1
0
mirror of https://github.com/pConst/basic_verilog.git synced 2025-01-28 07:02:55 +08:00

100 lines
3.3 KiB
Coq
Raw Normal View History

2015-12-15 22:44:58 +03:00
// Copyright 2008 Altera Corporation. All rights reserved.
// Altera products are protected under numerous U.S. and foreign patents,
// maskwork rights, copyrights and other intellectual property laws.
//
// This reference design file, and your use thereof, is subject to and governed
// by the terms and conditions of the applicable Altera Reference Design
// License Agreement (either as signed by you or found at www.altera.com). By
// using this reference design file, you indicate your acceptance of such terms
// and conditions between you and Altera Corporation. In the event that you do
// not agree with such terms and conditions, you may not use the reference
// design file and please promptly destroy any copies you have made.
//
// This reference design file is being provided on an "as-is" basis and as an
// accommodation and therefore all warranties, representations or guarantees of
// any kind (whether express, implied or statutory) including, without
// limitation, warranties of merchantability, non-infringement, or fitness for
// a particular purpose, are specifically disclaimed. By making this reference
// design file available, Altera expressly does not recommend, suggest or
// require that this reference design file be used in combination with any
// other product not provided by Altera.
/////////////////////////////////////////////////////////////////////////////
//baeckler - 12-05-2007
//
// Combines (NUM_EXTERNAL_RESETS) external asynchronous active low resets.
// Any active reset will reset the entire system immediately (even
// if the clocks are not operating).
//
// Generate (NUM_DOMAINS) rstn signals, with guaranteed removal
// timing with respect to the corresponding clock domains.
//
// The SEQUENTIAL_RELEASE parameter requires that rstn[0] is released
// before rstn[1] and so on. For bringing up complex multi domain
// logic in the proper order.
//
module reset_control (
external_rstn,
clk,
rstn
);
parameter NUM_EXTERNAL_RESETS = 3;
parameter NUM_DOMAINS = 4;
parameter SEQUENTIAL_RELEASE = 1'b1;
input [NUM_EXTERNAL_RESETS-1:0] external_rstn;
input [NUM_DOMAINS-1:0] clk;
output [NUM_DOMAINS-1:0] rstn;
genvar i;
//////////////////////////////////
// filter the resets to ensure
// min pulse width, and synch
// removal, with respect to clock 0
//////////////////////////////////
wire [NUM_EXTERNAL_RESETS-1:0] filtered_rstn;
generate
for (i=0; i<NUM_EXTERNAL_RESETS; i=i+1)
begin : lp0
reset_filter rf_extern (
.enable(1'b1),
.rstn_raw(external_rstn[i]),
.clk(clk[0]),
.rstn_filtered(filtered_rstn[i]));
end
endgenerate
//////////////////////////////////////////////
// combine the various external reset sources
// to form a single system reset with respect
// to clock 0
//////////////////////////////////////////////
wire sys_rstn = &filtered_rstn;
reset_filter rf_sys (
.enable(1'b1),
.rstn_raw(sys_rstn),
.clk(clk[0]),
.rstn_filtered(rstn[0]));
//////////////////////////////////////////////
// release remaining resets either as convenient
// or sequentially, according to parameter
//////////////////////////////////////////////
generate
for (i=1;i<NUM_DOMAINS;i=i+1)
begin : lp1
reset_filter rf_out (
.enable(SEQUENTIAL_RELEASE ? rstn[i-1] : 1'b1),
.rstn_raw(sys_rstn),
.clk(clk[i]),
.rstn_filtered(rstn[i])
);
end
endgenerate
endmodule