1
0
mirror of https://github.com/pConst/basic_verilog.git synced 2025-01-14 06:42:54 +08:00

Updated debounce

This commit is contained in:
Konstantin Pavlov 2023-05-22 13:39:56 +03:00
parent 0a7385391a
commit 2e3551056b
6 changed files with 591 additions and 155 deletions

View File

@ -1,66 +0,0 @@
//--------------------------------------------------------------------------------
// debounce.v
// Konstantin Pavlov, pavlovconst@gmail.com
//--------------------------------------------------------------------------------
// INFO --------------------------------------------------------------------------------
// Debounce for two inpus signal samples
// Signal may and maynot be periodic
// Switches up and down with 3 ticks delay
/* --- INSTANTIATION TEMPLATE BEGIN ---
debounce DB1 (
.clk(),
.nrst( 1'b1 ),
.en( 1'b1 ),
.in(),
.out()
);
defparam DB1.WIDTH = 1;
--- INSTANTIATION TEMPLATE END ---*/
module debounce(clk,nrst,en,in,out);
input wire clk;
input wire nrst;
input wire en;
input wire [(WIDTH-1):0] in;
output wire [(WIDTH-1):0] out; // also "present state"
parameter WIDTH = 1;
reg [(WIDTH-1):0] d1 = 0;
reg [(WIDTH-1):0] d2 = 0;
always @ (posedge clk) begin
if (~nrst) begin
d1[(WIDTH-1):0] <= 0;
d2[(WIDTH-1):0] <= 0;
end
else begin
if (en) begin
d1[(WIDTH-1):0] <= d2[(WIDTH-1):0];
d2[(WIDTH-1):0] <= in[(WIDTH-1):0];
end; // if
end // else
end
wire [(WIDTH-1):0] switch_hi = (d2[(WIDTH-1):0] & d1[(WIDTH-1):0]);
wire [(WIDTH-1):0] n_switch_lo = (d2[(WIDTH-1):0] | d1[(WIDTH-1):0]);
SetReset SR (
.clk(clk),
.nrst(nrst),
.s(switch_hi[(WIDTH-1):0]),
.r(~n_switch_lo[(WIDTH-1):0]),
.q(out[(WIDTH-1):0]),
.nq()
);
defparam SR.WIDTH = WIDTH;
endmodule

View File

@ -1,89 +0,0 @@
//--------------------------------------------------------------------------------
// debounce_tb.v
// Konstantin Pavlov, pavlovconst@gmail.com
//--------------------------------------------------------------------------------
// INFO --------------------------------------------------------------------------------
//
//
`timescale 1ns / 1ps
module debounce_tb();
reg clk200;
initial begin
#0 clk200 = 1;
forever
#2.5 clk200 = ~clk200;
end
reg rst;
initial begin
#10.2 rst = 1;
#5 rst = 0;
//#10000;
forever begin
#9985 rst = ~rst;
#5 rst = ~rst;
end
end
wire nrst = ~rst;
reg rst_once;
initial begin // initializing non-X data before PLL starts
#10.2 rst_once = 1;
#5 rst_once = 0;
end
initial begin
#510.2 rst_once = 1; // PLL starts at 500ns, clock appears, so doing the reset for modules
#5 rst_once = 0;
end
wire nrst_once = ~rst_once;
wire [31:0] DerivedClocks;
ClkDivider CD1 (
.clk(clk200),
.nrst(nrst_once),
.out(DerivedClocks[31:0]));
defparam CD1.WIDTH = 32;
wire [31:0] E_DerivedClocks;
EdgeDetect ED1 (
.clk(clk200),
.nrst(nrst_once),
.in(DerivedClocks[31:0]),
.rising(E_DerivedClocks[31:0]),
.falling(),
.both()
);
defparam ED1.WIDTH = 32;
wire [15:0] RandomNumber1;
c_rand RNG1 (
.clk(clk200),
.rst(rst_once),
.reseed(1'b0),
.seed_val(DerivedClocks[31:0]),
.out(RandomNumber1[15:0]));
reg start;
initial begin
#100.2 start = 1;
#5 start = 0;
end
//=================================================
wire den = RandomNumber1[1] && RandomNumber1[2];
wire dbout;
debounce DB1 (
.clk(clk200),
.nrst(nrst_once),
.en(den),
.in(RandomNumber1[0]),
.out(dbout)
);
defparam DB1.WIDTH = 1;
endmodule

118
debounce_v1.v Normal file
View File

@ -0,0 +1,118 @@
//------------------------------------------------------------------------------
// debounce_v1.v
// published as part of https://github.com/pConst/basic_verilog
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Button debounce v1
//
// - sampling inputs using configurable divided clock (ithis is the
// simplest form of low-pass filter)
// - switching output only when both samples have equal level
// (this gives some form of hysteresis in case we sample unstable data)
//
/* --- INSTANTIATION TEMPLATE BEGIN ---
debounce_v1 #(
.WIDTH( 4 ),
.SAMPLING_FACTOR( 16 )
) DB1 (
.clk( clk ),
.nrst( 1'b1 ),
.ena( 1'b1 ),
.in( btn[3:0] ),
.out( btn_db[3:0] )
);
--- INSTANTIATION TEMPLATE END ---*/
module debounce_v1 #( parameter
WIDTH = 1,
SAMPLING_FACTOR = 16 // 0 - sampling every clk
// 1 - sampling on clk/2
// 2 - sampling on clk/4 etc....
// only one or none should be enabled
TREAT_UNSTABLE_AS_HIGH = 0,
TREAT_UNSTABLE_AS_LOW = 0
)(
input clk,
input nrst,
input ena,
input [WIDTH-1:0] in,
output reg [WIDTH-1:0] out
);
localparam SAMPLING_RANGE = 32;
wire [SAMPLING_RANGE-1:0] s_clk;
clk_divider #(
.WIDTH( SAMPLING_RANGE )
) clk_div (
.clk( clk ),
.nrst( nrst ),
.ena( 1'b1 ),
.out( s_clk[SAMPLING_RANGE-1:0] )
);
wire [SAMPLING_RANGE-1:0] s_clk_rise;
edge_detect #(
.WIDTH( SAMPLING_RANGE )
) clk_div_ed (
.clk( clk ),
.anrst( nrst ),
.in( s_clk[SAMPLING_RANGE-1:0] ),
.rising( s_clk_rise[SAMPLING_RANGE-1:0] )
);
wire do_sample;
assign do_sample = s_clk_rise[SAMPLING_FACTOR];
reg [WIDTH-1:0] in_d1 = 0;
reg [WIDTH-1:0] in_d2 = 0;
always @(posedge clk) begin
if (~nrst) begin
in_d1[WIDTH-1:0] <= 0;
in_d2[WIDTH-1:0] <= 0;
end else if (ena && do_sample) begin
in_d1[WIDTH-1:0] <= in_d2[WIDTH-1:0];
in_d2[WIDTH-1:0] <= in[WIDTH-1:0];
end // if
end
integer i;
always @(posedge clk) begin
if( ~nrst ) begin
out[WIDTH-1:0] <= 0;
end else begin
// every input has its own state
for (i = 0; i < WIDTH; i=i+1) begin
case ( {in_d2[i],in_d1[i]} )
2'b00: out[i] <= 1'b0;
2'b11: out[i] <= 1'b1;
default: begin
if (TREAT_UNSTABLE_AS_HIGH) begin
out[i] <= 1'b1;
end else if (TREAT_UNSTABLE_AS_LOW) begin
out[i] <= 1'b0;
end
end
endcase
end // for
end
end
endmodule

126
debounce_v2.sv Normal file
View File

@ -0,0 +1,126 @@
//------------------------------------------------------------------------------
// debounce_v2.sv
// published as part of https://github.com/pConst/basic_verilog
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Button debounce v2, SystemVerilog version
//
// - sampling inputs using configurable divided clock (ithis is the
// simplest form of low-pass filter)
//
// - in contrast with debounce_v1.v this implementation is switching output only
// when input had stable level IN ALL CLOCK CYCLES within the sample window
// (this gives some form of hysteresis in case we sample unstable data)
//
/* --- INSTANTIATION TEMPLATE BEGIN ---
debounce_v2 #(
.WIDTH( 4 ),
.SAMPLING_FACTOR( 16 )
) DB1 (
.clk( clk ),
.nrst( 1'b1 ),
.ena( 1'b1 ),
.in( btn[3:0] ),
.out( btn_db[3:0] )
);
--- INSTANTIATION TEMPLATE END ---*/
module debounce_v2 #( parameter
WIDTH = 1,
SAMPLING_FACTOR = 16, // 0 - sampling every clk
// 1 - sampling on clk/2
// 2 - sampling on clk/4 etc....
// only one or none should be enabled
TREAT_UNSTABLE_AS_HIGH = 0,
TREAT_UNSTABLE_AS_LOW = 0
)(
input clk,
input nrst,
input ena,
input [WIDTH-1:0] in,
output logic [WIDTH-1:0] out
);
localparam SAMPLING_RANGE = 32;
logic [SAMPLING_RANGE-1:0] s_clk;
clk_divider #(
.WIDTH( SAMPLING_RANGE )
) clk_div (
.clk( clk ),
.nrst( nrst ),
.ena( 1'b1 ),
.out( s_clk[SAMPLING_RANGE-1:0] )
);
logic [SAMPLING_RANGE-1:0] s_clk_rise;
edge_detect #(
.WIDTH( SAMPLING_RANGE )
) clk_div_ed (
.clk( clk ),
.anrst( nrst ),
.in( s_clk[SAMPLING_RANGE-1:0] ),
.rising( s_clk_rise[SAMPLING_RANGE-1:0] )
);
wire do_sample;
assign do_sample = s_clk_rise[SAMPLING_FACTOR];
logic [WIDTH-1:0] in_is_high = 0;
logic [WIDTH-1:0] in_is_low = 0;
always_ff @(posedge clk) begin
if (~nrst) begin
out[WIDTH-1:0] <= 0;
in_is_high[WIDTH-1:0] <= 0;
in_is_low[WIDTH-1:0] <= 0;
end else if (ena && do_sample) begin
// making decisions for outputs
for (integer i = 0; i < WIDTH; i++) begin
case ( {in_is_high[i],in_is_low[i]} )
2'b01: out[i] <= 1'b0;
2'b10: out[i] <= 1'b1;
default: begin
if (TREAT_UNSTABLE_AS_HIGH) begin
out[i] <= 1'b1;
end else if (TREAT_UNSTABLE_AS_LOW) begin
out[i] <= 1'b0;
end
end
endcase
end // for
// resetting flags to initialize new sample window
in_is_high[WIDTH-1:0] <= 0;
in_is_low[WIDTH-1:0] <= 0;
end else begin
// collecting data
for (integer i = 0; i < WIDTH; i++) begin
if ( in[i] ) begin
in_is_high[i] <= 1'b1;
end else begin
in_is_low[i] <= 1'b1;
end
end // for
end // if
end
endmodule

127
debounce_v2.v Normal file
View File

@ -0,0 +1,127 @@
//------------------------------------------------------------------------------
// debounce_v2.v
// published as part of https://github.com/pConst/basic_verilog
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Button debounce v2
//
// - sampling inputs using configurable divided clock (ithis is the
// simplest form of low-pass filter)
//
// - in contrast with debounce_v1.v this implementation is switching output only
// when input had stable level IN ALL CLOCK CYCLES within the sample window
// (this gives some form of hysteresis in case we sample unstable data)
//
/* --- INSTANTIATION TEMPLATE BEGIN ---
debounce_v2 #(
.WIDTH( 4 ),
.SAMPLING_FACTOR( 16 )
) DB1 (
.clk( clk ),
.nrst( 1'b1 ),
.ena( 1'b1 ),
.in( btn[3:0] ),
.out( btn_db[3:0] )
);
--- INSTANTIATION TEMPLATE END ---*/
module debounce_v2 #( parameter
WIDTH = 1,
SAMPLING_FACTOR = 16, // 0 - sampling every clk
// 1 - sampling on clk/2
// 2 - sampling on clk/4 etc....
// only one or none should be enabled
TREAT_UNSTABLE_AS_HIGH = 0,
TREAT_UNSTABLE_AS_LOW = 0
)(
input clk,
input nrst,
input ena,
input [WIDTH-1:0] in,
output reg [WIDTH-1:0] out
);
localparam SAMPLING_RANGE = 32;
wire [SAMPLING_RANGE-1:0] s_clk;
clk_divider #(
.WIDTH( SAMPLING_RANGE )
) clk_div (
.clk( clk ),
.nrst( nrst ),
.ena( 1'b1 ),
.out( s_clk[SAMPLING_RANGE-1:0] )
);
wire [SAMPLING_RANGE-1:0] s_clk_rise;
edge_detect #(
.WIDTH( SAMPLING_RANGE )
) clk_div_ed (
.clk( clk ),
.anrst( nrst ),
.in( s_clk[SAMPLING_RANGE-1:0] ),
.rising( s_clk_rise[SAMPLING_RANGE-1:0] )
);
wire do_sample;
assign do_sample = s_clk_rise[SAMPLING_FACTOR];
reg [WIDTH-1:0] in_is_high = 0;
reg [WIDTH-1:0] in_is_low = 0;
integer i;
always @(posedge clk) begin
if (~nrst) begin
out[WIDTH-1:0] <= 0;
in_is_high[WIDTH-1:0] <= 0;
in_is_low[WIDTH-1:0] <= 0;
end else if (ena && do_sample) begin
// making decisions for outputs
for (i = 0; i < WIDTH; i=i+1) begin
case ( {in_is_high[i],in_is_low[i]} )
2'b01: out[i] <= 1'b0;
2'b10: out[i] <= 1'b1;
default: begin
if (TREAT_UNSTABLE_AS_HIGH) begin
out[i] <= 1'b1;
end else if (TREAT_UNSTABLE_AS_LOW) begin
out[i] <= 1'b0;
end
end
endcase
end // for
// resetting flags to initialize new sample window
in_is_high[WIDTH-1:0] <= 0;
in_is_low[WIDTH-1:0] <= 0;
end else begin
// collecting data
for (i = 0; i < WIDTH; i=i+1) begin
if ( in[i] ) begin
in_is_high[i] <= 1'b1;
end else begin
in_is_low[i] <= 1'b1;
end
end // for
end // if
end
endmodule

220
debounce_v2_tb.sv Normal file
View File

@ -0,0 +1,220 @@
//------------------------------------------------------------------------------
// debounce_v2_tb_tb.sv
// published as part of https://github.com/pConst/basic_verilog
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// debounce_v2 testbench
// use this define to make some things differently in simulation
`define SIMULATION yes
`timescale 1ns / 1ps
module debounce_v2_tb();
initial begin
// Print out time markers in nanoseconds
// Example: $display("[T=%0t] start=%d", $realtime, start);
$timeformat(-9, 3, " ns");
// seed value setting is intentionally manual to achieve repeatability between sim runs
$urandom( 1 ); // SEED value
end
logic clk200;
sim_clk_gen #(
.FREQ( 200_000_000 ), // in Hz
.PHASE( 0 ), // in degrees
.DUTY( 50 ), // in percentage
.DISTORT( 10 ) // in picoseconds
) clk200_gen (
.ena( 1'b1 ),
.clk( clk200 ),
.clkd( )
);
logic nrst_once;
logic [31:0] clk200_div;
clk_divider #(
.WIDTH( 32 )
) cd1 (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.out( clk200_div[31:0] )
);
logic [31:0] clk200_div_rise;
edge_detect ed1[31:0] (
.clk( {32{clk200}} ),
.anrst( {32{nrst_once}} ),
.in( clk200_div[31:0] ),
.rising( clk200_div_rise[31:0] ),
.falling( ),
.both( )
);
// external device "asynchronous" clock
logic clk33;
logic clk33d;
sim_clk_gen #(
.FREQ( 200_000_000 ), // in Hz
.PHASE( 0 ), // in degrees
.DUTY( 50 ), // in percentage
.DISTORT( 1000 ) // in picoseconds
) clk33_gen (
.ena( 1'b1 ),
.clk( clk33 ),
.clkd( clk33d )
);
logic rst;
initial begin
rst = 1'b0; // initialization
repeat( 1 ) @(posedge clk200);
forever begin
repeat( 1 ) @(posedge clk200); // synchronous rise
rst = 1'b1;
//$urandom( 1 ); // uncomment to get the same random pattern EVERY nrst
repeat( 2 ) @(posedge clk200); // synchronous fall, controls rst pulse width
rst = 1'b0;
repeat( 100 ) @(posedge clk200); // controls test body width
end
end
logic nrst;
assign nrst = ~rst;
logic rst_once;
initial begin
rst_once = 1'b0; // initialization
repeat( 1 ) @(posedge clk200);
repeat( 1 ) @(posedge clk200); // synchronous rise
rst_once = 1'b1;
repeat( 2 ) @(posedge clk200); // synchronous fall, controls rst_once pulse width
rst_once = 1'b0;
end
//logic nrst_once; // declared before
assign nrst_once = ~rst_once;
// random pattern generation
logic [31:0] rnd_data;
always_ff @(posedge clk200) begin
rnd_data[31:0] <= $urandom;
end
initial forever begin
@(posedge nrst);
$display("[T=%0t] rnd_data[]=%h", $realtime, rnd_data[31:0]);
end
// helper start strobe appears unpredictable up to 20 clocks after nrst
logic start;
initial forever begin
start = 1'b0; // initialization
@(posedge nrst); // synchronous rise after EVERY nrst
repeat( $urandom_range(0, 20) ) @(posedge clk200);
start = 1'b1;
@(posedge clk200); // synchronous fall exactly 1 clock after rise
start = 1'b0;
end
initial begin
// #10000 $stop;
// #10000 $finish;
end
// sweeping pulses
logic sp = 1'b1;
logic [4:0] sp_duty_cycle = 8'd0;
initial forever begin
if( sp_duty_cycle[4:0] == 0 ) begin
sp = 1'b1;
repeat( 10 ) @(posedge clk200);
end
sp = 1'b0;
repeat( 1 ) @(posedge clk200);
sp = 1'b1;
repeat( 1 ) @(posedge clk200);
sp = 1'b0;
repeat( sp_duty_cycle ) @(posedge clk200);
sp_duty_cycle[4:0] = sp_duty_cycle[4:0] + 1'b1; // overflow is expected here
end
// Module under test ===========================================================
logic [15:0] seq_cntr = '0;
logic [31:0] id = '0;
always_ff @(posedge clk200) begin
if( ~nrst_once ) begin
seq_cntr[15:0] <= '0;
id[31:0] <= '0;
end else begin
// incrementing sequence counter
if( seq_cntr[15:0]!= '1 ) begin
seq_cntr[15:0] <= seq_cntr[15:0] + 1'b1;
end
if( seq_cntr[15:0]<300 ) begin
id[31:0] <= '1;
//id[31:0] <= {4{rnd_data[15:0]}};
end else begin
id[31:0] <= '0;
end
end
end
debounce_v2 #(
.WIDTH( 8 ),
.SAMPLING_FACTOR( 2 )
) M (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.in( rnd_data[7:0] ),
.out( )
);
debounce_v2 #(
.WIDTH( 8 ),
.SAMPLING_FACTOR( 2 ),
.TREAT_UNSTABLE_AS_HIGH( 1 )
) MH (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.in( rnd_data[7:0] ),
.out( )
);
debounce_v2 #(
.WIDTH( 8 ),
.SAMPLING_FACTOR( 2 ),
.TREAT_UNSTABLE_AS_LOW( 1 )
) ML (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.in( rnd_data[7:0] ),
.out( )
);
endmodule