
© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Ken Chapman – 25th June 2014

Implementing a Simple PicoBlaze Design in Vivado

Whether you are an experienced designer or a novice,
following the steps presented in this document should be a
useful exercise. However, don’t expect ‘PicoBlaze’ to teach
you everything about FPGA design or Vivado. Before you
start, look at the first 30 pages of the ‘KCPSM6 User Guide’
provided in the KCPSM6 package. These introduce you to
PicoBlaze and show you a step by step guide to creating a
PicoBlaze design. When you then use Vivado you can decide
whether to use one of the reference designs provided or try
to implement something of your own.

This Document

Page 1

This is my first experience of using PicoBlaze I have implemented PicoBlaze designs before

This is my first
experience of
using Vivado

I have
implemented
designs using

Vivado.

Following the steps presented in this document
should give you a feel for Vivado and help to get you
started. The ‘uart6_kc705.xdc’ reference design
constraints file could well be your first experience of
XDC (rather than UCF). Take time to appreciate the
directory structure of a Vivado project and see the
scheme presented so that your assembled program
is used by the project (starting on page 14). You’ve
probably used JTAG Loader in the past so read about
the issue with ‘Hardware Manager’ on page 23.

This document is a worked example of a procedure that shows how to set up a PicoBlaze project in Vivado. The example is based on the
‘uart6_kc705’ reference design provided in the KCPSM6 package but it is presented in a way that pretends that it is a design being created
from scratch as if it were your own design.

You probably don’t need most of this document! Begin with
learning a bit more about PicoBlaze; the first 30 pages of the
‘KCPSM6 User Guide’ provided in the KCPSM6 package
introduce PicoBlaze and show you how to include PicoBlaze in
your hardware design. The one area that you need to consider
most when incorporating PicoBlaze into your Vivado design
flow is the way in which the Assembler generates the program
memory file. Review pages 14 to 18 of this document to
appreciate the requirement so that your flow is also suitable.

As you know, the KCPSM6 Assembler generates the
program memory definition file. Each time you
modify your PSM code and re-run the assembler
that file is updated. Establishing a scheme in which
Vivado uses the updated file is really the key to
success. Take a look at pages 14 to 18 of this
document to appreciate the requirement so that
your flow is also suitable. Also be aware of the issue
with ‘Hardware Manager’ described on page 23.

This document is NOT intended to be replacement for all of the formal Vivado documentation or training courses. Neither is it intended to
teach you how to write VHDL, Verilog, XDC or PSM files. It is purely focussed on mechanisms to implement a design containing PicoBlaze
successfully when using Vivado.

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

the Start Programs menu…

Select
 ‘Create New Project’

or

Please note: The images shown throughout the following pages will only show the significant areas of each screen and describe the
particular things that you are required to do. Except for the example below, screens that only present supplementary information will not
be shown and it is assumed that you will just observe them and continue. Likewise, except for the example below, a ‘Next’ button will not
be shown and it is expected that you will just click ‘Next’ to continue when you are ready to do so.

This sequence was captured using Vivado 2014.1 so there may be some differences when using a later version.

Click ‘Next’ to continue.

Page 2

Start Vivado from the desktop icon

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Enter a name for your project.

This example is the UART reference design that is
presented on the KC705 Evaluation Platform and
provided in the PicoBlaze package contained in the
‘UART_and_PicoTerm\KC705_design’ directory.

This will be an RTL project
(VHDL in this example).

Even though you might be going to reuse code provided in the reference design we will pretend that we are
creating a design from scratch. So do check this box before you continue.

Observation – Selecting this option and creating design files later will have a distinct impact on the directory
 structure that Vivado creates for your project and where each source file will be located. This
 becomes relevant when we reach the point of assembling the PicoBlaze as you will see later.

Page 3

This sequence illustrates the creation of a design called ‘uart6_kc705’ which is a UART reference design for the KC705 Evaluation Platform.
The source files are provided for you in the ‘UART_and_PicoTerm\KC705_design’ directory of the PicoBlaze package. Although the source files
are provided (and you can make use of them), the object is to show you how you would create a PicoBlaze design from scratch in a Vivado
project. So please pretend that you are creating the design from scratch (and then cheat by copying from the files provided as you play along
). Seriously, there are key points to be observed and learnt from rebuilding the reference design in this way.

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Select the target device (under ‘Parts) or a target board (under ‘Boards’).
In this case the design will target the XC7K325T device on the KC705 Evaluation Platform so it is easier to select the board.

The Vivado project has been created and we are ready to start designing.

Click ‘Finish’ to continue

You may be interested to use Windows Explorer to see
the start of a directory structure for your project.

Page 4

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

You should now have an empty looking project that looks something like this…

We will now create some design files. Even if you are going to adopt some reference code, let’s continue to pretend that we are
creating a design from scratch. As previously stated, the ways files are created and added to a project will impact the directory
structure of a Vivado project and where Vivado locates the files. So until you become familiar with using Vivado it is probably best to
continue following the sequence presented so that everything works out the same way the first time.

Page 5

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Right click in the ‘Sources’ window and select ‘Add Sources…’

Then select ‘Add or Create Design Sources’

Select the ‘Create File’ option to make a new file.

Specify HDL
language and a
top level file
name for the
design

We will continue with the default option of files being stored
locally within the project and then we will see where Vivado
puts them. However, you can see that this is where you may
choose to locate your source file somewhere else (but then you
will become responsible for managing them!).

To begin with we will only define the top level file for the design.

We are using the ‘Create File’ option as we are at least
pretending to be creating a design from scratch.

Page 6

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

The new file is listed and we could go on to create some more files before
we continue. In this case we just click ‘Finish’ to continue with the one file
we have defined.

When creating a file from scratch the module
definition GUI can help you create the initial
structure for your code but this is completely
optional.

In this example all the simple I/O of the UART
reference design have been entered but you
can clock ‘Ok’ at anytime to continue. You can
always add or modify your I/O by editing the
HDL in the usual way later on.

?

Page 7

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Your file will then appear as the top level file in the ‘Sources’ window of the project.

Double click on the file name and the file will be opened in a window where you
can view and edit it. In this example we can see how the entity and the
fundamental structure of the VHDL file has already been generated by Vivado
based on the I/O previously specified.

Windows Explorer shows us how the
directory structure of the project has
developed and where our newly created
file has been located.

Unsurprisingly and logically Vivado has
created the file in a directory called ‘new’.
At least we know where it is

Page 8

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

At this point we would start to write code to define the PicoBlaze design. Pages 5 to 20 of the KCPSM6 User Guide show you the
fundamental steps to include KCPSM6 in a design. Likewise, the UART6 User Guide show you how to include the UART macros in a design
and connect them to KCPSM6. To make your life easier the KCPSM6 package contains reference code and reference designs so most of your
design work is reduced to simple copy-and-paste tasks.

The ultimate copy-and-paste! In this example the entire contents of
the ‘uart6_kc705.vhd’ reference design were copied and pasted into
in to the Vivado editor window and then the file was saved.

The alternative way to achieve this complete replacement would be
to physically replace the ‘uart6_kc705.vhd’ file in the ‘new’ directory of
the Vivado project with a copy of the reference design provided in the
KCPSM6 package.

Whether (like me) you cheated or really did write your design from scratch then the keys points are that you will now have a design file in the
‘new’ directory of the Vivado project that contains instantiations of KCPSM6 and a program memory with a name that will be associated with
a PSM program. Like in this reference design, you may also have instantiated the UART macros if you need them.

Program ROM which in this
reference design is called
‘auto_baud_rate_control’

kcpsm6

uart_rx6 uart_tx6

Having saved the design file containing the instantiations of
these components the ‘Sources’ window of the Vivado project
will update to show the hierarchy of the design but also
indicate that there is no definition for these components.

Page 9

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

First we will add the files that define KCPSM6 and the UART macros to the Vivado project. We would never want to create these files from
scratch so we will add them to the project as pre-existing files . The files are provided in the KCPSM6 package (i.e. ZIP file) but obviously you
need to know where they are located on your PC so that you can tell Vivado where to find them.

In this example the KCPSM6 package was unzipped in a directory called ‘PicoBlaze’ and we can
see the locations and names of the three files that we need to add to the Vivado project.

The reason for showing you this directory structure will become apparent after the files have been added to the project.

Page 10

‘kcpsm6.v’ is contained the Verilog subdirectory.

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

As before, Right click in the ‘Sources’ window and select ‘Add Sources…’

Then select ‘Add or Create Design Sources’

But this time we choose the ‘Add Files’ option

Use the ‘Look in’ tab to
locate the directory of the
next file to add.

Page 11

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Select a file and click ‘Ok’…

The file will appear on the list of files to be added
to the project.

Click on ‘Add Files’ again to repeat the
procedure until you have added all the files
needed to the list.

Hint – If more than one to be added to the
project is contained in the same directory
then you can cold the ‘Ctrl’ and click to select
additional files and add them in one go. This
example shows both of the UART macros
being selected at the same time.

Page 12

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Here we see the list
showing the three files to
be added to the project.

Check this box so that copies of these
files will be made and copied into the
project. This is optional but if you
decide to keep files in other locations
do remember that you become
responsible for managing them.

Click ‘Finish’ to continue

The hierarchy of the project updates to reflect that three of
the components have been resolved and now have sources

Windows Explorer shows us when we add
existing files then Vivado places them in a
directory called ‘imports’. Not only does it
place copies of the files into this area, it
also copies the complete directory
structure in which you previously had the
files. Compare this directory structure with
the one shown 3 pages ago.

Page 13

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Hopefully you are beginning to appreciate that the way in which you create or add files to a Vivado project will determine where Vivado will
store them in the project directory structure. This does become significant as we move on to defining a PicoBlaze program memory.

PicoBlaze Program Memory

As described on page 11 of the KCPSM6 User Guide, the KCPSM6 Assembler will read
and assemble your PSM code and generate a VHDL or Verilog file of the same name
that defines the programme memory for your design. So once we have written some
PSM code we can assemble and generate the last HDL source file to complete the
definition of this design. (with the help of a ‘ROM_form’ template)

The easiest and most straightforward way to assemble PSM code is to place the PSM code together with a copies of the KCPSM6 Assembler
and a ‘ROM_form’ template into the same directory and simply run the assembler . Depending on the ‘ROM_form’ template provided, the
assembler will generate a VHDL or Verilog file of the same name as the top level PSM file. Although rather obvious, it is important to
recognise that the HDL file is also generated in the same directory.

When using Vivado, the default ‘ROM_form’ template should be a copy of one of
these files (or possibly one with a later date) provided in the KCPSM6 package.
Make a copy of the file of the desired language and name it ‘ROM_form.vhd’ or
‘ROM_form.v’ as appropriate.

Although it is easy to generate an HDL memory definition file and then to add it to a Vivado project, we should remember that it is also
highly likely that we will want to modify the PSM code in the future (i.e. as a program is being developed). Each time the assembler is run,
the HDL file in the same directory is updated (overwritten). However, we also need Vivado to use the updated file; not to continue using the
a copy of an older version that it imported the first time. This is the reason why it has been useful to know where Vivado creates and stores
files. With this knowledge it is possible to set up a simple scheme in which the file generated by the assembler is the one used by Vivado.

Please note that the scheme described is just one way to implement a PicoBlaze design when using Vivado. As you become more familiar
with using Vivado and the KCPSM3 Assembler then you may decide that a different scheme is better suited to your way of working. Just
make sure that whatever scheme you choose to use in the future correctly supports updates as well as the initial build.

ROM_form_JTAGLoader_Vivado_2June14.vhd
ROM_form_JTAGLoader_Vivado_2June14.v

Page 14

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Right click in the ‘Sources’ window and select ‘Add Sources…’

Then select ‘Add or Create Design Sources’

Select the ‘Create File’ option to make a new file.

Specify the name for the program definition file. This name must match…
 i) The name of the top level PSM file name.
 ii) The name of the component defined in the design.

We will continue to use the default option but clearly Vivdao is
presenting you with options to modify the scheme.

In the same way that we created a top level design file, this scheme will initially ‘create’ a file as if it were being written from scratch. In this
way the file will be added to the project and located in the ‘new’ directory.

HDL language

Filename

Page 15

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

The new program memory file is listed so just click ‘Finish’ to continue.

The KCPSM3 assembler is really going to define the program memory
so we don’t need to waste time specifying the I/O ports and can just
click ‘OK’ and then ‘Yes’ to continue.

The important thing is that a place
keeper for the program memory
definition file has been created in
the ‘new’ directory and that file is
associated with the Vivado project.

Initially the hierarchy in the ‘Sources’ window reflects that the
program memory is undefined but this is only because the file is
still almost empty.

Page 16

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Assemble the PSM file…

Renamed copy of ‘ROM_form_JTAGLoader_Vivado_2June14.vhd’

Using Windows Explorer, place copies of the KCPSM6 Assembler and the desired ‘ROM_form’ template
into the ‘new’ directory.

Also provide the PSM code that needs to be assembled. If this was a real design then you would typically
create and write a new file using WordPad or other suitable text editor. In this case the PSM files provided
with the reference design in the KCPSM6 package have simply been copied into the ‘new’ directory. The
only requirement is that the top level PSM file name must match with the name of the place keeper file
created in the Vivado project and already in the ‘new’ directory.

PSM source files (as required but the top level file name must match)

KCPSM6 Assembler

Place keeper file created in Vivado project

Hint – A very quick way to run the assembler is to ‘drag and drop’
the top level PSM file over ‘kcpsm6.exe’. The Assembler will
open, assemble the program and close automatically (as soon as
there are no syntax errors in the PSM code).

The assembler will
generate LOG, HEX and
FMT files, but most
significantly of all, it will
overwrite the HDL memory
definition file.

Page 17

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Now that the assembler has generated a real program memory definition file the hierarchy in the ‘Sources’ window reflects that the design
is complete. The default ‘ROM_form’ template includes JTAG Loader so that has also appeared in the hierarchy.

Useful to know…. If you select a file in the ‘Sources’ window then the ‘Source
File Properties’ window tells you where the file is located and
the date and time that it was last modified. This is a
convenient way to check that program memory definition file
is being updated when you re-run the assembler.

In this example the ‘program_rom’ defined by
‘auto_baud_rate_control.vhd’ has been selected .
As expected, it is located the ‘new’ directory of the
project and the ‘Modified’ date and time stamp
(Today at 10:22:49 AM) .

Re-running the assembler updates the
‘auto_baud_rate_control.vhd’ file and, after a few
seconds, Vivado reacts to the change in one of its
source files and this is reflected by a new ‘Modified’
date and time stamp (Today at 10:51:16 AM) .

Page 18

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Finally, we need to provide some design constraints. This document only shows how to create an XDC file for your Vivado
project. It is beyond the scope of this document to explain the details and syntax of XDC constraints, but in simple terms,
constraints must at least define which device pins inputs and outputs will be connected to and the performance that the
design must meet.

Constraints

Right click in the ‘Sources’ window and select ‘Add Sources…’

This time select ‘Add or Create Constraints’

Select the ‘Create File’ option to make a new file.

Again this is at least pretending to be creating a design from scratch.

Page 19

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Use the default location.

Define a name for your XDC constraints (typically the
same name as your top level design)

The constraints file appears in the list. Click ‘Finish’ to continue.

The constraints file can be seen in the ‘Sources’ window.

Created constraints
files are located in their
own ‘new’ directory.

Page 20

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

In this case an XDC file has been provided with the reference design so you
can either cut-and-paste the constraints provided in ‘uart6_kc705.xdc’ into
to the editor and save the file or you can directly replace the XDC file in the
project directory.

The created XDC file will be completely empty. You can
double click on the file name in the ‘Sources’ window to
open it in an editing window.

Hint – Remember that the location and date/time stamp of any
source files, including the constraints file, can be seen and
checked in the ‘Source File Properties’ window.

Page 21

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Implementing the design and generating the configuration BIT file

 Assuming that your design synthesises, implements and generates a bit
stream successfully then you are ready to configure your device.

Vivado provides ‘Hardware Manager’ which is shown below. However, there is an issue that
you should be aware of when using Vivado (up to and including at least version 2014.2).

Make sure your target is connected
and powered and then Click on ‘Open
Target’ and then select ‘localhost…’

Once the connection is made, right click on the target device and
select ‘Program Device’.

Check that Vivado has identified the correct BIT file (or manually
select the file you want to use) and then click ‘Program’.

The device should be configured and PicoBlaze should become active.
In this example, communication via the USB/UART should result in something being
displayed on the terminal (e.g. PicoTerm).

Page 22

Configuring the device

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Page 23

If you have been reconstructing the ‘uart6_kc705’ reference
design ‘as is’ then with PicoTerm suitably connected to a KC705
board the design should come to life as shown here.

The ‘auto_baud_rate_control.psm’ program provided with the
‘uart6_kc705’ reference design ultimately implements a simple
minutes and seconds timer. However, this timer is really just a
way to demonstrate the more significant code which sets the
BAUD rate of the UART and adjusts software delay loops to reflect
the frequency of the clock provided to KCPSM6.

For more details please review the descriptions contained in the
source files and refer to the following document provided in the
KCPSM6 package….

 ‘ UART6_User_Guide_and_Reference_Designs_30Sept14.pd’

If your own design doesn’t do exactly what you were expecting
then you may have encountered the issue caused by ‘Hardware
Manager’ which is covered on the following pages.

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

 JUMP cold_start ;Avoid address 003 on start up

 JUMP cold_start

 JUMP cold_start

 JUMP cold_start ;Address 003

 ;

cold_start: <normal program code starts here>

Page 24

Known Issue - Post-configuration issue caused by Vivado 'Hardware Manager‘ (up to and including at least version 2014.2)

‘JTAG Loader’ provides a way to upload a new PicoBlaze program to program
memory within an active device. It facilitates rapid development of PSM code as
well as ad hoc experiments (e.g. loading special programs to test, monitor and
diagnose hardware issues etc.). It s for these reasons that JTAG Loader is provided
as an option in the development ‘ROM_form’ template and it is generally
recommended that you should enable this feature when developing designs.

The ‘uart6_kc705’ reference design illustrated in this document does enable the
JTAG Loader feature as shown in this abstract of the ‘uart6_kc705.vhd’ file.

Workarounds

There is nothing fundamentally wrong with the configuration image (BIT file) so there would be no issues when a production design is
configured in an embedded system (e.g. from an image held in Flash memory). As such, this issue only tends to impact operation during design
development but that can lead to confusion exactly when you don’t need to be confused! Fortunately there are some workarounds...

After ‘Hardware Manager’ has finished configuring the device it interrogates the internal BSCAN ports of the device to discover if there are
any Xilinx IP cores present in the design. Unfortunately this process does not respect the ‘USER’ addresses assigned to each BSCAN primitive
and this interrogation interferes with the ‘JTAG Loader’ circuits in such a way that it results in corruption of the program memory contents.
Hopefully this undesirable behaviour will be resolved in later version of Vivado. On a positive note, the corruption is limited to program
address 003 which is always cleared. Op-code 00000 hex is a ‘LOAD s0, s0’ instruction which is ultimately has no effect on the contents of
registers or flags but that is of little comfort if the instruction it replaced was means to do something!

a) Adjust the PSM code such that memory location 003 is not used by the program.
 A example of suitable code to place at the start of your program is shown below.

b) Configure the device using iMPACT from ISE.
 (Note that ChipScope Analyser has the same
 issue as ‘Hardware Manager’).

c) Refresh the program memory using JTAG Loader.
 Just be aware of anything nasty the initial execution
 of the corrupted program may have done.

d) Disable JTAG Loader. Of course this also inhibits
 rapid code development!

JTAG Loader
enabled

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Page 25

Updating your PicoBlaze program using JTAG Loader

When you are developing a KCPSM6 program it only takes a few seconds to assemble the modified PSM code and generate a new VHDL or
Verilog file defining the new contents of the program memory. Although it doesn’t take tool long to run a small design through Vivado
synthesis and implementation again process a small design it soon becomes tiresome and unproductive. JTAG Loader is a mechanism that
enables you to load a newly assembled program (in the form of a HEX file) directly into the program memory inside the 7-Series or UltraScale
device whilst it remains configured and active with your design. This ability to assemble and execute a modified program in less than 15
seconds enables you to develop code in a very interactive way as well as facilitating experiments (e.g. loading different programs on a
temporary basis simply to test something).

As shown on the previous page, your design (like the reference design) needs to instantiate the development program memory with JTAG
Loader enabled (i.e. C_JTAG_LOADER_ENABLE => 1). This will insert the small JTAG Loader circuit in the design that connects the second port
of the BRAM(s) that form the program memory to the BSCAN primitive. The ‘JTAG_Loader’ utility program then communicates with the device
using JTAG to control the BSCAN primitive and load (or read back) a program HEX file.

If you see a message like this then you still need to define your PATH appropriately.
For example, with a default installation of ISE v14.7 your PATH is required to include
C:\Xilinx\14.7\ISE_DS\ISE\lib\nt64;

If you see a message like this then you still need to set a XILINX environment variable
appropriately. For example, with a default installation of ISE v14.7 you should set
XILINX=C:\Xilinx\14.7\ISE_DS\ISE

REM Setting environment variables to define location of ISE v14.7

PATH=%PATH%;C:\Xilinx\14.7\ISE_DS\ISE\lib\nt64

set XILINX=C:\Xilinx\14.7\ISE_DS\ISE

REM Upload program HEX using JTAG Loader

JTAG_Loader_Win7_64.exe -l auto_baud_rate_control.hex

Note – The JTAG Loader utility uses the drivers and files associated with ChipScope which are in tern part of an ISE
 installation. So at the time of writing it is required that you have an installation of ISE as well as Vivado.

In order that JTAG Loader can operate correctly it must also know where ISE has been installed and this is achieved by setting the PATH and a
XILINX environment variable.

As shown in this example, it is probably
easiest if you create a batch file which
sets the environment variables and then
runs JTAG Loader specifying the
assembled HEX file which is to be loaded
into the program memory.

Adjust as required

More about JTAG Loader on pages 25-29 of ‘KCPSM6_User_Guide_30Sept14.pdf’

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Page 26

KCPSM6 Simulation

Along with the rest of a design, KCPSM6 can be simulated in Vivado.Simulation .

A simple test bench simulation file called ‘testbench_uart6_kc705.vhd’ is provided with the reference design. This can be added to the Vivado
project in what should now be a familiar way (hint – select when you ‘Add Sources’).

Run Behavioural Simulation

Test bench simulation file
added to the project.

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Page 27

When the simulator opens for the first time the only signals shown in the waveform window are the inputs and outputs of the top level design
(i.e. the I/O pins of the device). KCPSM6 simulation becomes more interesting and informative if you add internal signals to the waveform
viewer. A very useful signal to observe is the program ‘address‘ as that tells you what instructions KCPSM6 is executing and this can be
compared with the Assembler LOG file. The KCPSM6 macro also includes some simulation only signals to help you more directly so look for
‘kcpsm6_opcode' and 'kcpsm6_status' which are text strings that decode and display the instruction being executed and the status of the
flags. 'sim_s0' through to 'sim_sF‘ enable you to observe the contents of the registers s0 through to sF, and likewise, 'sim_spm00' through to
'sim_spmFF' allow you to observe the contents of scratch pad memory locations 00 through to FF so pick the ones of relevance to the PSM
code being examined. Note there is more about simulation pages 45-46 of ‘KCPSM6_User_Guide_30Sept14.pdf’.

Locate and select the KCPSM6 ‘processor’ Locate and select the ‘Objects’ of interest

Right click and select
‘Add To Wave Window’

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Page 28

Having added various signals to the waveform
window then it is generally easy to digest the
information if you specify a suitable ‘Radix’. For
example, it is common practice to display the
KCPSM6 program address and the register and
scratch pad memory contents in Hexadecimal.

Select signals
and right click

 10A 00760 calc_1us_delay_count: LOAD s7, s6

 10B 19706 SUB s7, 06[6'd]

 10C 01400 LOAD s4, 00[0'd]

 10D 11401 1us_divide_loop: ADD s4, 01[1'd]

 10E 19704 SUB s7, 04[4'd]

 10F 3E10D JUMP NC, 10D[1us_divide_loop]

 Addr Code Instruction

Hint – The assembler LOG file shows all values in Hexadecimal.

Address

Values shown in hexadecimal
followed by their original
definitions enclosed in brackets

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Page 29

Hint – Using the ‘New Divider’ option can be used to organise your waveforms into a nice display like this example.

Hint – It can really help if you ‘Float’
the waveform window so that you
can then make it much larger.

 010 11001 set_baud_rate_loop: ADD s0, 01[1'd]

 011 19C00 SUB sC, 00

 012 1BD20 SUBCY sD, 20

 013 1BE1C SUBCY sE, 1C

 014 1BF00 SUBCY sF, 00

 015 3E010 JUMP NC, 010[set_baud_rate_loop]

 Addr Code Instruction

The same code being executed in the
simulator as seen in the assembler LOG file

Hint – ‘testbench_uart6_kc705.vhd’ has been written in a style that
has a pre-defined end after 5,000 clock cycles have been simulated
to you can use the ‘Run All’ button to run the full simulation.

Hint – Zoom in or out using these
controls. Start with ‘Zoom Fit’ to
obtain an overall impression of
design activity.

© Copyright 2014 Xilinx
.

© Copyright 2014 Xilinx
.

Page 30

This image shows the complete 5,000 clock cycle simulation. It can clearly be seen that KCPSM6 has taken 18.6425µs to compute the
‘set_baud’rate’ value which it has output to the BAUD rate generator circuit so that it can generate ‘en_16_x_baud’ pulses at the correct rate.

Questions – Why does ‘s0’ sometimes contain unknown values (i.e. ‘X’)? Why is this valid and expected behaviour in this case?

