// 一个能作为naive bus 主设备的调试模块 // 它接收用户从UART发来的命令,操控复位等信号,或对总线进行读写。用户可以使用UART命令复位整个SoC,上传程序,或者查看运行时的RAM数据。 // 命令列表(全部命令为ASCII,人类可读, 每个命令使用\r或\n或\r\n或\n\r结尾): // 1、复位命令 // 发送: r\n // 效果: 将o_rst_n信号拉低若干个时钟周期 // 返回: rst done\n // 2. w\n : o_run = 1 , return running \n // 3. s\n : o_run = 0 , return stoped \n // 4. addr=data\n : write [addr] = data , example: 00000100 928cd0f1\n , return : 00000100=928cd0f1 , note:automaticly align address to 4byte // 5. addr\n : read [addr] , example: 00000100\n return : 928cd0f1 // module isp_uart #( parameter UART_RX_CLK_DIV = 108, // 50MHz/4/115200Hz=108 parameter UART_TX_CLK_DIV = 434 // 50MHz/1/115200Hz=434 )( input logic clk, input logic i_uart_rx, output logic o_uart_tx, output logic o_rst_n, o_stop, naive_bus.master bus ); logic [ 5:0] rst_chain = 3'b0; logic rx_ready, rd_ok=1'b0, wr_ok=1'b0, tx_start=1'b0; logic [ 7:0] rx_data, rx_binary; logic [ 3:0] rx_binary_l; logic [31:0] addr=0, wr_data=0; logic [ 7:0][ 7:0] rd_data_ascii; logic [ 7:0][ 7:0] tx_data = 64'h0; enum {NONE, RST, RUN, STOP} cmd=NONE; enum {NEW, CMD, ADDR, EQUAL, DATA, FINAL, TRASH} fsm = NEW; `define C (rx_data=="r" || rx_data=="w" || rx_data=="s") `define S (rx_data==" " || rx_data=="\t" ) `define E (rx_data=="\n" || rx_data=="\r" ) `define N ( (rx_data>="0" && rx_data<="9" ) || (rx_data>="a" && rx_data<="f" ) ) initial o_stop = 1'b0; assign o_rst_n = ~(|rst_chain); initial begin bus.rd_req = 1'b0; bus.wr_req = 1'b0; bus.rd_addr = 0; bus.wr_addr = 0; bus.wr_data = 0; end assign bus.rd_be = 4'hf; assign bus.wr_be = 4'hf; assign rx_binary_l = rx_binary[3:0]; always_comb if(rx_data>="0" && rx_data<="9" ) begin rx_binary = rx_data - "0"; end else if(rx_data>="a" && rx_data<="f" ) begin rx_binary = rx_data - "a" + 8'd10; end else begin rx_binary = 8'h0; end uart_rx #( .UART_RX_CLK_DIV (UART_RX_CLK_DIV) ) uart_rx_inst ( .clk ( clk ), .i_rx ( i_uart_rx ), .o_ready ( rx_ready ), .o_data ( rx_data ) ); uart_tx_line #( .UART_TX_CLK_DIV (UART_TX_CLK_DIV) ) uart_tx_line_inst ( .clk ( clk ), .o_tx ( o_uart_tx ), .i_start ( tx_start ), .i_data ( tx_data ) ); generate genvar i; for(i=0; i<8; i++) begin : convert_binary_to_ascii always_comb if(bus.rd_data[3+4*i:4*i]>4'h9) rd_data_ascii[i] = "a" - 8'd10 + bus.rd_data[3+4*i:4*i]; else rd_data_ascii[i] = "0" + bus.rd_data[3+4*i:4*i]; end endgenerate always @ (posedge clk) rd_ok <= (bus.rd_req & bus.rd_gnt); always @ (posedge clk) wr_ok <= (bus.wr_req & bus.wr_gnt); always @ (posedge clk) if (rd_ok) begin tx_start<= 1'b1; tx_data <= rd_data_ascii; end else if(wr_ok) begin tx_start<= 1'b1; tx_data <= "wr done "; end else if(rx_ready && fsm==CMD && `E) begin tx_start<= 1'b1; if(cmd==RST) tx_data <= "rst done"; else if(cmd==RUN) tx_data <= "running "; else if(cmd==STOP) tx_data <= "stoped "; else tx_data <= 64'h0; end else begin tx_start<= 1'b0; tx_data <= 64'h0; end always @ (posedge clk) if(rx_ready && fsm==CMD && `E && cmd==RST) rst_chain <= 6'h0; else rst_chain <= {rst_chain[4:0],1'b0}; always @ (posedge clk) if(rx_ready && fsm==CMD && `E) begin if(cmd==RUN) o_stop <= 1'b0; else o_stop <= 1'b1; end always @ (posedge clk) if (bus.rd_req) begin if(bus.rd_gnt) bus.rd_req <= 1'b0; end else if(bus.wr_req) begin if(bus.wr_gnt) bus.wr_req <= 1'b0; end else if( rx_ready ) begin case(fsm) NEW : if (`C) begin fsm <= CMD; if(rx_data=="r") begin // check rx_data to see which command it is cmd <= RST; end else if(rx_data=="w") begin cmd <= RUN; end else if(rx_data=="s") begin cmd <= STOP; end else begin cmd <= NONE; end end else if(`S || `E) begin fsm <= NEW; addr <= 0; wr_data <= 0; cmd <= NONE; end else if(`N) begin fsm <= ADDR; addr <= {addr[27:0], rx_binary_l}; // get a addr end else begin fsm <= TRASH; end CMD : if (`E) begin fsm <= NEW; // cmd ok! addr <= 0; wr_data <= 0; cmd <= NONE; end else if(`S) begin fsm <= CMD; end else begin fsm <= TRASH; end ADDR : if (`E) begin fsm <= NEW; // get a read command bus.rd_req <= 1'b1; // TODO : launch a bus read bus.rd_addr <= addr; addr <= 0; wr_data <= 0; cmd <= NONE; end else if(`N) begin fsm <= ADDR; addr <= {addr[27:0], rx_binary_l}; // get a addr end else if(`S) begin fsm <= EQUAL; // get addr down, waiting for data, maybe a write command end else begin fsm <= TRASH; end EQUAL : if (`E) begin fsm <= NEW; // get a read command bus.rd_req <= 1'b1; // TODO : launch a bus read bus.rd_addr <= addr; addr <= 0; wr_data <= 0; cmd <= NONE; end else if(`N) begin fsm <= DATA; // get a data wr_data <= {wr_data[27:0], rx_binary_l}; // get a data end else if(`S) begin fsm <= EQUAL; end else begin fsm <= TRASH; end DATA : if (`E) begin fsm <= NEW; // get a write command bus.wr_req <= 1'b1; // TODO : launch a bus write bus.wr_addr <= addr; bus.wr_data <= wr_data; addr <= 0; wr_data <= 0; cmd <= NONE; end else if(`N) begin fsm <= DATA; // get a data wr_data <= {wr_data[27:0], rx_binary_l}; // get a data end else if(`S) begin fsm <= FINAL; // get data down, waiting for \r or \n end else begin fsm <= TRASH; end FINAL : if (`E) begin fsm <= NEW; // get a write command bus.wr_req <= 1'b1; // TODO : launch a bus write bus.wr_addr <= addr; bus.wr_data <= wr_data; addr <= 0; wr_data <= 0; cmd <= NONE; end else if(`S) begin fsm <= FINAL; // get addr down, waiting for \r or \n end else begin fsm <= TRASH; end default : if (`E) begin // get a syntax error fsm <= NEW; addr <= 0; wr_data <= 0; cmd <= NONE; end else begin fsm <= TRASH; end endcase end endmodule