1
0
mirror of https://github.com/pConst/basic_verilog.git synced 2025-01-28 07:02:55 +08:00

Added universal block RAM fifo

This commit is contained in:
Konstantin Pavlov (ms) 2021-07-19 01:45:45 +03:00
parent 1efbd7c243
commit 4cd95ad2dc
2 changed files with 500 additions and 0 deletions

223
fifo_single_clock_ram.sv Executable file
View File

@ -0,0 +1,223 @@
//------------------------------------------------------------------------------
// fifo_single_clock_ram.sv
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Single-clock FIFO buffer implementation, also known as "queue"
//
// This fifo variant should synthesize into block RAM seamlessly, both for
// Altera and for Xilinx chips. Simulation is also consistent.
// Use this fifo when you need cross-vendor and sim/synth compatibility.
//
// Features:
// - single clock operation
// - configurable depth and data width
// - only "normal" mode is supported here, no FWFT mode
// - protected against overflow and underflow
//
/* --- INSTANTIATION TEMPLATE BEGIN ---
fifo_single_clock_ram #(
.DEPTH( 8 ),
.DATA_W( 32 )
) FF1 (
.clk( clk ),
.nrst( 1'b1 ),
.w_req( ),
.w_data( ),
.r_req( ),
.r_data( ),
.cnt( ),
.empty( ),
.full( )
);
--- INSTANTIATION TEMPLATE END ---*/
module fifo_single_clock_ram #( parameter
//FWFT_MODE = "TRUE", // "TRUE" - first word fall-trrough" mode
// "FALSE" - normal fifo mode
DEPTH = 8, // max elements count == DEPTH, DEPTH MUST be power of 2
DEPTH_W = $clog2(DEPTH)+1, // elements counter width, extra bit to store
// "fifo full" state, see cnt[] variable comments
DATA_W = 32 // data field width
)(
input clk,
input nrst, // inverted reset
// input port
input w_req,
input [DATA_W-1:0] w_data,
// output port
input r_req,
output [DATA_W-1:0] r_data,
// helper ports
output logic [DEPTH_W-1:0] cnt = '0,
output logic empty,
output logic full,
output logic fail
);
// read and write pointers
logic [DEPTH_W-1:0] w_ptr = '0;
logic [DEPTH_W-1:0] r_ptr = '0;
// filtered requests
logic w_req_f;
assign w_req_f = w_req && ~full;
logic r_req_f;
assign r_req_f = r_req && ~empty;
true_dual_port_write_first_2_clock_ram #(
.RAM_WIDTH( DATA_W ),
.RAM_DEPTH( DEPTH ),
.INIT_FILE( "" )
) data_ram (
.clka( clk ),
.addra( w_ptr[DEPTH_W-1:0] ),
.ena( w_req_f ),
.wea( 1'b1 ),
.dina( w_data[DATA_W-1:0] ),
.douta( ),
.clkb( clk ),
.addrb( r_ptr[DEPTH_W-1:0] ),
.enb( r_req_f ),
.web( 1'b0 ),
.dinb( '0 ),
.doutb( r_data[DATA_W-1:0] )
);
function [DEPTH_W-1:0] inc_ptr (
input [DEPTH_W-1:0] ptr
);
if( ptr[DEPTH_W-1:0] == DEPTH-1 ) begin
inc_ptr[DEPTH_W-1:0] = '0;
end else begin
inc_ptr[DEPTH_W-1:0] = ptr[DEPTH_W-1:0] + 1'b1;
end
endfunction
always_ff @(posedge clk) begin
if ( ~nrst ) begin
w_ptr[DEPTH_W-1:0] <= '0;
r_ptr[DEPTH_W-1:0] <= '0;
cnt[DEPTH_W-1:0] <= '0;
end else begin
if( w_req_f ) begin
w_ptr[DEPTH_W-1:0] <= inc_ptr(w_ptr[DEPTH_W-1:0]);
end
if( r_req_f ) begin
r_ptr[DEPTH_W-1:0] <= inc_ptr(r_ptr[DEPTH_W-1:0]);
end
if( w_req_f && ~r_req_f ) begin
cnt[DEPTH_W-1:0] <= cnt[DEPTH_W-1:0] + 1'b1;
end else if( ~w_req_f && r_req_f ) begin
cnt[DEPTH_W-1:0] <= cnt[DEPTH_W-1:0] - 1'b1;
end
end
end
always_comb begin
empty = ( cnt[DEPTH_W-1:0] == '0 );
full = ( cnt[DEPTH_W-1:0] == DEPTH );
fail = ( empty && r_req ) ||
( full && w_req );
end
endmodule
module true_dual_port_write_first_2_clock_ram #( parameter
RAM_WIDTH = 16,
RAM_DEPTH = 8,
INIT_FILE = ""
)(
input clka,
input [clogb2(RAM_DEPTH-1)-1:0] addra,
input ena,
input wea,
input [RAM_WIDTH-1:0] dina,
output [RAM_WIDTH-1:0] douta,
input clkb,
input [clogb2(RAM_DEPTH-1)-1:0] addrb,
input enb,
input web,
input [RAM_WIDTH-1:0] dinb,
output [RAM_WIDTH-1:0] doutb
);
reg [RAM_WIDTH-1:0] BRAM [RAM_DEPTH-1:0];
reg [RAM_WIDTH-1:0] ram_data_a = {RAM_WIDTH{1'b0}};
reg [RAM_WIDTH-1:0] ram_data_b = {RAM_WIDTH{1'b0}};
// either initializes the memory values to a specified file or to all zeros
// to match hardware
generate
if (INIT_FILE != "") begin: use_init_file
initial
$readmemh(INIT_FILE, BRAM, 0, RAM_DEPTH-1);
end else begin: init_bram_to_zero
integer ram_index;
initial
for (ram_index = 0; ram_index < RAM_DEPTH; ram_index = ram_index + 1)
BRAM[ram_index] = {RAM_WIDTH{1'b0}};
end
endgenerate
always @(posedge clka)
if (ena)
if (wea) begin
BRAM[addra] <= dina;
ram_data_a <= dina;
end else
ram_data_a <= BRAM[addra];
always @(posedge clkb)
if (enb)
if (web) begin
BRAM[addrb] <= dinb;
ram_data_b <= dinb;
end else
ram_data_b <= BRAM[addrb];
// no output register
assign douta = ram_data_a;
assign doutb = ram_data_b;
// calculates the address width based on specified RAM depth
function integer clogb2;
input integer depth;
for (clogb2=0; depth>0; clogb2=clogb2+1)
depth = depth >> 1;
endfunction
endmodule

277
fifo_single_clock_ram_tb.sv Executable file
View File

@ -0,0 +1,277 @@
//------------------------------------------------------------------------------
// fifo_single_clock_ram_tb.sv
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// testbench for fifo_single_clock_reg_ram.sv module
//
`timescale 1ns / 1ps
module fifo_single_clock_ram_tb();
logic clk200;
initial begin
#0 clk200 = 1'b0;
forever
#2.5 clk200 = ~clk200;
end
// external device "asynchronous" clock
logic clk33;
initial begin
#0 clk33 = 1'b0;
forever
#15.151 clk33 = ~clk33;
end
logic rst;
initial begin
#0 rst = 1'b0;
#10.2 rst = 1'b1;
#5 rst = 1'b0;
//#10000;
forever begin
#9985 rst = ~rst;
#5 rst = ~rst;
end
end
logic nrst;
assign nrst = ~rst;
logic rst_once;
initial begin
#0 rst_once = 1'b0;
#10.2 rst_once = 1'b1;
#5 rst_once = 1'b0;
end
logic nrst_once;
assign nrst_once = ~rst_once;
logic [31:0] DerivedClocks;
clk_divider #(
.WIDTH( 32 )
) cd1 (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.out( DerivedClocks[31:0] )
);
logic [31:0] E_DerivedClocks;
edge_detect ed1[31:0] (
.clk( {32{clk200}} ),
.nrst( {32{nrst_once}} ),
.in( DerivedClocks[31:0] ),
.rising( E_DerivedClocks[31:0] ),
.falling( ),
.both( )
);
logic [15:0] RandomNumber1;
c_rand rng1 (
.clk(clk200),
.rst(rst_once),
.reseed(1'b0),
.seed_val(DerivedClocks[31:0]),
.out( RandomNumber1[15:0] )
);
logic start;
initial begin
#0 start = 1'b0;
#100 start = 1'b1;
#20 start = 1'b0;
end
// Module under test ==========================================================
// comment or uncomment to test FWFT and normal fifo modes
//`define TEST_FWFT yes
// comment or uncomment to sweep-test or random test
`define TEST_SWEEP yes
// comment or uncomment to use bare scfifo or quartus wizard-generated wrappers
//`define BARE_SCFIFO yes
logic full1, empty1;
logic full1_d1, empty1_d1;
logic direction1 = 1'b0;
always_ff @(posedge clk200) begin
if( ~nrst ) begin
direction1 <= 1'b0;
end else begin
// sweep logic
if( full1_d1 ) begin
direction1 <= 1'b1;
end else if( empty1_d1 ) begin
direction1 <= 1'b0;
end
// these signals allow "erroring" requests testing:
// - reads from the empty fifo
// - writes to the filled fifo
full1_d1 <= full1;
empty1_d1 <= empty1;
end
end
logic [3:0] cnt1;
logic [15:0] data_out1;
fifo_single_clock_ram #(
.DEPTH( 8 ),
.DATA_W( 16 )
) FF1 (
.clk( clk200 ),
.nrst( nrst_once ),
`ifdef TEST_SWEEP
.w_req( ~direction1 && &RandomNumber1[10] ),
.w_data( RandomNumber1[15:0] ),
.r_req( direction1 && &RandomNumber1[10] ),
.r_data( data_out1[15:0] ),
`else
.w_req( &RandomNumber1[10:9] ),
.w_data( RandomNumber1[15:0] ),
.r_req( &RandomNumber1[8:7] ),
.r_data( data_out1[15:0] ),
`endif
.cnt( cnt1[3:0] ),
.empty( empty1 ),
.full( full1 )
);
logic full2, empty2;
logic full2_d1, empty2_d1;
logic direction2 = 1'b0;
always_ff @(posedge clk200) begin
if( ~nrst ) begin
direction2 <= 1'b0;
end else begin
// sweep logic
if( full2_d1 ) begin
direction2 <= 1'b1;
end else if( empty2_d1 ) begin
direction2 <= 1'b0;
end
// these signals allow "erroring" requests testing:
// - reads from the empty fifo
// - writes to the filled fifo
full2_d1 <= full2;
empty2_d1 <= empty2;
end
end
//==============================================================================
logic [15:0] data_out2;
DCFIFO #(
.LPM_WIDTH( 16 ),
.LPM_NUMWORDS( 8 ),
.LPM_WIDTHU( $clog2(8) ), /// CEIL(LOG2(LPM_NUMWORDS)),
`ifdef TEST_FWFT
.LPM_SHOWAHEAD( "ON" ),
`else
.LPM_SHOWAHEAD( "OFF" ),
`endif
.UNDERFLOW_CHECKING( "ON" ),
.OVERFLOW_CHECKING( "ON" ),
.ADD_RAM_OUTPUT_REGISTER( "OFF" ),
.ENABLE_ECC( "FALSE" ),
// output delay to the usedw[] outputs
.DELAY_RDUSEDW( 1 ), // one clock cycle by default
.DELAY_WRUSEDW( 1 ),
// Pipe length used for synchronization and metastability resolving
// If the rdclk and wrclk are unrelated, most often used values range from 2 to 4
// If they are syncronized to one another, 0 might be used
.RDSYNC_DELAYPIPE( 3 ), // from the wrclk to the rdclk subsystem
.WRSYNC_DELAYPIPE( 3 ), // from the rdclk to the wrclk subsystem
.CLOCKS_ARE_SYNCHRONIZED( "TRUE" ), // Are the clocks sufficiently synchronized (or clock multiples of each other with no pashe shift)
// such that the synchronization and pipeline registers may be elliminated
.ADD_USEDW_MSB_BIT( "ON" ),
.WRITE_ACLR_SYNCH( "OFF" ),
.READ_ACLR_SYNCH( "OFF" )
//.USE_EAB( "ON" ),
//.MAXIMIZE_SPEED( 5 ),
//.DEVICE_FAMILY( "CYCLONE V" ),
//.OPTIMIZE_FOR_SPEED( 5 ),
//.CBXI_PARAMETER( "NOTHING" )
) FF2 (
.aclr( 1'b0 ),
.wrclk( clk200 ),
`ifdef TEST_SWEEP
.wrreq( ~direction1 && &RandomNumber1[10] ),
.data( RandomNumber1[15:0] ),
`else
.wrreq( &RandomNumber1[10:9] ),
.data( RandomNumber1[15:0] ),
`endif
.wrempty( ),
.wrfull( ),
.wrusedw( ),
.rdclk( clk200 ),
`ifdef TEST_SWEEP
.rdreq( direction1 && &RandomNumber1[10] ),
.q( data_out2[15:0] ),
`else
.rdreq( &RandomNumber1[8:7] ),
.q( data_out2[15:0] ),
`endif
.rdempty( empty2 ),
.rdfull( full2 ),
.rdusedw( ),
.eccstatus( )
);
//==============================================================================
logic outputs_equal;
assign outputs_equal = ( data_out1[15:0] == data_out2[15:0] ) ||
`ifdef TEST_FWFT
// scipping minor discontinuity
// seems like altera`s fifo has some additional buffering???
( cnt1[3:0] == 1 && data_out1[15:0] != data_out2[15:0] );
`else
1'b0;
`endif
logic empty_equal;
assign empty_equal = ( empty1 == empty2 );
logic full_equal;
assign full_equal = ( full1 == full2 );
logic success = 1'b1;
always_ff @(posedge clk200) begin
if( ~nrst ) begin
success <= 1'b1;
end else begin
if( ~outputs_equal ) begin
success <= 1'b0;
end
end
end
endmodule