usbx/test/regression/usbx_cdc_acm_basic_memory_test.c
CQ Xiao 6ed7092b77
Add regression tests. (#126)
Add regression tests (auto triggered on PR, manually triggered in forked branch).
2023-11-28 15:50:39 +08:00

855 lines
27 KiB
C

/* This test is designed to test the simple dpump host/device class operation. */
#include <stdio.h>
#include "tx_api.h"
#include "ux_api.h"
#include "ux_system.h"
#include "ux_utility.h"
#include "fx_api.h"
#include "ux_device_class_cdc_acm.h"
#include "ux_device_stack.h"
#include "ux_host_class_cdc_acm.h"
#include "ux_test_dcd_sim_slave.h"
#include "ux_test_hcd_sim_host.h"
#include "ux_test_utility_sim.h"
/* Define constants. */
#define UX_DEMO_DEBUG_SIZE (4096*8)
#define UX_DEMO_STACK_SIZE 1024
#define UX_DEMO_BUFFER_SIZE (UX_SLAVE_REQUEST_DATA_MAX_LENGTH + 1)
#define UX_DEMO_XMIT_BUFFER_SIZE 512
#define UX_DEMO_RECEPTION_BUFFER_SIZE 512
#define UX_DEMO_FILE_BUFFER_SIZE 512
#define UX_DEMO_RECEPTION_BLOCK_SIZE 64
#define UX_DEMO_MEMORY_SIZE (64*1024)
#define UX_DEMO_FILE_SIZE (128 * 1024)
#define UX_RAM_DISK_MEMORY (256 * 1024)
/* Define local/extern function prototypes. */
static TX_THREAD ux_test_thread_host_simulation;
static TX_THREAD ux_test_thread_slave_simulation;
static void ux_test_thread_host_simulation_entry(ULONG);
static void ux_test_thread_slave_simulation_entry(ULONG);
static VOID test_cdc_instance_activate(VOID *cdc_instance);
static VOID test_cdc_instance_deactivate(VOID *cdc_instance);
static VOID test_cdc_instance_parameter_change(VOID *cdc_instance);
static VOID ux_test_hcd_entry_set_cfg(UX_TEST_ACTION *action, VOID *params);
/* Define global data structures. */
static UCHAR usbx_memory[UX_DEMO_MEMORY_SIZE + (UX_DEMO_STACK_SIZE * 2)];
static UX_HOST_CLASS *class_driver;
static UX_HOST_CLASS_CDC_ACM *cdc_acm_host_control;
static UX_HOST_CLASS_CDC_ACM *cdc_acm_host_data;
static UX_SLAVE_CLASS_CDC_ACM *cdc_acm_slave;
static UCHAR cdc_acm_slave_change;
static UX_SLAVE_CLASS_CDC_ACM_PARAMETER parameter;
static ULONG set_cfg_counter;
static ULONG rsc_mem_alloc_cnt_on_set_cfg;
static ULONG rsc_sem_on_set_cfg;
static ULONG rsc_sem_get_on_set_cfg;
static ULONG rsc_mutex_on_set_cfg;
static ULONG rsc_enum_sem_usage;
static ULONG rsc_enum_sem_get_count;
static ULONG rsc_enum_mutex_usage;
static ULONG rsc_enum_mem_alloc_count;
static ULONG rsc_cdc_sem_usage;
static ULONG rsc_cdc_sem_get_count;
static ULONG rsc_cdc_mutex_usage;
static ULONG rsc_cdc_mem_alloc_count;
static ULONG interaction_count;
static UCHAR error_callback_ignore = UX_TRUE;
static ULONG error_callback_counter;
/* Define device framework. */
#define DEVICE_FRAMEWORK_LENGTH_FULL_SPEED 93
#define DEVICE_FRAMEWORK_LENGTH_HIGH_SPEED 103
#define STRING_FRAMEWORK_LENGTH 47
#define LANGUAGE_ID_FRAMEWORK_LENGTH 2
static unsigned char device_framework_full_speed[] = {
/* Device descriptor 18 bytes
0x02 bDeviceClass: CDC class code
0x00 bDeviceSubclass: CDC class sub code
0x00 bDeviceProtocol: CDC Device protocol
idVendor & idProduct - http://www.linux-usb.org/usb.ids
*/
0x12, 0x01, 0x10, 0x01,
0xEF, 0x02, 0x01,
0x08,
0x84, 0x84, 0x00, 0x00,
0x00, 0x01,
0x01, 0x02, 03,
0x01,
/* Configuration 1 descriptor 9 bytes */
0x09, 0x02, 0x4b, 0x00,
0x02, 0x01, 0x00,
0x40, 0x00,
/* Interface association descriptor. 8 bytes. */
0x08, 0x0b, 0x00, 0x02, 0x02, 0x02, 0x00, 0x00,
/* Communication Class Interface Descriptor Requirement. 9 bytes. */
0x09, 0x04, 0x00,
0x00,
0x01,
0x02, 0x02, 0x01,
0x00,
/* Header Functional Descriptor 5 bytes */
0x05, 0x24, 0x00,
0x10, 0x01,
/* ACM Functional Descriptor 4 bytes */
0x04, 0x24, 0x02,
0x0f,
/* Union Functional Descriptor 5 bytes */
0x05, 0x24, 0x06,
0x00, /* Master interface */
0x01, /* Slave interface */
/* Call Management Functional Descriptor 5 bytes */
0x05, 0x24, 0x01,
0x03,
0x01, /* Data interface */
/* Endpoint 0x83 descriptor 7 bytes */
0x07, 0x05, 0x83,
0x03,
0x08, 0x00,
0xFF,
/* Data Class Interface Descriptor Requirement 9 bytes */
0x09, 0x04, 0x01,
0x00,
0x02,
0x0A, 0x00, 0x00,
0x00,
/* Endpoint 0x02 descriptor 7 bytes */
0x07, 0x05, 0x02, /* @ 93 - 14 + 2 = 81 */
0x02,
0x40, 0x00,
0x00,
/* Endpoint 0x81 descriptor 7 bytes */
0x07, 0x05, 0x81, /* @ 93 - 7 + 2 = 88 */
0x02,
0x40, 0x00,
0x00,
};
#define DEVICE_FRAMEWORK_EPA_POS_1_FS (DEVICE_FRAMEWORK_LENGTH_FULL_SPEED - 14 + 2)
#define DEVICE_FRAMEWORK_EPA_POS_2_FS (DEVICE_FRAMEWORK_LENGTH_FULL_SPEED - 7 + 2)
static unsigned char device_framework_high_speed[] = {
/* Device descriptor
0x02 bDeviceClass: CDC class code
0x00 bDeviceSubclass: CDC class sub code
0x00 bDeviceProtocol: CDC Device protocol
idVendor & idProduct - http://www.linux-usb.org/usb.ids
*/
0x12, 0x01, 0x00, 0x02,
0xEF, 0x02, 0x01,
0x40,
0x84, 0x84, 0x00, 0x00,
0x00, 0x01,
0x01, 0x02, 03,
0x01,
/* Device qualifier descriptor */
0x0a, 0x06, 0x00, 0x02,
0x02, 0x00, 0x00,
0x40,
0x01,
0x00,
/* Configuration 1 descriptor */
0x09, 0x02, 0x4b, 0x00,
0x02, 0x01, 0x00,
0x40, 0x00,
/* Interface association descriptor. */
0x08, 0x0b, 0x00, 0x02, 0x02, 0x02, 0x00, 0x00,
/* Communication Class Interface Descriptor Requirement */
0x09, 0x04, 0x00,
0x00,
0x01,
0x02, 0x02, 0x01,
0x00,
/* Header Functional Descriptor */
0x05, 0x24, 0x00,
0x10, 0x01,
/* ACM Functional Descriptor */
0x04, 0x24, 0x02,
0x0f,
/* Union Functional Descriptor */
0x05, 0x24, 0x06,
0x00,
0x01,
/* Call Management Functional Descriptor */
0x05, 0x24, 0x01,
0x00,
0x01,
/* Endpoint 0x83 descriptor */
0x07, 0x05, 0x83,
0x03,
0x08, 0x00,
0xFF,
/* Data Class Interface Descriptor Requirement */
0x09, 0x04, 0x01,
0x00,
0x02,
0x0A, 0x00, 0x00,
0x00,
/* Endpoint 0x02 descriptor */
0x07, 0x05, 0x02, /* @ 103 - 14 + 2 = 91 */
0x02,
0x40, 0x00,
0x00,
/* Endpoint 0x81 descriptor */
0x07, 0x05, 0x81, /* @ 103 - 7 + 2 = 98 */
0x02,
0x40, 0x00,
0x00,
};
#define DEVICE_FRAMEWORK_EPA_POS_1_HS (DEVICE_FRAMEWORK_LENGTH_HIGH_SPEED - 14 + 2)
#define DEVICE_FRAMEWORK_EPA_POS_2_HS (DEVICE_FRAMEWORK_LENGTH_HIGH_SPEED - 7 + 2)
static unsigned char string_framework[] = {
/* Manufacturer string descriptor : Index 1 - "Express Logic" */
0x09, 0x04, 0x01, 0x0c,
0x45, 0x78, 0x70, 0x72,0x65, 0x73, 0x20, 0x4c,
0x6f, 0x67, 0x69, 0x63,
/* Product string descriptor : Index 2 - "EL Composite device" */
0x09, 0x04, 0x02, 0x13,
0x45, 0x4c, 0x20, 0x43, 0x6f, 0x6d, 0x70, 0x6f,
0x73, 0x69, 0x74, 0x65, 0x20, 0x64, 0x65, 0x76,
0x69, 0x63, 0x65,
/* Serial Number string descriptor : Index 3 - "0001" */
0x09, 0x04, 0x03, 0x04,
0x30, 0x30, 0x30, 0x31
};
/* Multiple languages are supported on the device, to add
a language besides english, the unicode language code must
be appended to the language_id_framework array and the length
adjusted accordingly. */
static unsigned char language_id_framework[] = {
/* English. */
0x09, 0x04
};
/* Setup requests */
static UX_TEST_SETUP _SetConfigure = UX_TEST_SETUP_SetConfigure;
static UX_TEST_HCD_SIM_ACTION log_on_SetCfg[] = {
/* function, request to match,
port action, port status,
request action, request EP, request data, request actual length, request status,
status, additional callback,
no_return */
{ UX_HCD_TRANSFER_REQUEST, &_SetConfigure,
UX_FALSE, UX_TEST_PORT_STATUS_DISC,
UX_TEST_SETUP_MATCH_REQ, 0, UX_NULL, 0, 0,
UX_SUCCESS, ux_test_hcd_entry_set_cfg,
UX_TRUE}, /* Invoke callback & continue */
{ 0 }
};
/* Define the ISR dispatch. */
extern VOID (*test_isr_dispatch)(void);
/* Prototype for test control return. */
void test_control_return(UINT status);
/* Define the ISR dispatch routine. */
static void test_isr(void)
{
/* For further expansion of interrupt-level testing. */
}
static VOID error_callback(UINT system_level, UINT system_context, UINT error_code)
{
error_callback_counter ++;
if (!error_callback_ignore)
{
{
/* Failed test. */
printf("Error #%d, system_level: %d, system_context: %d, error_code: 0x%x\n", __LINE__, system_level, system_context, error_code);
test_control_return(1);
}
}
}
static UINT sleep_break_on_error(VOID)
{
if (error_callback_counter >= 3)
return error_callback_counter;
return UX_SUCCESS;
}
static UINT demo_class_cdc_acm_get(void)
{
UINT status;
UX_HOST_CLASS *class;
UX_HOST_CLASS_CDC_ACM *cdc_acm_host;
/* Find the main cdc_acm container */
status = ux_host_stack_class_get(_ux_system_host_class_cdc_acm_name, &class);
if (status != UX_SUCCESS)
return(status);
/* We get the first instance of the cdc_acm device */
do
{
status = ux_host_stack_class_instance_get(class, 0, (void **) &cdc_acm_host);
tx_thread_sleep(10);
} while (status != UX_SUCCESS);
/* We still need to wait for the cdc_acm status to be live */
while (cdc_acm_host -> ux_host_class_cdc_acm_state != UX_HOST_CLASS_INSTANCE_LIVE)
tx_thread_sleep(10);
/* Isolate both the control and data interfaces. */
if (cdc_acm_host -> ux_host_class_cdc_acm_interface -> ux_interface_descriptor.bInterfaceClass == UX_HOST_CLASS_CDC_DATA_CLASS)
{
/* This is the data interface. */
cdc_acm_host_data = cdc_acm_host;
/* In that case, the second one should be the control interface. */
status = ux_host_stack_class_instance_get(class, 1, (void **) &cdc_acm_host);
/* Check error. */
if (status != UX_SUCCESS)
return(status);
/* Check for the control interfaces. */
if (cdc_acm_host -> ux_host_class_cdc_acm_interface -> ux_interface_descriptor.bInterfaceClass == UX_HOST_CLASS_CDC_CONTROL_CLASS)
{
/* This is the control interface. */
cdc_acm_host_control = cdc_acm_host;
return(UX_SUCCESS);
}
}
else
{
/* Check for the control interfaces. */
if (cdc_acm_host -> ux_host_class_cdc_acm_interface -> ux_interface_descriptor.bInterfaceClass == UX_HOST_CLASS_CDC_CONTROL_CLASS)
{
/* This is the control interface. */
cdc_acm_host_control = cdc_acm_host;
/* In that case, the second one should be the data interface. */
status = ux_host_stack_class_instance_get(class, 1, (void **) &cdc_acm_host);
/* Check error. */
if (status != UX_SUCCESS)
return(status);
/* Check for the data interface. */
if (cdc_acm_host -> ux_host_class_cdc_acm_interface -> ux_interface_descriptor.bInterfaceClass == UX_HOST_CLASS_CDC_DATA_CLASS)
{
/* This is the data interface. */
cdc_acm_host_data = cdc_acm_host;
return(UX_SUCCESS);
}
}
}
/* Return ERROR. */
return(UX_ERROR);
}
static UINT demo_system_host_change_function(ULONG event, UX_HOST_CLASS *cls, VOID *inst)
{
UX_HOST_CLASS_CDC_ACM *cdc_acm = (UX_HOST_CLASS_CDC_ACM *) inst;
switch(event)
{
case UX_DEVICE_INSERTION:
if (cdc_acm -> ux_host_class_cdc_acm_interface -> ux_interface_descriptor.bInterfaceClass == UX_HOST_CLASS_CDC_CONTROL_CLASS)
cdc_acm_host_control = cdc_acm;
else
cdc_acm_host_data = cdc_acm;
break;
case UX_DEVICE_REMOVAL:
if (cdc_acm -> ux_host_class_cdc_acm_interface -> ux_interface_descriptor.bInterfaceClass == UX_HOST_CLASS_CDC_CONTROL_CLASS)
cdc_acm_host_control = UX_NULL;
else
cdc_acm_host_data = UX_NULL;
break;
default:
break;
}
return 0;
}
static VOID test_cdc_instance_activate(VOID *cdc_instance)
{
/* Save the CDC instance. */
cdc_acm_slave = (UX_SLAVE_CLASS_CDC_ACM *) cdc_instance;
}
static VOID test_cdc_instance_deactivate(VOID *cdc_instance)
{
/* Reset the CDC instance. */
cdc_acm_slave = UX_NULL;
}
static VOID test_cdc_instance_parameter_change(VOID *cdc_instance)
{
/* Set CDC parameter change flag. */
cdc_acm_slave_change = UX_TRUE;
}
static VOID test_swap_framework_bulk_ep_descriptors(VOID)
{
UCHAR tmp;
tmp = device_framework_full_speed[DEVICE_FRAMEWORK_EPA_POS_1_FS];
device_framework_full_speed[DEVICE_FRAMEWORK_EPA_POS_1_FS] = device_framework_full_speed[DEVICE_FRAMEWORK_EPA_POS_2_FS];
device_framework_full_speed[DEVICE_FRAMEWORK_EPA_POS_2_FS] = tmp;
tmp = device_framework_high_speed[DEVICE_FRAMEWORK_EPA_POS_1_HS];
device_framework_high_speed[DEVICE_FRAMEWORK_EPA_POS_1_HS] = device_framework_high_speed[DEVICE_FRAMEWORK_EPA_POS_2_HS];
device_framework_high_speed[DEVICE_FRAMEWORK_EPA_POS_2_HS] = tmp;
}
static VOID test_slave_cdc_acm_transfer_disconnect(UX_SLAVE_CLASS_CDC_ACM *cdc_acm, ULONG ep_dir)
{
UX_SLAVE_ENDPOINT *endpoint;
UX_SLAVE_DEVICE *device;
UX_SLAVE_INTERFACE *interface;
UX_SLAVE_TRANSFER *transfer_request;
/* Get the pointer to the device. */
device = &_ux_system_slave -> ux_system_slave_device;
/* This is the first time we are activated. We need the interface to the class. */
interface = cdc_acm -> ux_slave_class_cdc_acm_interface;
/* Locate the endpoints. */
endpoint = interface -> ux_slave_interface_first_endpoint;
/* Check the endpoint direction, if OUT we have the correct endpoint. */
if ((endpoint -> ux_slave_endpoint_descriptor.bEndpointAddress & UX_ENDPOINT_DIRECTION) != ep_dir)
{
/* So the next endpoint has to be the OUT endpoint. */
endpoint = endpoint -> ux_slave_endpoint_next_endpoint;
}
/* All CDC reading are on the endpoint OUT, from the host. */
transfer_request = &endpoint -> ux_slave_endpoint_transfer_request;
/* Continue transfer. */
transfer_request -> ux_slave_transfer_request_actual_length = endpoint -> ux_slave_endpoint_descriptor.wMaxPacketSize;
/* Change device state. */
device -> ux_slave_device_state = UX_DEVICE_ATTACHED;
/* Inform hcd. */
_ux_utility_semaphore_put(&transfer_request -> ux_slave_transfer_request_semaphore);
/* Wait a while for transfer request handling. */
tx_thread_sleep(50);
/* Change device state. */
device -> ux_slave_device_state = UX_DEVICE_CONFIGURED;
}
static VOID ux_test_hcd_entry_set_cfg(UX_TEST_ACTION *action, VOID *_params)
{
set_cfg_counter ++;
rsc_mem_alloc_cnt_on_set_cfg = ux_test_utility_sim_mem_alloc_count();
rsc_sem_on_set_cfg = ux_test_utility_sim_sem_create_count();
rsc_sem_get_on_set_cfg = ux_test_utility_sim_sem_get_count();
rsc_mutex_on_set_cfg = ux_test_utility_sim_mutex_create_count();
}
/* Define what the initial system looks like. */
#ifdef CTEST
void test_application_define(void *first_unused_memory)
#else
void usbx_cdc_acm_basic_memory_test_application_define(void *first_unused_memory)
#endif
{
UINT status;
CHAR * stack_pointer;
CHAR * memory_pointer;
/* Inform user. */
printf("Running CDC ACM Basic Memory Test................................... ");
/* Reset testing counts. */
ux_test_utility_sim_mem_alloc_log_enable(UX_TRUE);
ux_test_utility_sim_mem_alloc_count_reset();
ux_test_utility_sim_mutex_create_count_reset();
ux_test_utility_sim_sem_create_count_reset();
ux_test_utility_sim_sem_get_count_reset();
/* Reset error generations */
ux_test_utility_sim_sem_error_generation_stop();
ux_test_utility_sim_mutex_error_generation_stop();
ux_test_utility_sim_sem_get_error_generation_stop();
/* Initialize the free memory pointer */
stack_pointer = (CHAR *) usbx_memory;
memory_pointer = stack_pointer + (UX_DEMO_STACK_SIZE * 2);
/* Initialize USBX Memory */
status = ux_system_initialize(memory_pointer, UX_DEMO_MEMORY_SIZE, UX_NULL,0);
/* Check for error. */
if (status != UX_SUCCESS)
{
printf("ERROR #1\n");
test_control_return(1);
}
/* Register the error callback. */
_ux_utility_error_callback_register(error_callback);
/* The code below is required for installing the host portion of USBX */
status = ux_host_stack_initialize(demo_system_host_change_function);
if (status != UX_SUCCESS)
{
printf("ERROR #2\n");
test_control_return(1);
}
/* Register CDC-ACM class. */
status = ux_host_stack_class_register(_ux_system_host_class_cdc_acm_name, ux_host_class_cdc_acm_entry);
if (status != UX_SUCCESS)
{
printf("ERROR #3\n");
test_control_return(1);
}
/* The code below is required for installing the device portion of USBX. No call back for
device status change in this example. */
status = ux_device_stack_initialize(device_framework_high_speed, DEVICE_FRAMEWORK_LENGTH_HIGH_SPEED,
device_framework_full_speed, DEVICE_FRAMEWORK_LENGTH_FULL_SPEED,
string_framework, STRING_FRAMEWORK_LENGTH,
language_id_framework, LANGUAGE_ID_FRAMEWORK_LENGTH,UX_NULL);
if(status!=UX_SUCCESS)
{
printf("ERROR #5\n");
test_control_return(1);
}
/* Set the parameters for callback when insertion/extraction of a CDC device. */
parameter.ux_slave_class_cdc_acm_instance_activate = test_cdc_instance_activate;
parameter.ux_slave_class_cdc_acm_instance_deactivate = test_cdc_instance_deactivate;
parameter.ux_slave_class_cdc_acm_parameter_change = test_cdc_instance_parameter_change;
/* Initialize the device cdc class. This class owns both interfaces starting with 0. */
status = ux_device_stack_class_register(_ux_system_slave_class_cdc_acm_name, ux_device_class_cdc_acm_entry,
1,0, &parameter);
if(status!=UX_SUCCESS)
{
printf("ERROR #6\n");
test_control_return(1);
}
/* Initialize the simulated device controller. */
status = _ux_dcd_sim_slave_initialize();
/* Check for error. */
if (status != TX_SUCCESS)
{
printf("ERROR #7\n");
test_control_return(1);
}
/* Register all the USB host controllers available in this system */
status = ux_host_stack_hcd_register(_ux_system_host_hcd_simulator_name, _ux_test_hcd_sim_host_initialize,0,0);
if (status != UX_SUCCESS)
{
printf("ERROR #4\n");
test_control_return(1);
}
/* Create the main host simulation thread. */
status = tx_thread_create(&ux_test_thread_host_simulation, "tx demo host simulation", ux_test_thread_host_simulation_entry, 0,
stack_pointer, UX_DEMO_STACK_SIZE,
20, 20, 1, TX_AUTO_START);
/* Check for error. */
if (status != TX_SUCCESS)
{
printf("ERROR #8\n");
test_control_return(1);
}
/* Create the main slave simulation thread. */
status = tx_thread_create(&ux_test_thread_slave_simulation, "tx demo slave simulation", ux_test_thread_slave_simulation_entry, 0,
stack_pointer + UX_DEMO_STACK_SIZE, UX_DEMO_STACK_SIZE,
20, 20, 1, TX_AUTO_START);
/* Check for error. */
if (status != TX_SUCCESS)
{
printf("ERROR #9\n");
test_control_return(1);
}
}
void ux_test_thread_host_simulation_entry(ULONG arg)
{
UINT status;
UX_SLAVE_CLASS_CDC_ACM * cdc_acm_slave_bak;
UX_HOST_CLASS_CDC_ACM * cdc_acm_host_ctrl_bak;
UX_HOST_CLASS_CDC_ACM * cdc_acm_host_data_bak;
ULONG test_n;
ULONG mem_free;
ULONG retry;
stepinfo("\n");
/* Find the cdc_acm class and wait for the link to be up. */
status = demo_class_cdc_acm_get();
if (status != UX_SUCCESS)
{
/* CDC ACM basic test error. */
printf("ERROR #10\n");
test_control_return(1);
}
/* Save slave instance for later tests. */
cdc_acm_slave_bak = cdc_acm_slave;
/* Save host instances for later tests. */
cdc_acm_host_ctrl_bak = cdc_acm_host_control;
cdc_acm_host_data_bak = cdc_acm_host_data;
/* Test disconnect. */
ux_test_dcd_sim_slave_disconnect();
ux_test_hcd_sim_host_disconnect();
/* Reset testing counts. */
ux_test_utility_sim_mem_alloc_count_reset();
ux_test_utility_sim_mutex_create_count_reset();
ux_test_utility_sim_sem_create_count_reset();
ux_test_utility_sim_sem_get_count_reset();
ux_test_hcd_sim_host_set_actions(log_on_SetCfg);
/* Save free memory usage. */
mem_free = _ux_system -> ux_system_memory_byte_pool[UX_MEMORY_BYTE_POOL_REGULAR] -> ux_byte_pool_available;
ux_test_dcd_sim_slave_connect(UX_FULL_SPEED_DEVICE);
ux_test_hcd_sim_host_connect(UX_FULL_SPEED_DEVICE);
for (retry = 0; (retry < 10) && (cdc_acm_host_control == UX_NULL || cdc_acm_host_data == UX_NULL); retry ++)
tx_thread_sleep(10);
/* Log create counts for further tests. */
rsc_enum_mutex_usage = rsc_mutex_on_set_cfg;
rsc_enum_sem_usage = rsc_sem_on_set_cfg;
rsc_enum_mem_alloc_count = rsc_mem_alloc_cnt_on_set_cfg;
/* Log create counts when instances active for further tests. */
rsc_cdc_mutex_usage = ux_test_utility_sim_mutex_create_count() - rsc_enum_mutex_usage;
rsc_cdc_sem_usage = ux_test_utility_sim_sem_create_count() - rsc_enum_sem_usage;
rsc_cdc_mem_alloc_count = ux_test_utility_sim_mem_alloc_count() - rsc_enum_mem_alloc_count;
/* Lock log base for tests. */
ux_test_utility_sim_mem_alloc_log_lock();
stepinfo("enum mem: %ld\n", rsc_enum_mem_alloc_count);
stepinfo("cdc mem : %ld\n", rsc_cdc_mem_alloc_count);
stepinfo("mem free: %ld, %ld\n", _ux_system -> ux_system_memory_byte_pool[UX_MEMORY_BYTE_POOL_REGULAR] -> ux_byte_pool_available, _ux_system -> ux_system_memory_byte_pool[UX_MEMORY_BYTE_POOL_CACHE_SAFE] -> ux_byte_pool_available);
/* Simulate detach and attach for FS enumeration,
and check if there is memory error in normal enumeration.
*/
stepinfo(">>>>>>>>>>>> Enumeration test\n");
mem_free = (~0);
for (test_n = 0; test_n < 3; test_n++)
{
stepinfo("%4ld / 2\n", test_n);
/* Disconnect. */
ux_test_dcd_sim_slave_disconnect();
ux_test_hcd_sim_host_disconnect();
/* Update memory free level (disconnect) */
if (mem_free == (~0))
mem_free = _ux_system -> ux_system_memory_byte_pool[UX_MEMORY_BYTE_POOL_REGULAR] -> ux_byte_pool_available;
else if (mem_free != _ux_system -> ux_system_memory_byte_pool[UX_MEMORY_BYTE_POOL_REGULAR] -> ux_byte_pool_available)
{
printf("ERROR #11.%ld: Memory level different after re-enumerations %ld <> %ld\n", test_n, mem_free, _ux_system -> ux_system_memory_byte_pool[UX_MEMORY_BYTE_POOL_REGULAR] -> ux_byte_pool_available);
test_control_return(1);
}
/* Connect. */
error_callback_counter = 0;
ux_test_dcd_sim_slave_connect(UX_FULL_SPEED_DEVICE);
ux_test_hcd_sim_host_connect(UX_FULL_SPEED_DEVICE);
/* Wait and break on error. */
ux_test_breakable_sleep(100, sleep_break_on_error);
/* Check */
if (!cdc_acm_host_control || !cdc_acm_host_data)
{
printf("ERROR #12.%ld: Enumeration fail\n", test_n);
test_control_return(1);
}
}
/* Simulate detach and attach for FS enumeration,
and test possible memory allocation error handlings.
*/
if (rsc_cdc_mem_alloc_count) stepinfo(">>>>>>>>>>>> Memory errors enumeration test\n");
mem_free = (~0);
for (test_n = 0; test_n < rsc_cdc_mem_alloc_count; test_n ++)
{
stepinfo("%4ld / %4ld\n", test_n, rsc_cdc_mem_alloc_count - 1);
/* Disconnect. */
ux_test_dcd_sim_slave_disconnect();
ux_test_hcd_sim_host_disconnect();
/* Update memory free level (disconnect) */
if (mem_free == (~0))
mem_free = _ux_system -> ux_system_memory_byte_pool[UX_MEMORY_BYTE_POOL_REGULAR] -> ux_byte_pool_available;
else if (mem_free != _ux_system -> ux_system_memory_byte_pool[UX_MEMORY_BYTE_POOL_REGULAR] -> ux_byte_pool_available)
{
printf("ERROR #11.%ld: Memory level different after re-enumerations %ld <> %ld\n", test_n, mem_free, _ux_system -> ux_system_memory_byte_pool[UX_MEMORY_BYTE_POOL_REGULAR] -> ux_byte_pool_available);
test_control_return(1);
}
/* Set memory error generation */
ux_test_utility_sim_mem_alloc_error_generation_start(test_n + rsc_enum_mem_alloc_count);
/* Connect. */
error_callback_counter = 0;
ux_test_dcd_sim_slave_connect(UX_FULL_SPEED_DEVICE);
ux_test_hcd_sim_host_connect(UX_FULL_SPEED_DEVICE);
/* Wait and break on errors. */
ux_test_breakable_sleep(100, sleep_break_on_error);
/* Check error */
if (cdc_acm_host_control && cdc_acm_host_data)
{
printf("ERROR #12.%ld: device detected when there is memory error\n", test_n);
test_control_return(1);
}
stepinfo("mem free: %ld\n", _ux_system -> ux_system_memory_byte_pool[UX_MEMORY_BYTE_POOL_REGULAR] -> ux_byte_pool_available);
}
ux_test_utility_sim_mem_alloc_error_generation_stop();
if (rsc_cdc_mem_alloc_count) stepinfo("\n");
/* Finally disconnect the device. */
ux_device_stack_disconnect();
/* And deinitialize the class. */
status = ux_device_stack_class_unregister(_ux_system_slave_class_cdc_acm_name, ux_device_class_cdc_acm_entry);
/* Deinitialize the device side of usbx. */
_ux_device_stack_uninitialize();
/* And finally the usbx system resources. */
_ux_system_uninitialize();
/* Successful test. */
printf("SUCCESS!\n");
test_control_return(0);
}
void ux_test_thread_slave_simulation_entry(ULONG arg)
{
while(1)
{
/* Sleep so ThreadX on Win32 will delete this thread. */
tx_thread_sleep(10);
}
}