1
0
mirror of https://github.com/pConst/basic_verilog.git synced 2025-01-14 06:42:54 +08:00

Done fifo buffer and tests

This commit is contained in:
Konstantin Pavlov 2022-05-01 14:52:53 +03:00
parent f74126e5d6
commit 9ea8e5e037
2 changed files with 329 additions and 48 deletions

View File

@ -5,15 +5,43 @@
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Read ahead buffer
// Read ahead buffer for FWFT fifo
//
// The buffer substitutes fifo read port and performs fifo data update at the
// same clock cycle as r_req, combinationally, for a one cycle earlier than
// it is expected from standard FWFT fifo
//
// Featires:
// - effectively increases fifo depth by one word
// - adds one cycle lateny for empty flag deassertion
// - does not touch fifo write port and full flag operation logic
// - hides all combinatorial tinkering inside
// - allows controlling and analizing fifo read signals from
// a single always_ff block, like this:
//
// always_ff @(posedge clk) begin
//
// // read control logic
// if( ~empty ) begin // masking rd_req in always_ff
// r_req <= 1'b1;
// end else begin
// r_req <= 1'b0;
// end
//
// // getting input data
// if( r_req ) begin
// new_data[] <= r_data[]; // getting data in always_ff
// end
//
// end
// end
//
/* --- INSTANTIATION TEMPLATE BEGIN ---
read_ahead_buf #(
.DATA_W( 32 )
)(
) RB1 (
.clk( ),
.anrst( ),
@ -30,6 +58,9 @@ read_ahead_buf #(
--- INSTANTIATION TEMPLATE END ---*/
// synopsys translate_off
`define SIMULATION yes
// synopsys translate_on
module read_ahead_buf #( parameter
DATA_W = 32
@ -48,70 +79,67 @@ module read_ahead_buf #( parameter
output logic empty
);
// buffer initialization flags
logic buf_empty = 1'b1;
// buffer fill request
logic buf_fill_req;
assign buf_fill_req = ~fifo_empty &&
buf_empty &&
~buf_fill_req_d1;
// buffer fill and re-fill cycle
logic buf_fill_req_d1 = 1'b0;
always_ff @(posedge clk or negedge anrst) begin
if( ~anrst ) begin
buf_fill_req_d1 <= 1'b0;
end else begin
buf_fill_req_d1 <= buf_fill_req;
end
end
// filtering read requests
logic r_req_filt;
assign r_req_filt = anrst &&
~fifo_empty &&
~buf_empty &&
~buf_fill_req && r_req;
logic r_req_rise;
logic r_req_fall;
edge_detect r_req_ed (
logic fifo_empty_fall;
edge_detect fifo_empty_ed (
.clk( clk ),
.nrst( anrst ),
.in( r_req_filt ),
.rising( r_req_rise ),
.falling( r_req_fall ),
.anrst( anrst ),
.in( fifo_empty ),
.rising( ),
.falling( fifo_empty_fall ),
.both( )
);
assign fifo_r_req = r_req_filt;
assign empty = anrst && fifo_empty && buf_empty;
logic fantom_read;
logic normal_read;
// buffer itself
logic [DATA_W-1:0] r_data_buf = '0;
logic buf_empty = 1'b1;
always_ff @(posedge clk or negedge anrst) begin
if( ~anrst ) begin
buf_empty = 1'b1;
end else begin
if( buf_fill_req_d1 ) begin
r_data_buf[DATA_W-1:0] <= fifo_r_data[DATA_W-1:0];
buf_empty = 1'b0;
end else if( ~r_req_filt && r_req_fall ) begin
r_data_buf[DATA_W-1:0] <= fifo_r_data[DATA_W-1:0];
if( fantom_read ) begin
buf_empty <= 1'b0;
end else if( fifo_empty && r_req ) begin
buf_empty = 1'b1;
end
end
end
assign fantom_read = fifo_empty_fall && buf_empty;
assign normal_read = r_req && ~fifo_empty;
assign empty = buf_empty || // empty falls only after fantom read
(r_req && fifo_empty); // early empty assertion
assign fifo_r_req = anrst &&
(fantom_read || normal_read);
// prepare combinational signal for soft_latch
logic latch_req;
logic [DATA_W-1:0] r_data_latch;
always_comb begin
latch_req = (fantom_read || normal_read) ||
( fifo_empty && r_req ); // buffer depletion
if( ( fantom_read || normal_read ) ||
( fifo_empty && r_req ) ) begin
r_data_latch[DATA_W-1:0] = fifo_r_data[DATA_W-1:0];
//end else if( fifo_empty && r_req ) begin // buffer depletion
// r_data_latch[DATA_W-1:0] = '0;
end else begin
r_data_latch[DATA_W-1:0] = '0;
end
end
soft_latch #(
.WIDTH( DATA_W )
) r_data_latch (
) r_data_latch_b (
.clk( clk ),
.anrst( anrst ),
.latch( r_req_filt ),
.in( (r_req_rise)?(r_data_buf[DATA_W-1:0]):(fifo_r_data[DATA_W-1:0]) ),
.latch( latch_req ),
.in( r_data_latch[DATA_W-1:0] ),
.out( r_data[DATA_W-1:0] )
);

253
read_ahead_buf_tb.sv Executable file
View File

@ -0,0 +1,253 @@
//------------------------------------------------------------------------------
// ead_ahead_buf_tb.sv
// published as part of https://github.com/pConst/basic_verilog
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// testbench for read_ahead_buf.sv module
//
`timescale 1ns / 1ps
module read_ahead_buf_tb();
logic clk200;
initial begin
#0 clk200 = 1'b0;
forever
#2.5 clk200 = ~clk200;
end
// external device "asynchronous" clock
logic clk33;
initial begin
#0 clk33 = 1'b0;
forever
#15.151 clk33 = ~clk33;
end
logic rst;
initial begin
#0 rst = 1'b0;
#10.2 rst = 1'b1;
#5 rst = 1'b0;
//#10000;
forever begin
#9985 rst = ~rst;
#5 rst = ~rst;
end
end
logic nrst;
assign nrst = ~rst;
logic rst_once;
initial begin
#0 rst_once = 1'b0;
#10.5 rst_once = 1'b1;
#5 rst_once = 1'b0;
end
logic nrst_once;
assign nrst_once = ~rst_once;
logic [31:0] DerivedClocks;
clk_divider #(
.WIDTH( 32 )
) cd1 (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.out( DerivedClocks[31:0] )
);
logic [31:0] E_DerivedClocks;
edge_detect ed1[31:0] (
.clk( {32{clk200}} ),
.nrst( {32{nrst_once}} ),
.in( DerivedClocks[31:0] ),
.rising( E_DerivedClocks[31:0] ),
.falling( ),
.both( )
);
logic [15:0] RandomNumber1;
c_rand rng1 (
.clk(clk200),
.rst(rst_once),
.reseed(1'b0),
.seed_val(DerivedClocks[31:0]),
.out( RandomNumber1[15:0] )
);
logic start;
initial begin
#0 start = 1'b0;
#100 start = 1'b1;
#20 start = 1'b0;
end
// Module under test ==========================================================
//`define TEST_SWEEP yes
logic full1, empty1;
logic direction1 = 1'b0;
logic [7:0] seq_cntr = '0;
always_ff @(posedge clk200) begin
if( ~nrst ) begin
direction1 <= 1'b0;
seq_cntr[7:0] <= '0;
end else begin
// sweep logic
if( full1 ) begin
direction1 <= 1'b1;
end else if( empty1 ) begin
direction1 <= 1'b0;
end
seq_cntr[7:0] <= seq_cntr[7:0] + 1'b1;
end
end
logic fifo_r_req;
logic [15:0] fifo_r_data;
logic fifo_empty1;
logic [3:0] fifo_cnt;
fifo_single_clock_reg_v1 #(
.FWFT_MODE( "TRUE" ),
.DEPTH( 32 ),
.DATA_W( 16 ),
// optional initialization
.USE_INIT_FILE( "FALSE" ),
.INIT_CNT( 0 )
) FF1 (
.clk( clk200 ),
.nrst( nrst_once ),
`ifdef TEST_SWEEP
.w_req( ~direction1 && &RandomNumber1[10] ),
.w_data( RandomNumber1[15:0] ),
`else
.w_req( &RandomNumber1[10:9] ),
.w_data( RandomNumber1[15:0] ),
`endif
.r_req( fifo_r_req ),
.r_data( fifo_r_data[15:0] ),
.cnt( fifo_cnt[3:0] ),
.empty( fifo_empty1 ),
.full( full1 )
);
logic [15:0] buf_r_data_d1;
logic buf_empty1_d1;
logic [15:0] buf_r_data;
read_ahead_buf #(
.DATA_W( 16 )
) M (
.clk( clk200 ),
.anrst( nrst_once ),
.fifo_r_req( fifo_r_req ),
.fifo_r_data( fifo_r_data[15:0] ),
.fifo_empty( fifo_empty1 ),
`ifdef TEST_SWEEP
.r_req( direction1 && &RandomNumber1[10] ),
.r_data( buf_r_data[15:0] ),
`else
.r_req( &RandomNumber1[8:7] && ~buf_empty1_d1 ),
.r_data( buf_r_data[15:0] ),
`endif
.empty( empty1 )
);
always_ff @(posedge clk200 or negedge nrst_once) begin
if( ~nrst_once ) begin
buf_r_data_d1[15:0] <= '0;
buf_empty1_d1 <= 1'b0;
end else begin
buf_r_data_d1[15:0] <= buf_r_data[15:0];
buf_empty1_d1 <= empty1;
end
end
//==============================================================================
logic [15:0] check_r_data;
logic check_empty1;
fifo_single_clock_reg_v1 #(
.FWFT_MODE( "TRUE" ),
.DEPTH( 33 ), // !!!!!!!! buffer adds effecive +1 depth
.DATA_W( 16 ),
// optional initialization
.USE_INIT_FILE( "FALSE" ),
.INIT_CNT( 0 )
) CHECK_FF1 (
.clk( clk200 ),
.nrst( nrst_once ),
`ifdef TEST_SWEEP
.w_req( ~direction1 && &RandomNumber1[10] ),
.w_data( RandomNumber1[15:0] ),
`else
.w_req( &RandomNumber1[10:9] ),
.w_data( RandomNumber1[15:0] ),
`endif
`ifdef TEST_SWEEP
.r_req( direction1 && &RandomNumber1[10] ),
.r_data( check_r_data[15:0] ),
`else
.r_req( &RandomNumber1[8:7] && ~buf_empty1_d1 ), // mimic buf timings
.r_data( check_r_data[15:0] ),
`endif
.cnt( ),
.empty( check_empty1 ),
.full( )
);
logic outputs_equal;
assign outputs_equal = ( check_r_data[15:0] == buf_r_data_d1[15:0] ) ||
( fifo_cnt[3:0] <= 4'b1 );
/*`ifdef TEST_FWFT
// scipping minor discontinuity
// seems like altera`s fifo has some additional buffering???
( cnt1[3:0] == 1 && data_out1[15:0] != data_out2[15:0] );
`else
1'b0;
`endif*/
logic success = 1'b1;
always_ff @(posedge clk200) begin
if( ~nrst ) begin
success <= 1'b1;
end else begin
if( ~outputs_equal ) begin
success <= 1'b0;
end
end
end
endmodule