1
0
mirror of https://github.com/pConst/basic_verilog.git synced 2025-01-14 06:42:54 +08:00

Added single clock fifo modules (two variants)

This commit is contained in:
Konstantin Pavlov 2021-07-05 09:12:14 +03:00
parent cb224284b1
commit 452b3574ff
6 changed files with 935 additions and 234 deletions

125
fifo.sv
View File

@ -1,125 +0,0 @@
//------------------------------------------------------------------------------
// fifo.sv
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Simple single-clock FIFO buffer implementation, also known as "queue"
// Features one write- and one read- port in FWFT mode
// See also "lifo.sv" module for similar LIFO buffer implementation
/* --- INSTANTIATION TEMPLATE BEGIN ---
fifo #(
.DEPTH( 8 ),
.DATA_W( 32 )
) FF1 (
.clk( clk ),
.rst( 1'b0 ),
.w_req( ),
.w_data( ),
.r_req( ),
.r_data( ),
.cnt( ),
.empty( ),
.full( )
);
--- INSTANTIATION TEMPLATE END ---*/
module fifo #( parameter
DEPTH = 4, // max elements count == DEPTH, DEPTH MUST be power of 2
DEPTH_W = $clog2(DEPTH)+1, // elements counter width, extra bit to store
// "fifo full" state, see cnt[] variable comments
DATA_W = 32 // data field width
)(
input clk,
input rst, // non-inverted reset
// input port
input w_req,
input [DATA_W-1:0] w_data,
// output port
input r_req,
output logic [DATA_W-1:0] r_data,
// helper ports
output logic [DATA_W-1:0] cnt = 0,
output logic empty,
output logic full,
output logic fail
);
// fifo data
logic [DEPTH-1:0][DATA_W-1:0] data = 0;
// cnt[] vector always holds fifo elements count
// data[cnt[]] points to the first empty fifo slot
// when fifo is full data[cnt[]] points "outside" of data[]
// please take attention to the case when cnt[]==0 && r_req==1'b1 && w_req==1'b1
// this case makes no read/write to the fifo and should be handled externally
integer i;
always_ff @(posedge clk) begin
if ( rst ) begin
data <= 0;
cnt <= 0;
end else begin
case ({w_req, r_req})
2'b01 : begin // reading out
if ( cnt[DATA_W-1:0] > 1'b1 ) begin
for ( i = (DEPTH-1); i > 0; i = i-1 ) begin
data[i-1] <= data[i];
end
end
if ( cnt[DATA_W-1:0] > 1'b0 ) begin
cnt[DATA_W-1:0] <= cnt[DATA_W-1:0] - 1'b1;
end
end
2'b10 : begin // writing in
if ( ~full ) begin
data[cnt[DATA_W-1:0]] <= w_data;
cnt[DATA_W-1:0] <= cnt[DATA_W-1:0] + 1'b1;
end
end
2'b11 : begin // simultaneously reading and writing
if ( cnt[DATA_W-1:0] > 1'b1 ) begin
for ( i = (DEPTH-1); i > 0; i = i-1 ) begin
data[i-1] <= data[i];
end
end
if ( cnt[DATA_W-1:0] > 1'b0 ) begin
data[cnt[DATA_W-1:0]-1] <= w_data;
end
// cnt[DATA_W-1:0] <= cnt[DATA_W-1:0]; // data counter does not change
end
default: ;
endcase
end
end
always_comb begin
empty = ( cnt[DATA_W-1:0] == 0 );
full = ( cnt[DATA_W-1:0] == DEPTH );
if (~empty) begin
r_data[DATA_W-1:0] = data[0]; // first-word fall-through mode
end else begin
r_data[DATA_W-1:0] = 0;
end
fail = ( empty && r_req ) ||
( full && w_req );
end
endmodule

150
fifo_single_clock_reg_v1.sv Normal file
View File

@ -0,0 +1,150 @@
//------------------------------------------------------------------------------
// fifo_single_clock_reg_v1.sv
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Single-clock FIFO buffer implementation, also known as "queue"
//
// Features:
// - single clock operation
// - configurable depth and data width
// - one write- and one read- port in "FWFT" or "normal" mode
// - protected against overflow and underflow
// - simultaneous read and write operations supported if not full and not empty
// - only read operation is performed when (full && r_req && w_req)
// - only write operation is performed when (empty && r_req && w_req)
//
// See also "lifo.sv" module for similar LIFO buffer implementation
/* --- INSTANTIATION TEMPLATE BEGIN ---
fifo_single_clock_reg_v1 #(
.FWFT_MODE( "TRUE" ),
.DEPTH( 8 ),
.DATA_W( 32 )
) FF1 (
.clk( clk ),
.nrst( 1'b1 ),
.w_req( ),
.w_data( ),
.r_req( ),
.r_data( ),
.cnt( ),
.empty( ),
.full( )
);
--- INSTANTIATION TEMPLATE END ---*/
module fifo_single_clock_reg_v1 #( parameter
FWFT_MODE = "TRUE", // "TRUE" - first word fall-trrough" mode
// "FALSE" - normal fifo mode
DEPTH = 8, // max elements count == DEPTH, DEPTH MUST be power of 2
DEPTH_W = $clog2(DEPTH)+1, // elements counter width, extra bit to store
// "fifo full" state, see cnt[] variable comments
DATA_W = 32 // data field width
)(
input clk,
input nrst, // inverted reset
// input port
input w_req,
input [DATA_W-1:0] w_data,
// output port
input r_req,
output logic [DATA_W-1:0] r_data,
// helper ports
output logic [DEPTH_W-1:0] cnt = '0,
output logic empty,
output logic full,
output logic fail
);
// fifo data
logic [DEPTH-1:0][DATA_W-1:0] data = '0;
// data output buffer for normal fifo mode
logic [DATA_W-1:0] data_buf = '0;
// cnt[] vector always holds fifo elements count
// data[cnt[]] points to the first empty fifo slot
// when fifo is full data[cnt[]] points "outside" of data[]
// filtered requests
logic w_req_f;
assign w_req_f = w_req && ~full;
logic r_req_f;
assign r_req_f = r_req && ~empty;
integer i;
always_ff @(posedge clk) begin
if ( ~nrst ) begin
data <= '0;
cnt[DEPTH_W-1:0] <= '0;
data_buf[DATA_W-1:0] <= '0;
end else begin
unique case ({w_req_f, r_req_f})
2'b00: ; // nothing
2'b01: begin // reading out
for ( i = (DEPTH-1); i > 0; i-- ) begin
data[i-1] <= data[i];
end
cnt[DEPTH_W-1:0] <= cnt[DEPTH_W-1:0] - 1'b1;
end
2'b10: begin // writing in
data[cnt[DEPTH_W-1:0]] <= w_data[DATA_W-1:0];
cnt[DEPTH_W-1:0] <= cnt[DEPTH_W-1:0] + 1'b1;
end
2'b11: begin // simultaneously reading and writing
for ( i = (DEPTH-1); i > 0; i-- ) begin
data[i-1] <= data[i];
end
data[cnt[DEPTH_W-1:0]-1] <= w_data[DATA_W-1:0];
// data counter does not change here
end
endcase
// data buffer works only for normal fifo mode
if( r_req_f ) begin
data_buf[DATA_W-1:0] <= data[0];
end
end
end
always_comb begin
empty = ( cnt[DEPTH_W-1:0] == '0 );
full = ( cnt[DEPTH_W-1:0] == DEPTH );
if( FWFT_MODE == "TRUE" ) begin
if (~empty) begin
r_data[DATA_W-1:0] = data[0]; // first-word fall-through mode
end else begin
r_data[DATA_W-1:0] = '0;
end
end else begin
r_data[DATA_W-1:0] = data_buf[DATA_W-1:0]; // normal mode
end
fail = ( empty && r_req ) ||
( full && w_req );
end
endmodule

View File

@ -0,0 +1,305 @@
//------------------------------------------------------------------------------
// fifo_single_clock_reg_v1_tb.sv
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// testbench for fifo_single_clock_reg_v1.sv module
//
`timescale 1ns / 1ps
module fifo_single_clock_reg_v1_tb();
logic clk200;
initial begin
#0 clk200 = 1'b0;
forever
#2.5 clk200 = ~clk200;
end
// external device "asynchronous" clock
logic clk33;
initial begin
#0 clk33 = 1'b0;
forever
#15.151 clk33 = ~clk33;
end
logic rst;
initial begin
#0 rst = 1'b0;
#10.2 rst = 1'b1;
#5 rst = 1'b0;
//#10000;
forever begin
#9985 rst = ~rst;
#5 rst = ~rst;
end
end
logic nrst;
assign nrst = ~rst;
logic rst_once;
initial begin
#0 rst_once = 1'b0;
#10.2 rst_once = 1'b1;
#5 rst_once = 1'b0;
end
logic nrst_once;
assign nrst_once = ~rst_once;
logic [31:0] DerivedClocks;
clk_divider #(
.WIDTH( 32 )
) cd1 (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.out( DerivedClocks[31:0] )
);
logic [31:0] E_DerivedClocks;
edge_detect ed1[31:0] (
.clk( {32{clk200}} ),
.nrst( {32{nrst_once}} ),
.in( DerivedClocks[31:0] ),
.rising( E_DerivedClocks[31:0] ),
.falling( ),
.both( )
);
logic [15:0] RandomNumber1;
c_rand rng1 (
.clk(clk200),
.rst(rst_once),
.reseed(1'b0),
.seed_val(DerivedClocks[31:0]),
.out( RandomNumber1[15:0] )
);
logic start;
initial begin
#0 start = 1'b0;
#100 start = 1'b1;
#20 start = 1'b0;
end
// Module under test ==========================================================
// comment or uncomment to test FWFT and normal fifo modes
//`define TEST_FWFT yes
// comment or uncomment to sweep-test or random test
//`define TEST_SWEEP yes
// comment or uncomment to use bare scfifo or quartus wizard-generated wrappers
//`define BARE_SCFIFO yes
logic full1, empty1;
logic full1_d1, empty1_d1;
logic direction1 = 1'b0;
always_ff @(posedge clk200) begin
if( ~nrst ) begin
direction1 <= 1'b0;
end else begin
// sweep logic
if( full1_d1 ) begin
direction1 <= 1'b1;
end else if( empty1_d1 ) begin
direction1 <= 1'b0;
end
// these signals allow "erroring" requests testing:
// - reads from the empty fifo
// - writes to the filled fifo
full1_d1 <= full1;
empty1_d1 <= empty1;
end
end
logic [3:0] cnt1;
logic [15:0] data_out1;
fifo_single_clock_reg_v1 #(
`ifdef TEST_FWFT
.FWFT_MODE( "TRUE" ),
`else
.FWFT_MODE( "FALSE" ),
`endif
.DEPTH( 8 ),
.DATA_W( 16 )
) FF1 (
.clk( clk200 ),
.nrst( nrst_once ),
`ifdef TEST_SWEEP
.w_req( ~direction1 && &RandomNumber1[10] ),
.w_data( RandomNumber1[15:0] ),
.r_req( direction1 && &RandomNumber1[10] ),
.r_data( data_out1[15:0] ),
`else
.w_req( &RandomNumber1[10:9] ),
.w_data( RandomNumber1[15:0] ),
.r_req( &RandomNumber1[8:7] ),
.r_data( data_out1[15:0] ),
`endif
.cnt( cnt1[3:0] ),
.empty( empty1 ),
.full( full1 )
);
logic full2, empty2;
logic full2_d1, empty2_d1;
logic direction2 = 1'b0;
always_ff @(posedge clk200) begin
if( ~nrst ) begin
direction2 <= 1'b0;
end else begin
// sweep logic
if( full2_d1 ) begin
direction2 <= 1'b1;
end else if( empty2_d1 ) begin
direction2 <= 1'b0;
end
// these signals allow "erroring" requests testing:
// - reads from the empty fifo
// - writes to the filled fifo
full2_d1 <= full2;
empty2_d1 <= empty2;
end
end
//==============================================================================
logic [15:0] data_out2;
`ifdef BARE_SCFIFO
SCFIFO #(
.LPM_WIDTH( 16 ),
.LPM_NUMWORDS( 8 ),
.LPM_WIDTHU( $clog2(8) ), /// CEIL(LOG2(LPM_NUMWORDS)),
`ifdef TEST_FWFT
.LPM_SHOWAHEAD( "ON" ),
`else
.LPM_SHOWAHEAD( "OFF" ),
`endif
.UNDERFLOW_CHECKING( "ON" ),
.OVERFLOW_CHECKING( "ON" ),
.ALLOW_RWCYCLE_WHEN_FULL( "ON" ),
.ADD_RAM_OUTPUT_REGISTER( "OFF" ),
.ALMOST_FULL_VALUE( 0 ),
.ALMOST_EMPTY_VALUE( 0 ),
.ENABLE_ECC( "FALSE" )
//.USE_EAB( "ON" ),
//.MAXIMIZE_SPEED( 5 ),
//.DEVICE_FAMILY( "CYCLONE V" ),
//.OPTIMIZE_FOR_SPEED( 5 ),
//.CBXI_PARAMETER( "NOTHING" )
) FF2 (
.clock( clk200 ),
.aclr( 1'b0 ),
.sclr( ~nrst_once ),
`ifdef TEST_SWEEP
.wrreq( ~direction1 && &RandomNumber1[10] ),
.data( RandomNumber1[15:0] ),
.rdreq( direction1 && &RandomNumber1[10] ),
.q( data_out2[15:0] ),
`else
.wrreq( &RandomNumber1[10:9] ),
.data( RandomNumber1[15:0] ),
.rdreq( &RandomNumber1[8:7] ),
.q( data_out2[15:0] ),
`endif
.empty( empty2 ),
.full( full2 ),
.almost_empty( ),
.almost_full( ),
.usedw( ),
.eccstatus( )
);
`else
`ifdef TEST_FWFT
altera_fifo FF2 (
`else
altera_fifo_normal FF2 (
`endif
.clock ( clk200 ),
`ifdef TEST_SWEEP
.wrreq( ~direction1 && &RandomNumber1[10] ),
.data( RandomNumber1[15:0] ),
.rdreq( direction1 && &RandomNumber1[10] ),
.q( data_out2[15:0] ),
`else
.wrreq( &RandomNumber1[10:9] ),
.data( RandomNumber1[15:0] ),
.rdreq( &RandomNumber1[8:7] ),
.q( data_out2[15:0] ),
`endif
.empty ( empty2 ),
.full ( full2 ),
.usedw ( )
);
`endif
//==============================================================================
logic outputs_equal;
assign outputs_equal = ( data_out1[15:0] == data_out2[15:0] ) ||
`ifdef TEST_FWFT
// scipping minor discontinuity
// seems like altera`s fifo has some additional buffering???
( cnt1[3:0] == 1 && data_out1[15:0] != data_out2[15:0] );
`else
1'b0;
`endif
logic empty_equal;
assign empty_equal = ( empty1 == empty2 );
logic full_equal;
assign full_equal = ( full1 == full2 );
logic success = 1'b1;
always_ff @(posedge clk200) begin
if( ~nrst ) begin
success <= 1'b1;
end else begin
if( ~outputs_equal ) begin
success <= 1'b0;
end
end
end
// this condition is being processed differently by altera`s scfifo and
// the custom fifo implementation
logic test_cond;
assign test_cond = empty1 && &RandomNumber1[10:9] && &RandomNumber1[8:7];
endmodule

175
fifo_single_clock_reg_v2.sv Normal file
View File

@ -0,0 +1,175 @@
//------------------------------------------------------------------------------
// fifo_single_clock_reg_v2.sv
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Single-clock FIFO buffer implementation, also known as "queue"
//
// Features:
// - single clock operation
// - configurable depth and data width
// - one write- and one read- port in "FWFT" or "normal" mode
// - protected against overflow and underflow
// - simultaneous read and write operations supported if not full and not empty
// - only read operation is performed when (full && r_req && w_req)
// - only write operation is performed when (empty && r_req && w_req)
//
// See also "lifo.sv" module for similar LIFO buffer implementation
/* --- INSTANTIATION TEMPLATE BEGIN ---
fifo_single_clock_reg_v2 #(
.FWFT_MODE( "TRUE" ),
.DEPTH( 8 ),
.DATA_W( 32 )
) FF1 (
.clk( clk ),
.nrst( 1'b1 ),
.w_req( ),
.w_data( ),
.r_req( ),
.r_data( ),
.cnt( ),
.empty( ),
.full( )
);
--- INSTANTIATION TEMPLATE END ---*/
module fifo_single_clock_reg_v2 #( parameter
FWFT_MODE = "TRUE", // "TRUE" - first word fall-trrough" mode
// "FALSE" - normal fifo mode
DEPTH = 8, // max elements count == DEPTH, DEPTH MUST be power of 2
DEPTH_W = $clog2(DEPTH)+1, // elements counter width, extra bit to store
// "fifo full" state, see cnt[] variable comments
DATA_W = 32 // data field width
)(
input clk,
input nrst, // inverted reset
// input port
input w_req,
input [DATA_W-1:0] w_data,
// output port
input r_req,
output logic [DATA_W-1:0] r_data,
// helper ports
output logic [DEPTH_W-1:0] cnt = '0,
output logic empty,
output logic full,
output logic fail
);
// fifo data, extra element to keep pointer positions always valid,
// even when fifo is empty or full
logic [DEPTH-1:0][DATA_W-1:0] data = '0;
// read and write pointers
logic [DEPTH_W-1:0] w_ptr = '0;
logic [DEPTH_W-1:0] r_ptr = '0;
// data output buffer for normal fifo mode
logic [DATA_W-1:0] data_buf = '0;
// filtered requests
logic w_req_f;
assign w_req_f = w_req && ~full;
logic r_req_f;
assign r_req_f = r_req && ~empty;
function [DEPTH_W-1:0] inc_ptr (
input [DEPTH_W-1:0] ptr
);
if( ptr[DEPTH_W-1:0] == DEPTH-1 ) begin
inc_ptr[DEPTH_W-1:0] = '0;
end else begin
inc_ptr[DEPTH_W-1:0] = ptr[DEPTH_W-1:0] + 1'b1;
end
endfunction
integer i;
always_ff @(posedge clk) begin
if ( ~nrst ) begin
data <= '0;
cnt[DEPTH_W-1:0] <= '0;
w_ptr[DEPTH_W-1:0] <= '0;
r_ptr[DEPTH_W-1:0] <= '0;
data_buf[DATA_W-1:0] <= '0;
end else begin
unique case ({w_req_f, r_req_f})
2'b00: ; // nothing
2'b01: begin // reading out
if( ~empty ) begin
r_ptr[DEPTH_W-1:0] <= inc_ptr(r_ptr[DEPTH_W-1:0]);
end
cnt[DEPTH_W-1:0] <= cnt[DEPTH_W-1:0] - 1'b1;
end
2'b10: begin // writing in
if( ~full ) begin
w_ptr[DEPTH_W-1:0] <= inc_ptr(w_ptr[DEPTH_W-1:0]);
end
data[w_ptr[DEPTH_W-1:0]] <= w_data[DATA_W-1:0];
cnt[DEPTH_W-1:0] <= cnt[DEPTH_W-1:0] + 1'b1;
end
2'b11: begin // simultaneously reading and writing
if( ~empty ) begin
r_ptr[DEPTH_W-1:0] <= inc_ptr(r_ptr[DEPTH_W-1:0]);
end
if( ~full ) begin
w_ptr[DEPTH_W-1:0] <= inc_ptr(w_ptr[DEPTH_W-1:0]);
end
data[w_ptr[DEPTH_W-1:0]] <= w_data[DATA_W-1:0];
// data counter does not change here
end
endcase
// data buffer works only for normal fifo mode
if( r_req_f ) begin
data_buf[DATA_W-1:0] <= data[r_ptr[DEPTH_W-1:0]];
end
end
end
always_comb begin
empty = ( cnt[DEPTH_W-1:0] == '0 );
full = ( cnt[DEPTH_W-1:0] == DEPTH );
if( FWFT_MODE == "TRUE" ) begin
if (~empty) begin
r_data[DATA_W-1:0] = data[r_ptr[DEPTH_W-1:0]]; // first-word fall-through mode
end else begin
r_data[DATA_W-1:0] = '0;
end
end else begin
r_data[DATA_W-1:0] = data_buf[DATA_W-1:0]; // normal mode
end
fail = ( empty && r_req ) ||
( full && w_req );
end
endmodule

View File

@ -0,0 +1,305 @@
//------------------------------------------------------------------------------
// fifo_single_clock_reg_v2_tb.sv
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// testbench for fifo_single_clock_reg_v2.sv module
//
`timescale 1ns / 1ps
module fifo_single_clock_reg_v2_tb();
logic clk200;
initial begin
#0 clk200 = 1'b0;
forever
#2.5 clk200 = ~clk200;
end
// external device "asynchronous" clock
logic clk33;
initial begin
#0 clk33 = 1'b0;
forever
#15.151 clk33 = ~clk33;
end
logic rst;
initial begin
#0 rst = 1'b0;
#10.2 rst = 1'b1;
#5 rst = 1'b0;
//#10000;
forever begin
#9985 rst = ~rst;
#5 rst = ~rst;
end
end
logic nrst;
assign nrst = ~rst;
logic rst_once;
initial begin
#0 rst_once = 1'b0;
#10.2 rst_once = 1'b1;
#5 rst_once = 1'b0;
end
logic nrst_once;
assign nrst_once = ~rst_once;
logic [31:0] DerivedClocks;
clk_divider #(
.WIDTH( 32 )
) cd1 (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.out( DerivedClocks[31:0] )
);
logic [31:0] E_DerivedClocks;
edge_detect ed1[31:0] (
.clk( {32{clk200}} ),
.nrst( {32{nrst_once}} ),
.in( DerivedClocks[31:0] ),
.rising( E_DerivedClocks[31:0] ),
.falling( ),
.both( )
);
logic [15:0] RandomNumber1;
c_rand rng1 (
.clk(clk200),
.rst(rst_once),
.reseed(1'b0),
.seed_val(DerivedClocks[31:0]),
.out( RandomNumber1[15:0] )
);
logic start;
initial begin
#0 start = 1'b0;
#100 start = 1'b1;
#20 start = 1'b0;
end
// Module under test ==========================================================
// comment or uncomment to test FWFT and normal fifo modes
`define TEST_FWFT yes
// comment or uncomment to sweep-test or random test
//`define TEST_SWEEP yes
// comment or uncomment to use bare scfifo or quartus wizard-generated wrappers
//`define BARE_SCFIFO yes
logic full1, empty1;
logic full1_d1, empty1_d1;
logic direction1 = 1'b0;
always_ff @(posedge clk200) begin
if( ~nrst ) begin
direction1 <= 1'b0;
end else begin
// sweep logic
if( full1_d1 ) begin
direction1 <= 1'b1;
end else if( empty1_d1 ) begin
direction1 <= 1'b0;
end
// these signals allow "erroring" requests testing:
// - reads from the empty fifo
// - writes to the filled fifo
full1_d1 <= full1;
empty1_d1 <= empty1;
end
end
logic [3:0] cnt1;
logic [15:0] data_out1;
fifo_single_clock_reg_v2 #(
`ifdef TEST_FWFT
.FWFT_MODE( "TRUE" ),
`else
.FWFT_MODE( "FALSE" ),
`endif
.DEPTH( 8 ),
.DATA_W( 16 )
) FF1 (
.clk( clk200 ),
.nrst( nrst_once ),
`ifdef TEST_SWEEP
.w_req( ~direction1 && &RandomNumber1[10] ),
.w_data( RandomNumber1[15:0] ),
.r_req( direction1 && &RandomNumber1[10] ),
.r_data( data_out1[15:0] ),
`else
.w_req( &RandomNumber1[10:9] ),
.w_data( RandomNumber1[15:0] ),
.r_req( &RandomNumber1[8:7] ),
.r_data( data_out1[15:0] ),
`endif
.cnt( cnt1[3:0] ),
.empty( empty1 ),
.full( full1 )
);
logic full2, empty2;
logic full2_d1, empty2_d1;
logic direction2 = 1'b0;
always_ff @(posedge clk200) begin
if( ~nrst ) begin
direction2 <= 1'b0;
end else begin
// sweep logic
if( full2_d1 ) begin
direction2 <= 1'b1;
end else if( empty2_d1 ) begin
direction2 <= 1'b0;
end
// these signals allow "erroring" requests testing:
// - reads from the empty fifo
// - writes to the filled fifo
full2_d1 <= full2;
empty2_d1 <= empty2;
end
end
//==============================================================================
logic [15:0] data_out2;
`ifdef BARE_SCFIFO
SCFIFO #(
.LPM_WIDTH( 16 ),
.LPM_NUMWORDS( 8 ),
.LPM_WIDTHU( $clog2(8) ), /// CEIL(LOG2(LPM_NUMWORDS)),
`ifdef TEST_FWFT
.LPM_SHOWAHEAD( "ON" ),
`else
.LPM_SHOWAHEAD( "OFF" ),
`endif
.UNDERFLOW_CHECKING( "ON" ),
.OVERFLOW_CHECKING( "ON" ),
.ALLOW_RWCYCLE_WHEN_FULL( "ON" ),
.ADD_RAM_OUTPUT_REGISTER( "OFF" ),
.ALMOST_FULL_VALUE( 0 ),
.ALMOST_EMPTY_VALUE( 0 ),
.ENABLE_ECC( "FALSE" )
//.USE_EAB( "ON" ),
//.MAXIMIZE_SPEED( 5 ),
//.DEVICE_FAMILY( "CYCLONE V" ),
//.OPTIMIZE_FOR_SPEED( 5 ),
//.CBXI_PARAMETER( "NOTHING" )
) FF2 (
.clock( clk200 ),
.aclr( 1'b0 ),
.sclr( ~nrst_once ),
`ifdef TEST_SWEEP
.wrreq( ~direction1 && &RandomNumber1[10] ),
.data( RandomNumber1[15:0] ),
.rdreq( direction1 && &RandomNumber1[10] ),
.q( data_out2[15:0] ),
`else
.wrreq( &RandomNumber1[10:9] ),
.data( RandomNumber1[15:0] ),
.rdreq( &RandomNumber1[8:7] ),
.q( data_out2[15:0] ),
`endif
.empty( empty2 ),
.full( full2 ),
.almost_empty( ),
.almost_full( ),
.usedw( ),
.eccstatus( )
);
`else
`ifdef TEST_FWFT
altera_fifo FF2 (
`else
altera_fifo_normal FF2 (
`endif
.clock ( clk200 ),
`ifdef TEST_SWEEP
.wrreq( ~direction1 && &RandomNumber1[10] ),
.data( RandomNumber1[15:0] ),
.rdreq( direction1 && &RandomNumber1[10] ),
.q( data_out2[15:0] ),
`else
.wrreq( &RandomNumber1[10:9] ),
.data( RandomNumber1[15:0] ),
.rdreq( &RandomNumber1[8:7] ),
.q( data_out2[15:0] ),
`endif
.empty ( empty2 ),
.full ( full2 ),
.usedw ( )
);
`endif
//==============================================================================
logic outputs_equal;
assign outputs_equal = ( data_out1[15:0] == data_out2[15:0] ) ||
`ifdef TEST_FWFT
// scipping minor discontinuity
// seems like altera`s fifo has some additional buffering???
( cnt1[3:0] == 1 && data_out1[15:0] != data_out2[15:0] );
`else
1'b0;
`endif
logic empty_equal;
assign empty_equal = ( empty1 == empty2 );
logic full_equal;
assign full_equal = ( full1 == full2 );
logic success = 1'b1;
always_ff @(posedge clk200) begin
if( ~nrst ) begin
success <= 1'b1;
end else begin
if( ~outputs_equal ) begin
success <= 1'b0;
end
end
end
// this condition is being processed differently by altera`s scfifo and
// the custom fifo implementation
logic test_cond;
assign test_cond = empty1 && &RandomNumber1[10:9] && &RandomNumber1[8:7];
endmodule

View File

@ -1,109 +0,0 @@
//------------------------------------------------------------------------------
// fifo_tb.sv
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// testbench for fifo.sv module
//
`timescale 1ns / 1ps
module fifo_tb();
logic clk200;
initial begin
#0 clk200 = 1;
forever
#2.5 clk200 = ~clk200;
end
logic rst;
initial begin
#10.2 rst = 1;
#5 rst = 0;
//#10000;
forever begin
#9985 rst = ~rst;
#5 rst = ~rst;
end
end
logic nrst;
assign nrst = ~rst;
logic rst_once;
initial begin // initializing non-X data before PLL starts
#10.2 rst_once = 1;
#5 rst_once = 0;
end
initial begin
#510.2 rst_once = 1; // PLL starts at 500ns, clock appears, so doing the reset for modules
#5 rst_once = 0;
end
logic nrst_once;
assign nrst_once = ~rst_once;
logic [31:0] DerivedClocks;
ClkDivider #(
.WIDTH( 32 )
) CD1 (
.clk( clk200 ),
.nrst( nrst_once ),
.out( DerivedClocks[31:0] )
);
logic [31:0] E_DerivedClocks;
EdgeDetect ED1[31:0] (
.clk( {32{clk200}} ),
.nrst( {32{nrst_once}} ),
.in( DerivedClocks[31:0] ),
.rising( E_DerivedClocks[31:0] ),
.falling( ),
.both( )
);
logic [15:0] RandomNumber1;
c_rand RNG1 (
.clk(clk200),
.rst(rst_once),
.reseed(1'b0),
.seed_val(DerivedClocks[31:0]),
.out(RandomNumber1[15:0]));
/*logic start;
initial begin
#0 start = 1'b0;
#100.2 start = 1'b1;
#5 start = 1'b0;
end*/
logic read;
initial begin
#0 read = 1'b0;
#1000.2 read = 1'b1;
end
fifo #(
.DEPTH( 8 ),
.DATA_W( 16 )
) FF1 (
.clk( clk200 ),
.rst( rst_once ),
.w_req( &RandomNumber1[10:9] ),
.w_data( RandomNumber1[15:0] ),
.r_req( read ),
.r_data( ),
.cnt( ),
.empty( ),
.full( )
);
endmodule