1
0
mirror of https://github.com/pConst/basic_verilog.git synced 2025-01-14 06:42:54 +08:00

Added performance variant of encoder and tb

This commit is contained in:
Konstantin Pavlov 2021-12-25 22:54:55 +03:00
parent 76674549c3
commit a1608c2326
2 changed files with 234 additions and 0 deletions

113
round_robin_performance_enc.sv Executable file
View File

@ -0,0 +1,113 @@
//------------------------------------------------------------------------------
// round_robin_performance_enc.sv
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO -------------------------------------------------------------------------
// VErsion of round robin combinational encoder to select only one bit from
// the input bus. Feature of this particular version is a performance boost
// motivated by skipping inactive inputs while performing round_robin.
//
// In contrast to priority encoder, every input bit (on average) has equal
// chance to get to the output when all inputs are equally probable
//
// See also round_robin_enc.sv
// See also priority_enc.sv
//
/* --- INSTANTIATION TEMPLATE BEGIN ---
round_robin_performance_enc #(
.WIDTH( 32 )
) RE1 (
.clk( clk ),
.nrst( nrst ),
.id( ),
.od_valid( ),
.od_filt( ),
.od_bin( )
);
--- INSTANTIATION TEMPLATE END ---*/
module round_robin_performance_enc #( parameter
WIDTH = 32,
WIDTH_W = $clog2(WIDTH)
)(
input clk, // clock
input nrst, // inversed reset, synchronous
input [WIDTH-1:0] id, // input data bus
output od_valid, // output valid (some bits are active)
output logic [WIDTH-1:0] od_filt, // filtered data (only one priority bit active)
output logic [WIDTH_W-1:0] od_bin // priority bit binary index
);
// current bit selector
logic [WIDTH_W-1:0] priority_bit = '0;
// prepare double width buffer with LSB bits masked out
logic [2*WIDTH-1:0] mask;
logic [2*WIDTH-1:0] id_buf;
always_comb begin
integer i;
for ( i=0; i<2*WIDTH; i++ ) begin
if( i>priority_bit[WIDTH_W-1:0] ) begin
mask[i] = 1'b1;
end else begin
mask[i] = 1'b0;
end
end
id_buf[2*WIDTH-1:0] = {2{id[WIDTH-1:0]}} & mask[2*WIDTH-1:0];
end
logic [2*WIDTH-1:0] id_buf_filt;
leave_one_hot #(
.WIDTH( 2*WIDTH )
) one_hot_b (
.in( id_buf[2*WIDTH-1:0] ),
.out( id_buf_filt[2*WIDTH-1:0] )
);
logic [(WIDTH_W+1)-1:0] id_buf_bin; // one more bit to decode double width input
logic err_no_hot;
assign od_valid = ~err_no_hot;
pos2bin #(
.BIN_WIDTH( (WIDTH_W+1) )
) pos2bin_b (
.pos( id_buf_filt[2*WIDTH-1:0] ),
.bin( id_buf_bin[(WIDTH_W+1)-1:0] ),
.err_no_hot( err_no_hot ),
.err_multi_hot( )
);
always_comb begin
if( od_valid ) begin
od_bin[WIDTH_W-1:0] = id_buf_bin[(WIDTH_W+1)-1:0] % WIDTH;
od_filt[WIDTH-1:0] = 1'b1 << od_bin[WIDTH_W-1:0];
end else begin
od_bin[WIDTH_W-1:0] = '0;
od_filt[WIDTH-1:0] = '0;
end
end
// latching current
always_ff @(posedge clk) begin
if( ~nrst ) begin
priority_bit[WIDTH_W-1:0] <= '0;
end else begin
if( od_valid ) begin
priority_bit[WIDTH_W-1:0] <= od_bin[WIDTH_W-1:0];
end else begin
// nop,
end // if
end // if nrst
end
endmodule

121
round_robin_performance_enc_tb.sv Executable file
View File

@ -0,0 +1,121 @@
//------------------------------------------------------------------------------
// round_robin_performance_enc_tb.sv
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// testbench for round_robin_performance_enc.sv module
//
`timescale 1ns / 1ps
module round_robin_performance_enc_tb();
logic clk200;
initial begin
#0 clk200 = 1'b0;
forever
#2.5 clk200 = ~clk200;
end
// external device "asynchronous" clock
logic clk33a;
initial begin
#0 clk33a = 1'b0;
forever
#7 clk33a = ~clk33a;
end
logic clk33;
//assign clk33 = clk33a;
always @(*) begin
clk33 = #($urandom_range(0, 2000)*10ps) clk33a;
end
logic rst;
initial begin
#0 rst = 1'b0;
#10.2 rst = 1'b1;
#5 rst = 1'b0;
//#10000;
forever begin
#9985 rst = ~rst;
#5 rst = ~rst;
end
end
logic nrst;
assign nrst = ~rst;
logic rst_once;
initial begin
#0 rst_once = 1'b0;
#10.2 rst_once = 1'b1;
#5 rst_once = 1'b0;
end
logic nrst_once;
assign nrst_once = ~rst_once;
logic [31:0] DerivedClocks;
clk_divider #(
.WIDTH( 32 )
) cd1 (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.out( DerivedClocks[31:0] )
);
logic [31:0] E_DerivedClocks;
edge_detect ed1[31:0] (
.clk( {32{clk200}} ),
.nrst( {32{nrst_once}} ),
.in( DerivedClocks[31:0] ),
.rising( E_DerivedClocks[31:0] ),
.falling( ),
.both( )
);
logic [15:0] RandomNumber1;
c_rand rng1 (
.clk(clk200),
.rst(rst_once),
.reseed(1'b0),
.seed_val(DerivedClocks[31:0]),
.out( RandomNumber1[15:0] )
);
logic start;
initial begin
#0 start = 1'b0;
#100 start = 1'b1;
#20 start = 1'b0;
end
// Module under test ==========================================================
`define WIDTH_W 3
`define WIDTH (2**`WIDTH_W)
logic [`WIDTH-1:0] pos;
bin2pos #(
.BIN_WIDTH( `WIDTH_W )
) BP1 (
.bin( RandomNumber1[`WIDTH_W-1:0] ),
.pos( pos[`WIDTH-1:0] )
);
round_robin_performance_enc #(
.WIDTH( `WIDTH )
) RE1 (
.clk( clk200 ),
.nrst( nrst_once ),
.id( RandomNumber1[`WIDTH-1:0] ), //pos[`WIDTH-1:0] ),
.od_valid( ),
.od_filt( ),
.od_bin( )
);
endmodule