, stack_pointer + UX_DEMO_STACK_SIZE, UX_DEMO_STACK_SIZE, 20, 20, 1, TX_AUTO_START); /* Check for error. */ if (status != TX_SUCCESS) { printf("Running HID Keyboard Basic Functionality Test....................... ERROR #10\n"); test_control_return(1); } } static UINT _wait_key(UX_HOST_CLASS_HID_KEYBOARD *keyboard, ULONG *keyboard_key, ULONG *keyboard_state) { UINT status; UINT i; for(i = 0; i < 200; i ++) { status = ux_host_class_hid_keyboard_key_get(keyboard, keyboard_key, keyboard_state); if (status == UX_SUCCESS) { // printf("Key: %lx,%lx\n", *keyboard_key, *keyboard_state); #if defined(UX_HOST_CLASS_HID_KEYBOARD_EVENTS_KEY_CHANGES_MODE_REPORT_LOCK_KEYS) || defined(UX_HOST_CLASS_HID_KEYBOARD_EVENTS_KEY_CHANGES_MODE_REPORT_MODIFIER_KEYS) if (*keyboard_state & UX_HID_KEYBOARD_STATE_FUNCTION) continue; #endif #if !defined(UX_HOST_CLASS_HID_KEYBOARD_EVENTS_KEY_CHANGES_MODE_REPORT_KEY_DOWN_ONLY) if (*keyboard_state & UX_HID_KEYBOARD_STATE_KEY_UP) continue; #endif return UX_SUCCESS; } _ux_utility_delay_ms(1); } return UX_ERROR; } static UINT tx_demo_phase_sync(ULONG in_host, ULONG nb_loop, ULONG tick_in_loop) { ULONG i; for (i = 0; i < nb_loop; i ++) { if (in_host) { if (test_host_phase <= test_slave_phase) return UX_SUCCESS; } else { if (test_slave_phase <= test_host_phase) return UX_SUCCESS; } _ux_utility_thread_sleep(tick_in_loop); } return UX_ERROR; } static void tx_demo_thread_host_simulation_entry(ULONG arg) { UINT status; UX_HOST_CLASS_HID_KEYBOARD *keyboard; ULONG keyboard_key; ULONG keyboard_state; ULONG expected_key; ULONG num_keypad_keys; ULONG i, n; UCHAR *test_array[4] = { ux_host_class_hid_keyboard_regular_array, ux_host_class_hid_keyboard_shift_array, ux_host_class_hid_keyboard_capslock_array, ux_host_class_hid_keyboard_shift_capslock_array }; /* Find the HID class */ status = demo_class_hid_get(); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } /* Get the HID client */ hid_client = hid -> ux_host_class_hid_client; /* Check if the instance of the keyboard is live */ while (hid_client -> ux_host_class_hid_client_local_instance == UX_NULL) tx_thread_sleep(10); /* Get the keyboard instance */ keyboard = (UX_HOST_CLASS_HID_KEYBOARD *)hid_client -> ux_host_class_hid_client_local_instance; /**************************************************************************/ /** 1. Test receiving maximum keys at once. **/ test_host_phase ++; // printf("###### host step: %ld ######\n", test_host_phase); for (i = 4; i < 10; i++) { status = _wait_key(keyboard, &keyboard_key, &keyboard_state); if (status != UX_SUCCESS) { printf("ERROR #%d: code 0x%x\n", __LINE__, status); test_control_return(1); } expected_key = ux_host_class_hid_keyboard_regular_array[i]; if (keyboard_key != expected_key) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } } /**************************************************************************/ /** 2. Test keys. **/ test_host_phase ++; // printf("###### host step: %ld ######\n", test_host_phase); for (n = 0; n < 4; n ++) { for (i = KEY_START; i < ARRAY_COUNT(ux_host_class_hid_keyboard_regular_array); i++) { /* These keys change the keyboard state and are not retrievable. */ if (i == UX_HID_LED_KEY_CAPS_LOCK || i == UX_HID_LED_KEY_NUM_LOCK || i == UX_HID_LED_KEY_SCROLL_LOCK) continue; status = _wait_key(keyboard, &keyboard_key, &keyboard_state); if (status != UX_SUCCESS) { printf("ERROR #%d: code 0x%x\n", __LINE__, status); test_control_return(1); } // printf("test key: %lx @ %lx\n", keyboard_key, keyboard_state); expected_key = test_array[n][i]; if (keyboard_key != expected_key) { printf("Error on line %d, test %ld.%ld, state 0x%lx, key 0x%lx <> 0x%lx\n", __LINE__, n, i, keyboard_state, expected_key, keyboard_key); test_control_return(1); } } } /**************************************************************************/ /** 3. Test number pad keys. **/ test_host_phase ++; // printf("###### host step: %ld ######\n", test_host_phase); /** Test numlock on keys. **/ num_keypad_keys = (UX_HID_KEYBOARD_KEYS_KEYPAD_UPPER_RANGE - UX_HID_KEYBOARD_KEYS_KEYPAD_LOWER_RANGE) + 1; for (i = 0; i < ARRAY_COUNT(ux_host_class_hid_keyboard_numlock_on_array); i++) { status = _wait_key(keyboard, &keyboard_key, &keyboard_state); if (status != UX_SUCCESS) { printf("ERROR #%d: code 0x%x\n", __LINE__, status); test_control_return(1); } expected_key = ux_host_class_hid_keyboard_numlock_on_array[i]; if (keyboard_key != ux_host_class_hid_keyboard_numlock_on_array[i]) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } } /** Test numlock off keys. **/ for (i = 0; i < ARRAY_COUNT(ux_host_class_hid_keyboard_numlock_off_array); i++) { status = _wait_key(keyboard, &keyboard_key, &keyboard_state); if (status != UX_SUCCESS) { printf("ERROR #%d: code 0x%x\n", __LINE__, status); test_control_return(1); } // printf("test key: %lx @ %lx\n", keyboard_key, keyboard_state); expected_key = ux_host_class_hid_keyboard_numlock_off_array[i]; if (keyboard_key != ux_host_class_hid_keyboard_numlock_off_array[i]) { printf("Error on line %d, test %ld, state 0x%lx, key 0x%lx <> 0x%lx\n", __LINE__, i, keyboard_state, expected_key, keyboard_key); test_control_return(1); } } /**************************************************************************/ /** 4. Test states. **/ test_host_phase ++; // printf("###### host step: %ld ######\n", test_host_phase); /** Test keyboard on states. **/ status = _wait_key(keyboard, &keyboard_key, &keyboard_state); if (status != UX_SUCCESS) { printf("ERROR #%d: code 0x%x\n", __LINE__, status); test_control_return(1); } /* Ensure every bit is enabled (represented by 0xff07 (search for "Define HID Keyboard States." in ux_host_class_hid_keyboard.h)). */ if ((keyboard_state & 0xFFFF) != 0xff07) { printf("Error on line %d, test %ld.%ld, state 0x%lx\n", __LINE__, n, i, keyboard_state); test_control_return(1); } /** Test keyboard off states. **/ status = _wait_key(keyboard, &keyboard_key, &keyboard_state); if (status != UX_SUCCESS) { printf("ERROR #%d: code 0x%x\n", __LINE__, status); test_control_return(1); } /* Ensure every bit is disabled. */ if ((keyboard_state & 0xFFFF) != 0x0000) { printf("Error on line %d, test %ld.%ld, state 0x%lx\n", __LINE__, n, i, keyboard_state); test_control_return(1); } /**************************************************************************/ /** 5. Test raw key. **/ /* Disable decode. */ ux_host_class_hid_keyboard_ioctl(keyboard, UX_HID_KEYBOARD_IOCTL_DISABLE_KEYS_DECODE, UX_NULL); test_host_phase ++; // printf("###### host step: %ld ######\n", test_host_phase); for (i = KEY_START; i < ARRAY_COUNT(ux_host_class_hid_keyboard_regular_array); i++) { #if 0 /* These keys change the keyboard state and are not retrievable. */ if (i == UX_HID_LED_KEY_CAPS_LOCK || i == UX_HID_LED_KEY_NUM_LOCK || i == UX_HID_LED_KEY_SCROLL_LOCK) continue; #endif status = _wait_key(keyboard, &keyboard_key, &keyboard_state); if (status != UX_SUCCESS) { printf("ERROR #%d: code 0x%x\n", __LINE__, status); test_control_return(1); } expected_key = i; if (keyboard_key != expected_key) { printf("Error on line %d, test %ld, 0x%lx <> 0x%lx\n", __LINE__, i, expected_key, keyboard_key); // test_control_return(1); } } /**************************************************************************/ /** 6. Test invalid key. **/ /* Enable decode. */ ux_host_class_hid_keyboard_ioctl(keyboard, UX_HID_KEYBOARD_IOCTL_ENABLE_KEYS_DECODE, UX_NULL); test_host_phase ++; // printf("###### host step: %ld ######\n", test_host_phase); /* Wait slave execute. */ if (tx_demo_phase_sync(UX_TRUE, 10, SLAVE_WAIT_TIME) != UX_SUCCESS) { printf("Error in line %d, thread phase error %ld <> %ld!\n", __LINE__, test_host_phase, test_slave_phase); test_control_return(1); } /* Wait a invalid key (discarded). */ ux_utility_thread_sleep(HOST_WAIT_TIME * 2); /**************************************************************************/ /** 7. Test key array overflow. **/ /* Flush keys. */ do { status = ux_host_class_hid_keyboard_key_get(keyboard, &keyboard_key, &keyboard_state); } while(status == UX_SUCCESS); /* No read, test array full. */ ux_host_class_hid_keyboard_ioctl(keyboard, UX_HID_KEYBOARD_IOCTL_DISABLE_KEYS_DECODE, UX_NULL); test_host_phase ++; // printf("###### host step: %ld ######\n", test_host_phase); /* Wait until test done. */ while(test_slave_phase != 0) _ux_utility_delay_ms(10); /* There are keys remain in key array. */ for (i = 0; i < UX_HOST_CLASS_HID_KEYBOARD_USAGE_ARRAY_LENGTH / 2 - 1; i ++) { status = ux_host_class_hid_keyboard_key_get(keyboard, &keyboard_key, &keyboard_state); if(status != UX_SUCCESS) { printf("Error on line %d.%ld, error code 0x%x\n", __LINE__, i, status); test_control_return(1); } if (keyboard_key != 5) { printf("Error on line %d, key 0x%lx,0x%lx @ %ld\n", __LINE__, keyboard_key, keyboard_state, i); test_control_return(1); } } status = ux_host_class_hid_keyboard_key_get(keyboard, &keyboard_key, &keyboard_state); if(status == UX_SUCCESS) { printf("Error on line %d, error code 0x%x\n", __LINE__, status); } /* Now disconnect the device. */ _ux_device_stack_disconnect(); /* And deinitialize the class. */ status = ux_device_stack_class_unregister(_ux_system_slave_class_hid_name, ux_device_class_hid_entry); /* Deinitialize the device side of usbx. */ _ux_device_stack_uninitialize(); /* And finally the usbx system resources. */ _ux_system_uninitialize(); /* Successful test. */ printf("SUCCESS!\n"); test_control_return(0); } static UINT demo_thread_hid_callback(UX_SLAVE_CLASS_HID *class, UX_SLAVE_CLASS_HID_EVENT *event) { return(UX_SUCCESS); } static void tx_demo_thread_slave_simulation_entry(ULONG arg) { UINT status; UX_SLAVE_DEVICE *device; UX_SLAVE_INTERFACE *interface; UX_SLAVE_CLASS_HID *hid; UX_SLAVE_CLASS_HID_EVENT hid_event; UINT i, n; UCHAR state_modifier[2] = {0, (0x01 << 1)}; /* Get the pointer to the device. */ device = &_ux_system_slave -> ux_system_slave_device; /* reset the HID event structure. */ ux_utility_memory_set(&hid_event, 0, sizeof(UX_SLAVE_CLASS_HID_EVENT)); /* Is the device configured ? */ while (device->ux_slave_device_state != UX_DEVICE_CONFIGURED) /* Then wait. */ tx_thread_sleep(10); /* Get the interface. We use the first interface, this is a simple device. */ interface = device->ux_slave_device_first_interface; /* Form that interface, derive the HID owner. */ hid = interface->ux_slave_interface_class_instance; /**************************************************************************/ /** 1. Test receiving maximum keys at once. **/ test_slave_phase ++; // printf("****** slave step: %ld ******\n", test_slave_phase); hid_event.ux_device_class_hid_event_length = 8; /* Modification byte. */ hid_event.ux_device_class_hid_event_buffer[0] = 0; /* Reserved byte. */ hid_event.ux_device_class_hid_event_buffer[1] = 0; /* Set keys. */ for (i = 0; i < 6; i++) hid_event.ux_device_class_hid_event_buffer[2 + i] = 4 + i; ux_device_class_hid_event_set(hid, &hid_event); #if 0 /* Release keys. */ for (i = 0; i < 6; i++) hid_event.ux_device_class_hid_event_buffer[2 + i] = 0; ux_device_class_hid_event_set(hid, &hid_event); #endif ux_utility_thread_sleep(SLAVE_WAIT_TIME); /* Reset for next test. */ ux_utility_memory_set(&hid_event, 0, sizeof(UX_SLAVE_CLASS_HID_EVENT)); /**************************************************************************/ /** 2. Test keys. **/ test_slave_phase ++; // printf("****** slave step: %ld ******\n", test_slave_phase); /** Test regular keys with/without SHIFT. Only go up to maximum value specified by report descriptor. **/ for (n = 0; n < 2; n ++) { for (i = KEY_START; i < ARRAY_COUNT(ux_host_class_hid_keyboard_regular_array); i++) { /* These keys change the keyboard state and are not retrievable. */ if (i == UX_HID_LED_KEY_CAPS_LOCK || i == UX_HID_LED_KEY_NUM_LOCK || i == UX_HID_LED_KEY_SCROLL_LOCK) continue; hid_event.ux_device_class_hid_event_length = 8; /* Modification byte. */ hid_event.ux_device_class_hid_event_buffer[0] = state_modifier[n]; /* Reserved byte. */ hid_event.ux_device_class_hid_event_buffer[1] = 0; /* Key byte. */ hid_event.ux_device_class_hid_event_buffer[2] = i; status = ux_device_class_hid_event_set(hid, &hid_event); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); } } ux_utility_thread_sleep(SLAVE_WAIT_TIME); /** Test CAPS LOCK with/without SHIFT keys. Only go up to maximum value specified by report descriptor. **/ /* Turn CAPS LOCK on. */ hid_event.ux_device_class_hid_event_length = 8; hid_event.ux_device_class_hid_event_buffer[0] = 0; hid_event.ux_device_class_hid_event_buffer[1] = 0; hid_event.ux_device_class_hid_event_buffer[2] = UX_HID_LED_KEY_CAPS_LOCK; status = ux_device_class_hid_event_set(hid, &hid_event); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); for (n = 0; n < 2; n ++) { for (i = KEY_START; i < ARRAY_COUNT(ux_host_class_hid_keyboard_regular_array); i++) { /* These keys change the keyboard state and are not retrievable. */ if (i == UX_HID_LED_KEY_CAPS_LOCK || i == UX_HID_LED_KEY_NUM_LOCK || i == UX_HID_LED_KEY_SCROLL_LOCK) continue; hid_event.ux_device_class_hid_event_length = 8; /* Modification byte. */ hid_event.ux_device_class_hid_event_buffer[0] = state_modifier[n]; /* Reserved byte. */ hid_event.ux_device_class_hid_event_buffer[1] = 0; /* Key byte. */ hid_event.ux_device_class_hid_event_buffer[2] = i; status = ux_device_class_hid_event_set(hid, &hid_event); if (status != UX_SUCCESS) { /* ERROR */ printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); } } ux_utility_thread_sleep(SLAVE_WAIT_TIME); /* Turn CAPS LOCK off. */ hid_event.ux_device_class_hid_event_length = 8; hid_event.ux_device_class_hid_event_buffer[0] = 0; hid_event.ux_device_class_hid_event_buffer[1] = 0; hid_event.ux_device_class_hid_event_buffer[2] = UX_HID_LED_KEY_CAPS_LOCK; status = ux_device_class_hid_event_set(hid, &hid_event); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); /**************************************************************************/ /** 3. Test num pad keys. **/ test_slave_phase ++; // printf("****** slave step: %ld ******\n", test_slave_phase); /** Test NUM LOCK on keys. NUM LOCK is on by default. **/ for (i = UX_HID_KEYBOARD_KEYS_KEYPAD_LOWER_RANGE; i <= UX_HID_KEYBOARD_KEYS_KEYPAD_UPPER_RANGE; i++) { hid_event.ux_device_class_hid_event_length = 8; /* Modification byte. */ hid_event.ux_device_class_hid_event_buffer[0] = 0; /* Reserved byte. */ hid_event.ux_device_class_hid_event_buffer[1] = 0; /* Key byte. */ hid_event.ux_device_class_hid_event_buffer[2] = i; status = ux_device_class_hid_event_set(hid, &hid_event); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); /** Test NUM LOCK off keys. **/ /* Turn NUM LOCK off. */ hid_event.ux_device_class_hid_event_length = 8; hid_event.ux_device_class_hid_event_buffer[0] = 0; hid_event.ux_device_class_hid_event_buffer[1] = 0; hid_event.ux_device_class_hid_event_buffer[2] = UX_HID_LED_KEY_NUM_LOCK; ux_device_class_hid_event_set(hid, &hid_event); ux_utility_thread_sleep(SLAVE_WAIT_TIME); for (i = UX_HID_KEYBOARD_KEYS_KEYPAD_LOWER_RANGE; i <= UX_HID_KEYBOARD_KEYS_KEYPAD_UPPER_RANGE; i++) { hid_event.ux_device_class_hid_event_length = 8; /* Modification byte. */ hid_event.ux_device_class_hid_event_buffer[0] = 0; /* Reserved byte. */ hid_event.ux_device_class_hid_event_buffer[1] = 0; /* Key byte. */ hid_event.ux_device_class_hid_event_buffer[2] = i; status = ux_device_class_hid_event_set(hid, &hid_event); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); /* Turn NUM LOCK on. */ hid_event.ux_device_class_hid_event_length = 8; hid_event.ux_device_class_hid_event_buffer[0] = 0; hid_event.ux_device_class_hid_event_buffer[1] = 0; hid_event.ux_device_class_hid_event_buffer[2] = UX_HID_LED_KEY_NUM_LOCK; status = ux_device_class_hid_event_set(hid, &hid_event); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); /**************************************************************************/ /** 4. Test states. **/ test_slave_phase ++; // printf("****** slave step: %ld ******\n", test_slave_phase); /** Test key states. **/ /* Enable every bit in key state. */ hid_event.ux_device_class_hid_event_length = 8; hid_event.ux_device_class_hid_event_buffer[0] = 0xff; hid_event.ux_device_class_hid_event_buffer[1] = 0; hid_event.ux_device_class_hid_event_buffer[2] = UX_HID_LED_KEY_CAPS_LOCK; hid_event.ux_device_class_hid_event_buffer[3] = UX_HID_LED_KEY_SCROLL_LOCK; hid_event.ux_device_class_hid_event_buffer[4] = UX_HID_LED_KEY_NUM_LOCK; status = ux_device_class_hid_event_set(hid, &hid_event); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); /* Add a key so the host can receive it, allowing checking of key state. */ hid_event.ux_device_class_hid_event_length = 8; hid_event.ux_device_class_hid_event_buffer[0] = 0xff; hid_event.ux_device_class_hid_event_buffer[1] = 0; hid_event.ux_device_class_hid_event_buffer[2] = 0; hid_event.ux_device_class_hid_event_buffer[3] = 0; hid_event.ux_device_class_hid_event_buffer[4] = 0x04; status = ux_device_class_hid_event_set(hid, &hid_event); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); /** Test key states. **/ /* Disable every bit in key state. */ hid_event.ux_device_class_hid_event_length = 8; hid_event.ux_device_class_hid_event_buffer[0] = 0x00; hid_event.ux_device_class_hid_event_buffer[1] = 0; hid_event.ux_device_class_hid_event_buffer[2] = UX_HID_LED_KEY_CAPS_LOCK; hid_event.ux_device_class_hid_event_buffer[3] = UX_HID_LED_KEY_SCROLL_LOCK; hid_event.ux_device_class_hid_event_buffer[4] = UX_HID_LED_KEY_NUM_LOCK; /* Add a different key so the host can receive it, allowing checking of key state. */ hid_event.ux_device_class_hid_event_buffer[5] = 0x05; status = ux_device_class_hid_event_set(hid, &hid_event); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } hid_event.ux_device_class_hid_event_buffer[2] = 0; hid_event.ux_device_class_hid_event_buffer[3] = 0; hid_event.ux_device_class_hid_event_buffer[4] = 0; hid_event.ux_device_class_hid_event_buffer[5] = 0; ux_utility_thread_sleep(SLAVE_WAIT_TIME); /**************************************************************************/ /** 5. Test raw key. **/ test_slave_phase ++; // printf("****** slave step: %ld ******\n", test_slave_phase); /* Wait decode mode change. */ if (tx_demo_phase_sync(UX_FALSE, 20, SLAVE_WAIT_TIME) != UX_SUCCESS) { printf("Error in line %d, thread phase error %ld <> %ld!\n", __LINE__, test_host_phase, test_slave_phase); test_control_return(1); } /** Test raw key. **/ for (i = KEY_START; i < ARRAY_COUNT(ux_host_class_hid_keyboard_regular_array); i++) { hid_event.ux_device_class_hid_event_length = 8; /* Modification byte. */ hid_event.ux_device_class_hid_event_buffer[0] = 0; /* Reserved byte. */ hid_event.ux_device_class_hid_event_buffer[1] = 0; /* Key byte. */ hid_event.ux_device_class_hid_event_buffer[2] = i; status = ux_device_class_hid_event_set(hid, &hid_event); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); /**************************************************************************/ /** 6. Test invalid key. **/ test_slave_phase ++; // printf("****** slave step: %ld ******\n", test_slave_phase); /* Wait decode mode change. */ if (tx_demo_phase_sync(UX_FALSE, 10, SLAVE_WAIT_TIME) != UX_SUCCESS) { printf("Error in line %d, thread phase error %ld <> %ld!\n", __LINE__, test_host_phase, test_slave_phase); test_control_return(1); } /* Key byte. */ hid_event.ux_device_class_hid_event_buffer[2] = ARRAY_COUNT(ux_host_class_hid_keyboard_regular_array); status = ux_device_class_hid_event_set(hid, &hid_event); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } /* Key byte release. */ hid_event.ux_device_class_hid_event_buffer[2] = 0; status = ux_device_class_hid_event_set(hid, &hid_event); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); /**************************************************************************/ /** 7. Test key array overflow. **/ test_slave_phase ++; // printf("****** slave step: %ld ******\n", test_slave_phase); /* Wait decode mode change. */ if (tx_demo_phase_sync(UX_FALSE, 10, SLAVE_WAIT_TIME) != UX_SUCCESS) { printf("Error in line %d, thread phase error %ld <> %ld!\n", __LINE__, test_host_phase, test_slave_phase); test_control_return(1); } /** Test key array full. **/ for (i = 0; i < UX_HOST_CLASS_HID_KEYBOARD_USAGE_ARRAY_LENGTH + 1; i++) { /* Press key. */ hid_event.ux_device_class_hid_event_length = 8; hid_event.ux_device_class_hid_event_buffer[0] = 0; hid_event.ux_device_class_hid_event_buffer[1] = 0; hid_event.ux_device_class_hid_event_buffer[2] = 5; status = ux_device_class_hid_event_set(hid, &hid_event); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); /* Release previous key. */ hid_event.ux_device_class_hid_event_length = 8; hid_event.ux_device_class_hid_event_buffer[0] = 0; hid_event.ux_device_class_hid_event_buffer[1] = 0; hid_event.ux_device_class_hid_event_buffer[2] = 0; status = ux_device_class_hid_event_set(hid, &hid_event); if (status != UX_SUCCESS) { printf("Error on line %d, error code: 0x%x\n", __LINE__, status); test_control_return(1); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); } ux_utility_thread_sleep(SLAVE_WAIT_TIME); /* All done. */ test_slave_phase = 0; }