usbx/README.md
Chaoqiong Xiao 7bafce8df9 Update on 18 Jan 2023. Expand to see details.
4faab07a Remove internal deprecated files.
d82f44a2 Upgrade to the latest Container Images.
04527692 Checked device removal while reading/writing storage.
d7560786 Add a notice for not released file.
2023-01-18 08:44:37 +00:00

154 lines
9.8 KiB
Markdown
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Azure RTOS USBX
A high-performance USB host, device, and on-the-go (OTG) embedded stack, Azure RTOS USBX is fully integrated with Azure RTOS ThreadX and available for all Azure RTOS ThreadXsupported processors. Like Azure RTOS ThreadX, Azure RTOS USBX is designed to have a small footprint and high performance, making it ideal for deeply embedded applications that require an interface with USB devices.
Here are the key features and modules of USBX:
![USBX Key Features](./docs/usbx-features.png)
## Getting Started
Azure RTOS USBX as part of Azure RTOS has been integrated to the semiconductor's SDKs and development environment. You can develop using the tools of choice from [STMicroelectronics](https://www.st.com/content/st_com/en/campaigns/x-cube-azrtos-azure-rtos-stm32.html), [NXP](https://www.nxp.com/design/software/embedded-software/azure-rtos-for-nxp-microcontrollers:AZURE-RTOS), [Renesas](https://github.com/renesas/azure-rtos) and [Microchip](https://mu.microchip.com/get-started-simplifying-your-iot-design-with-azure-rtos).
We also provide [samples](https://github.com/azure-rtos/samples) using hero development boards from semiconductors you can build and test with.
See [Overview of Azure RTOS USBX](https://learn.microsoft.com/azure/rtos/usbx/overview-usbx) for the high-level overview, and all documentation and APIs can be found in: [Azure RTOS USBX documentation](https://learn.microsoft.com/azure/rtos/usbx/).
## Repository Structure and Usage
### Directory layout
.
├── cmake # CMakeList files for building the project
├── common # Core USBX files
├── ports # Architecture and compiler specific files
├── samples # Sample codes
├── support # Misc platform configurations file used by USBX
├── LICENSE.txt # License terms
├── LICENSE-HARDWARE.txt # Licensed hardware from semiconductors
├── CONTRIBUTING.md # Contribution guidance
└── SECURITY.md # Microsoft repo security guidance
### Branches & Releases
The master branch has the most recent code with all new features and bug fixes. It does not represent the latest General Availability (GA) release of the library. Each official release (preview or GA) will be tagged to mark the commit and push it into the Github releases tab, e.g. `v6.2-rel`.
> When you see xx-xx-xxxx, 6.x or x.x in function header, this means the file is not officially released yet. They will be updated in the next release. See example below.
```
/**************************************************************************/
/* */
/* FUNCTION RELEASE */
/* */
/* _tx_initialize_low_level Cortex-M23/GNU */
/* 6.x */
/* AUTHOR */
/* */
/* Scott Larson, Microsoft Corporation */
/* */
/* DESCRIPTION */
/* */
/* This function is responsible for any low-level processor */
/* initialization, including setting up interrupt vectors, setting */
/* up a periodic timer interrupt source, saving the system stack */
/* pointer for use in ISR processing later, and finding the first */
/* available RAM memory address for tx_application_define. */
/* */
/* INPUT */
/* */
/* None */
/* */
/* OUTPUT */
/* */
/* None */
/* */
/* CALLS */
/* */
/* None */
/* */
/* CALLED BY */
/* */
/* _tx_initialize_kernel_enter ThreadX entry function */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* 09-30-2020 Scott Larson Initial Version 6.1 */
/* xx-xx-xxxx Scott Larson Include tx_user.h, */
/* resulting in version 6.x */
/* */
/**************************************************************************/
```
## Component dependencies
The main components of Azure RTOS are each provided in their own repository, but there are dependencies between them, as shown in the following graph. This is important to understand when setting up your builds.
![dependency graph](docs/deps.png)
> You will have to take the dependency graph above into account when building anything other than ThreadX itself.
### Building and using the library
Instruction for building the USBX as static library using Arm GNU Toolchain and CMake. If you are using toolchain and IDE from semiconductor, you might follow its own instructions to use Azure RTOS components as explained in the [Getting Started](#getting-started) section.
1. Install the following tools:
* [CMake](https://cmake.org/download/) version 3.0 or later
* [Arm GNU Toolchain for arm-none-eabi](https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads)
* [Ninja](https://ninja-build.org/)
1. Build the [ThreadX library](https://github.com/azure-rtos/threadx#building-and-using-the-library) as the dependency.
1. Cloning the repo.
```bash
$ git clone https://github.com/azure-rtos/usbx.git
```
1. Define the features and addons you need in `ux_user.h` and build together with the component source code. You can refer to [`ux_user_sample.h`](https://github.com/azure-rtos/usbx/blob/master/common/core/inc/ux_user_sample.h) as an example.
1. Building as a static library
Each component of Azure RTOS comes with a composable CMake-based build system that supports many different MCUs and host systems. Integrating any of these components into your device app code is as simple as adding a git submodule and then including it in your build using the CMake `add_subdirectory()`.
While the typical usage pattern is to include USBX into your device code source tree to be built & linked with your code, you can compile this project as a standalone static library to confirm your build is set up correctly.
An example of building the library for Cortex-M4:
```bash
$ cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_FILE=cmake/cortex_m4.cmake .
$ cmake --build ./build
```
## Professional support
[Professional support plans](https://azure.microsoft.com/support/options/) are available from Microsoft. For community support and others, see the [Resources](#resources) section below.
## Licensing
License terms for using Azure RTOS are defined in the LICENSE.txt file of this repo. Please refer to this file for all definitive licensing information. No additional license fees are required for deploying Azure RTOS on hardware defined in the [LICENSED-HARDWARE.txt](./LICENSED-HARDWARE.txt) file. If you are using hardware not listed in the file or having licensing questions in general, please contact Microsoft directly at https://aka.ms/azrtos-license.
## Resources
The following are references to additional Azure RTOS resources:
- **Product introduction and white papers**: https://azure.com/rtos
- **General technical questions**: https://aka.ms/QnA/azure-rtos
- **Product issues and bugs, or feature requests**: https://github.com/azure-rtos/usbx/issues
- **Licensing and sales questions**: https://aka.ms/azrtos-license
- **Product roadmap and support policy**: https://aka.ms/azrtos/lts
- **Blogs and videos**: http://msiotblog.com and https://aka.ms/iotshow
- **Azure RTOS TraceX Installer**: https://aka.ms/azrtos-tracex-installer
You can also check [previous questions](https://stackoverflow.com/questions/tagged/azure-rtos+usbx) or ask new ones on StackOverflow using the `azure-rtos` and `usbx` tags.
## Security
Azure RTOS provides OEMs with components to secure communication and to create code and data isolation using underlying MCU/MPU hardware protection mechanisms. It is ultimately the responsibility of the device builder to ensure the device fully meets the evolving security requirements associated with its specific use case.
## Contribution
Please follow the instructions provided in the [CONTRIBUTING.md](./CONTRIBUTING.md) for the corresponding repository.