// Copyright 2007 Altera Corporation. All rights reserved. // Altera products are protected under numerous U.S. and foreign patents, // maskwork rights, copyrights and other intellectual property laws. // // This reference design file, and your use thereof, is subject to and governed // by the terms and conditions of the applicable Altera Reference Design // License Agreement (either as signed by you or found at www.altera.com). By // using this reference design file, you indicate your acceptance of such terms // and conditions between you and Altera Corporation. In the event that you do // not agree with such terms and conditions, you may not use the reference // design file and please promptly destroy any copies you have made. // // This reference design file is being provided on an "as-is" basis and as an // accommodation and therefore all warranties, representations or guarantees of // any kind (whether express, implied or statutory) including, without // limitation, warranties of merchantability, non-infringement, or fitness for // a particular purpose, are specifically disclaimed. By making this reference // design file available, Altera expressly does not recommend, suggest or // require that this reference design file be used in combination with any // other product not provided by Altera. ///////////////////////////////////////////////////////////////////////////// // baeckler - 04-03-2006 // // CRC32 of data with any size from 1 to 4 bytes (e.g. residues) // the input data ports typically come from the same 32 bit // register, but this is not a requirement. module crc32_dat32_any_byte ( dat_size, crc_in, crc_out, dat8,dat16,dat24,dat32 ); input [1:0] dat_size; input [31:0] crc_in; output [31:0] crc_out; wire [31:0] crc_out; input [7:0] dat8; input [15:0] dat16; input [23:0] dat24; input [31:0] dat32; parameter METHOD = 1; // depth optimal factored parameter REVERSE_DATA = 0; // Use LSB first // internal data signals wire [7:0] dat8_w; wire [15:0] dat16_w; wire [23:0] dat24_w; wire [31:0] dat32_w; ////////////////////////////////////////////////////// // Optional reversal of the data bits to do LSB // of data 1st. No area cost ////////////////////////////////////////////////////// genvar i; generate if (REVERSE_DATA) begin for (i=0; i<32; i=i+1) begin : rev_32 assign dat32_w[i] = dat32[31-i]; end for (i=0; i<24; i=i+1) begin : rev_24 assign dat24_w[i] = dat24[23-i]; end for (i=0; i<16; i=i+1) begin : rev_16 assign dat16_w[i] = dat16[15-i]; end for (i=0; i<8; i=i+1) begin : rev_8 assign dat8_w[i] = dat8[7-i]; end end else begin // no reversal - pass along assign dat32_w = dat32; assign dat24_w = dat24; assign dat16_w = dat16; assign dat8_w = dat8; end endgenerate ////////////////////////////////////////////////////// // define a parallel array of CRC units for one to // eight bytes of data. ////////////////////////////////////////////////////// wire [31:0] co_a,co_b,co_c,co_d; crc32_dat8 a (.crc_in (crc_in),.crc_out (co_a),.dat_in(dat8_w)); crc32_dat16 b (.crc_in (crc_in),.crc_out (co_b),.dat_in(dat16_w)); crc32_dat24 c (.crc_in (crc_in),.crc_out (co_c),.dat_in(dat24_w)); crc32_dat32 d (.crc_in (crc_in),.crc_out (co_d),.dat_in(dat32_w)); defparam a .METHOD = METHOD; defparam b .METHOD = METHOD; defparam c .METHOD = METHOD; defparam d .METHOD = METHOD; ////////////////////////////////////////////////////// // select the CRC output according to data width ////////////////////////////////////////////////////// generate for (i=0; i<32;i=i+1) begin : parmux wire [3:0] tmp_m; assign tmp_m[0] = co_a[i]; assign tmp_m[1] = co_b[i]; assign tmp_m[2] = co_c[i]; assign tmp_m[3] = co_d[i]; assign crc_out[i] = tmp_m[dat_size]; end endgenerate endmodule