1
0
mirror of https://github.com/pConst/basic_verilog.git synced 2025-01-14 06:42:54 +08:00
basic_verilog/delayed_event_tb.sv

188 lines
4.0 KiB
Systemverilog
Raw Normal View History

2023-05-22 13:46:06 +03:00
//------------------------------------------------------------------------------
// delayed_event_tb.sv
// published as part of https://github.com/pConst/basic_verilog
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Testbench for delayed_event.sv
// use this define to make some things differently in simulation
`define SIMULATION yes
`timescale 1ns / 1ps
module delayed_event_tb();
initial begin
// Print out time markers in nanoseconds
// Example: $display("[T=%0t] start=%d", $realtime, start);
$timeformat(-9, 3, " ns");
// seed value setting is intentionally manual to achieve repeatability between sim runs
$urandom( 1 ); // SEED value
end
logic clk200;
sim_clk_gen #(
.FREQ( 200_000_000 ), // in Hz
.PHASE( 0 ), // in degrees
.DUTY( 50 ), // in percentage
.DISTORT( 10 ) // in picoseconds
) clk200_gen (
.ena( 1'b1 ),
.clk( clk200 ),
.clkd( )
);
logic nrst_once;
logic [31:0] clk200_div;
clk_divider #(
.WIDTH( 32 )
) cd1 (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.out( clk200_div[31:0] )
);
logic [31:0] clk200_div_rise;
edge_detect ed1[31:0] (
.clk( {32{clk200}} ),
.anrst( {32{nrst_once}} ),
.in( clk200_div[31:0] ),
.rising( clk200_div_rise[31:0] ),
.falling( ),
.both( )
);
// external device "asynchronous" clock
logic clk33;
logic clk33d;
sim_clk_gen #(
.FREQ( 200_000_000 ), // in Hz
.PHASE( 0 ), // in degrees
.DUTY( 50 ), // in percentage
.DISTORT( 1000 ) // in picoseconds
) clk33_gen (
.ena( 1'b1 ),
.clk( clk33 ),
.clkd( clk33d )
);
logic rst;
initial begin
rst = 1'b0; // initialization
repeat( 1 ) @(posedge clk200);
forever begin
repeat( 1 ) @(posedge clk200); // synchronous rise
rst = 1'b1;
//$urandom( 1 ); // uncomment to get the same random pattern EVERY nrst
repeat( 2 ) @(posedge clk200); // synchronous fall, controls rst pulse width
rst = 1'b0;
repeat( 100 ) @(posedge clk200); // controls test body width
end
end
logic nrst;
assign nrst = ~rst;
logic rst_once;
initial begin
rst_once = 1'b0; // initialization
repeat( 1 ) @(posedge clk200);
repeat( 1 ) @(posedge clk200); // synchronous rise
rst_once = 1'b1;
repeat( 2 ) @(posedge clk200); // synchronous fall, controls rst_once pulse width
rst_once = 1'b0;
end
//logic nrst_once; // declared before
assign nrst_once = ~rst_once;
// random pattern generation
logic [31:0] rnd_data;
always_ff @(posedge clk200) begin
rnd_data[31:0] <= $urandom;
end
initial forever begin
@(posedge nrst);
$display("[T=%0t] rnd_data[]=%h", $realtime, rnd_data[31:0]);
end
// helper start strobe appears unpredictable up to 20 clocks after nrst
logic start;
initial forever begin
start = 1'b0; // initialization
@(posedge nrst); // synchronous rise after EVERY nrst
repeat( $urandom_range(0, 20) ) @(posedge clk200);
start = 1'b1;
@(posedge clk200); // synchronous fall exactly 1 clock after rise
start = 1'b0;
end
initial begin
// #10000 $stop;
// #10000 $finish;
end
// sweeping pulses
logic sp = 1'b1;
logic [4:0] sp_duty_cycle = 8'd0;
initial forever begin
if( sp_duty_cycle[4:0] == 0 ) begin
sp = 1'b1;
repeat( 10 ) @(posedge clk200);
end
sp = 1'b0;
repeat( 1 ) @(posedge clk200);
sp = 1'b1;
repeat( 1 ) @(posedge clk200);
sp = 1'b0;
repeat( sp_duty_cycle ) @(posedge clk200);
sp_duty_cycle[4:0] = sp_duty_cycle[4:0] + 1'b1; // overflow is expected here
end
// Module under test ===========================================================
logic sp_d1;
always_ff @(posedge clk200) begin
if( sp ) begin
sp_d1 <= 1'b0;
end else begin
sp_d1 <= 1'b1;
end
end
for(genvar i=0; i<16; i++) begin
delayed_event #(
.DELAY( i )
) de (
.clk( clk200 ),
.nrst( ~sp ), //|rnd_data[2:0] ),
.ena( 1'b1 ), //sp_d1 ),
.on_event( ),
.before_event( ),
.after_event( )
);
end
endmodule