
Avalon-MM Master Templates

Date: 09/08/2008

Disclaimer

These component templates may be used within Altera® devices only and remain the
property of Altera. They are being provided on an "as-is" basis and as an accommodation,
and therefore all warranties, representations, or guarantees of any kind (whether express,
implied or statutory) including, without limitation, warranties of merchantability, non-
infringement, or fitness for a particular purpose, are specifically disclaimed. Altera
expressly does not recommend, suggest, or require that these examples be used in
combination with any other product not provided by Altera.

If you encounter an issue or have an enhancement request, please log onto mySupport to
file a service request.

https://mysupport.altera.com/eservice/

Change List

[09/08/2008]

• Updated documentation to reflect the additional file ‘custom_master.v’ and GUI
improvements (using callbacks)

• Removed benchmark information

Overview

Provided in this package are templates that can be used for adding Avalon-MM mastering
capabilities to your own custom hardware. Each template is tailored towards a specific
type of access which is important depending on the memories used in your SOPC Builder
system. Signals are exposed at the top of the system so that you can connect them to
your custom logic. You can also use the HDL provided in the template to add new
capabilities to an existing SOPC Builder component. For example if you typically
transfer data to/from your custom component using a DMA engine, you can use one of
the masters provided to eliminate the need for a separate DMA.

Installation

In order to use the templates, simply extract the ‘ip’ directory into your own hardware
project directory. SOPC Builder references the ip directory by default. When you open
SOPC Builder the master templates will appear in the component listing on the left side
of the SOPC Builder user interface. The master templates will appear in the group called
“Templates”. Select the appropriate master component for the access type you wish to
use and add it to the system. You will be asked to setup parameters such as the data
width while adding the master to the system. Refer to the HDL port listing section of this
document to learn more about using these settings.

Master Block Diagrams

Figure 1. Read Master Template

Figure 2. Write Master Template

Usage

There are two main interfaces exposed to your user logic, the control interface and the
data interface. Before any data is transmitted you must first send control signals to the
master component. The following table details each control signal and the usage:

Signal Name Direction Width Usage
control_fixed_location Input 1 When set the master address will not

increment.
control_<x>_base Input n

(default
32)

Word aligned byte address where the
master will begin transferring data.

control_<x>_length Input n
(default
32)

Number of bytes to transfer. This
number must be a multiple of the data
width in bytes (e.g. 32 bit data
requires a multiple of 4)

control_go Input 1 One clock cycle strobe that instructs
the master to begin transferring. The
fixed_location, base, and length values
are registered on this clock cycle.

control_done Output 1 Asserted and held when the master has
transferred the last word of data. This
occurs when the last write transfer
completes or the last pending read
returns. You can start the master
again on the next cycle after done is
asserted.

control_early_done Output 1 This signal is only applicable to the
read masters. It is asserted when the
final read is posted and not when the
final word returns from the system
interconnect fabric. As a result this
signal is always asserted before
‘control_done’.

Table 1. Control Interface

Note: ‘x’ is either ‘read’ or ‘write’ depending on the master type. ‘n’ is configured to be
equal to the parameter “ADDRESSWIDTH” which is set when you add the master
component to the system.

Depending on whether you use a read or write master the user interface changes due to
the data directions being different. In both cases, the user interface implements flow
control using signals that represent empty/full and read/write. The following tables detail
each user signal and the usage for the read and write master:

Signal Name Direction Width Usage
user_buffer_data Output n

(default
32)

Contains the next valid buffered data when
‘user_data_available’ is asserted.

user_data_available Output 1 When asserted the user buffer contains
valid data that has been read by the read
master. You must not assert
‘user_read_buffer’ when this signal is de-
asserted as this will cause a buffer
underflow condition and the read master
will fail to complete the entire transfer.

user_read_buffer Input 1 Acts as a read acknowledge. When this
signal is asserted the master component
assumes your user logic has registered the
data. On the next clock cycle the output of
‘user_buffer_data’ will be the next read
value (if it has already been buffered).

Table 2. Read Master User Interface

Note: ‘n’ is configured to be equal to the parameter “DATAWIDTH”

Signal Name Direction Width Usage
user_buffer_data Input n

(default
32)

Valid data word that your logic writes into
the user buffer. Use ‘user_write_buffer’ to
qualify it as valid data when
‘user_buffer_full’ is de-asserted.

user_buffer_full Output 1 When asserted the user buffer is full and
you must not write any more data.
Asserting ‘user_write_buffer’ while this
signal is asserted may lead data being lost
and the write master failing to complete
the entire transfer.

user_write_buffer Input 1 Acts as a write qualifier. Assert this signal
to write valid data into the user buffer.
You must not assert this signal if
‘user_buffer_full’ is asserted otherwise
data overflow will occur.

Table 3. Write Master User Interface

Note: ‘n’ is configured to be equal to the parameter “DATAWIDTH”

HDL Port Listings

The following port listings are for each master HDL file. The only interfaces exposed to
your logic by default are the control and user signals. If you insert the provided master
templates into your system you will be prompted to enter parameterization values. You
can also add the master HDL to your own SOPC Builder component and assign the
signals and interfaces manually.

Burst Read Master

module burst_read_master (
 clk,
 reset,
 control_fixed_location,
 control_read_base,
 control_read_length,
 control_go,
 control_done,
 control_early_done,
 user_read_buffer,
 user_buffer_data,
 user_data_available,
 master_address,
 master_read,
 master_byteenable,
 master_readdata,
 master_readdatavalid,
 master_burstcount,
 master_waitrequest
);

Parameter Range Usage
DATAWIDTH 8, 16, 32, 64, 128,

256, 512, 1024
(default 32)

Data path width.

MAXBURSTCOUNT 1, 2, 4, 8, 16, 32, 64,
128 (default 4)

Maximum number of beats in a
burst. Must be at most half of
FIFODEPTH for the master to
access memory locations
efficiently.

BURSTCOUNTWIDTH 1-8 (default 3) Log2(MAXBURSTCOUNT) + 1
BYTEENABLEWIDTH 1, 2, 4, 8, 16, 32, 64,

128 (default 4)
(DATAWIDTH)/8

ADDRESSWIDTH 1-32 (default 32) The number of address bits
exposed to the system
interconnect fabric. This number
must be large enough to span all
the components connected to the
master.

FIFODEPTH 4, 8, 16, 32, 64, 128
(default 32)

FIFO depth of the internal buffer.
You should set this to be at least
twice the MAXBURSTCOUNT
value so that the master operates
at peak efficiency.

FIFODEPTH_LOG2 2-7 (default 5) Log2(FIFODEPTH)
FIFOUSEMEMORY 0/1 (default 1) Set to ‘1’ to use on-chip memory

for the internal buffer. Set to ‘0’
to use logic elements instead of
memory (not recommend if
FIFODEPTH is larger that 4)

Table 4. Burst Read Master Parameterization Values

Burst Write Master

module burst_write_master (
 clk,
 reset,
 control_fixed_location,
 control_write_base,
 control_write_length,
 control_go,
 control_done,
 user_write_buffer,
 user_buffer_data,
 user_buffer_full,
 master_address,
 master_write,
 master_byteenable,
 master_writedata,
 master_burstcount,
 master_waitrequest
);

Parameter Range Usage
DATAWIDTH 8, 16, 32, 64, 128,

256, 512, 1024
(default 32)

Data path width.

MAXBURSTCOUNT 1, 2, 4, 8, 16, 32, 64,
128 (default 4)

Maximum number of beats in a
burst. Must be at most half of
FIFODEPTH for the master to
access memory locations
efficiently.

BURSTCOUNTWIDTH 1-8 (default 3) Log2(MAXBURSTCOUNT) + 1
BYTEENABLEWIDTH 1, 2, 4, 8, 16, 32, 64,

128 (default 4)
(DATAWIDTH)/8

ADDRESSWIDTH 1-32 (default 32) The number of address bits
exposed to the system
interconnect fabric. This number
must be large enough to span all
the components connected to the
master.

FIFODEPTH 4, 8, 16, 32, 64, 128
(default 32)

FIFO depth of the internal buffer.
You should set this to be at least
twice the MAXBURSTCOUNT
value so that the master operates
at peak efficiency.

FIFODEPTH_LOG2 2-7 (default 5) Log2(FIFODEPTH)
FIFOUSEMEMORY 0/1 (default 1) Set to ‘1’ to use on-chip memory

for the internal buffer. Set to ‘0’
to use logic elements instead of
memory (not recommend if
FIFODEPTH is larger that 4)

Table 5. Burst Write Master Parameterization Values

Pipeline Read Master

module latency_aware_read_master (
 clk,
 reset,
 control_fixed_location,
 control_read_base,
 control_read_length,
 control_go,
 control_done,
 control_early_done,
 user_read_buffer,
 user_buffer_data,
 user_data_available,
 master_address,
 master_read,
 master_byteenable,
 master_readdata,
 master_readdatavalid,
 master_waitrequest
);

Parameter Range Usage
DATAWIDTH 8, 16, 32, 64, 128, 256, 512,

1024 (default 32)
Data path width.

BYTEENABLEWIDTH 1, 2, 4, 8, 16, 32, 64, 128
(default 4)

(DATAWIDTH)/8

ADDRESSWIDTH 1-32 (default 32) The number of address bits
exposed to the system
interconnect fabric. This
number must be large
enough to span all the
components connected to
the master.

FIFODEPTH 4, 8, 16, 32, 64, 128 (default
32)

FIFO depth of the internal
buffer.

FIFODEPTH_LOG2 2-7 (default 5) Log2(FIFODEPTH)
FIFOUSEMEMORY 0/1 (default 1) Set to ‘1’ to use on-chip

memory for the internal
buffer. Set to ‘0’ to use
logic elements instead of
memory (not recommend if
FIFODEPTH is larger that
4)

Table 6. Pipeline Read Master Parameterization Values

Simple Write Master

module write_master (
 clk,
 reset,
 control_fixed_location,
 control_write_base,
 control_write_length,
 control_go,
 control_done,
 user_write_buffer,
 user_buffer_data,
 user_buffer_full,
 master_address,
 master_write,
 master_byteenable,
 master_writedata,
 master_waitrequest
);

Parameter Range Usage
DATAWIDTH 8, 16, 32, 64, 128, 256, 512,

1024 (default 32)
Data path width.

BYTEENABLEWIDTH 1, 2, 4, 8, 16, 32, 64, 128
(default 4)

(DATAWIDTH)/8

ADDRESSWIDTH 1-32 (default 32) The number of address bits
exposed to the system
interconnect fabric. This
number must be large
enough to span all the
components connected to
the master.

FIFODEPTH 4, 8, 16, 32, 64, 128 (default
32)

FIFO depth of the internal
buffer.

FIFODEPTH_LOG2 2-7 (default 5) Log2(FIFODEPTH)
FIFOUSEMEMORY 0/1 (default 1) Set to ‘1’ to use on-chip

memory for the internal
buffer. Set to ‘0’ to use
logic elements instead of
memory (not recommend if
FIFODEPTH is larger that
4)

Table 7. Simple Write Master Parameterization Values

Template

A file called “custom_master.v” has been provided which will wrap all four masters by
exposing all the signals required for all the masters and only instantiating the necessary
master module. Signals that are not required are stubbed before they are connect to the
system interconnect fabric. This is provided by the validation and elaboration callbacks
provided in the component tcl file called “custom_masters_hw.tcl”. This tcl file allows
you to make setting changes complete with validation and automatically derived settings.
Since all the validation is provided you do no need to worry about putting the component
into an unsupported configuration.

To learn more about callbacks and the component interface tcl scripting refer to the
following chapter of the Quartus II handbook, Volume 4 SOPC Builder “Component
Interface Tcl Reference”

http://www.altera.com/literature/hb/qts/qts_qii54022.pdf
http://www.altera.com/literature/hb/qts/qts_qii54022.pdf

Choosing a Master Type

In this package four Avalon-MM masters have been provided. To avoid unnecessary
logic and complexity carefully consider which master to use. If you need to have
memory writing access then use a write master. If you need to have memory reading
access then use a read master. Bursting read and write masters have been provided to
perform efficient access to bursting slave ports commonly used in IP such as PCI, PCIe,
SRIO, SDRAM, etc… A burst is a sequential set of accesses which attempt to minimize
the latency of the transfer. You should use a bursting master only if the slave ports you
are connecting to support bursting otherwise SOPC Builder will insert burst adapter logic
to adapt the two transfer formats.

Some examples of typical maximum burst counts are as follows:

SRIO – 64 (32 bit data), 32 (64 bit data)
PCI – 128
PCIe – 128
DDR SDRAM (full rate) – 1 (DDR burst of 2), 2 (DDR burst of 4), 4 (DDR burst of 8)
DDR SDRAM (half rate) – 1 (DDR burst of 4), 2 (DDR burst of 8)
DDR2 SDRAM (full rate) – 2 (DDR burst of 4)
DDR2 SDRAM (half rate) – 1 (DDR burst of 1)

The burst capable master templates will post busts in an efficient manor. The bursting
write master will wait until your logic has provided enough words of data to complete a
burst transaction. The bursting read master will wait until your logic has emptied the
buffer to the point where there is enough room to post a full read burst.

By default each master is configured to address a 4GB address space. Most systems do
not utilize the full 4GB address space available in SOPC Builder. As a result you can
reduce the size of the custom master by configuring the ‘ADDRESSWIDTH’ parameter.
By reducing the address range of the custom master you will also increase the Fmax of
the master logic. To reduce the logic resource usage you should also set the
‘FIFOUSEMEMORY’ parameter to 1 so that the user buffer is created using on-chip
memory instead of logic elements.

Caution

In this section corner cases that you should avoid will be covered. Workarounds will be
suggested to avoid exercising the hardware in an improper way.

Native Slave Port Access

Each master template performs word size accesses only. In order to transfer data to an
Avalon-MM slave port that uses native addressing you should match the master template
data width to the slave port data width. Altera recommends that you upgrade any custom
native addressing components you have created to use dynamic addressing when
possible. Dynamic addressing simply means that you expose byte enables to the system
interconnect fabric so that masters that do not use the same data width can be handled
automatically by SOPC Builder.

Address Alignment

The master templates only support word size data alignment. The word size is dictated
by the data width you choose when instantiating the master in your SOPC Builder
system. For example, if you use a master data width of 64 bits, then you must use 8 byte
alignment. The read/write start address must be a multiple of the word size in bytes. The
length of the transfer must also be a multiple of the word size in bytes. Providing
unaligned start addresses or transfer lengths that are not multiples of the word size can
lead to unpredictable behavior.

If you use a processor to determine the start location for the master to access you can use
compiler attributes or linker settings ensure alignment. You can also allocate an extra
buffer element than what your system needs and modify the base address using the
following equation:

Word aligned address = (original address + word size in bytes) & WORD_MASK;

This equation simply shifts the base address up to a higher location and the masking
operation places it onto a word boundary. WORD_MASK can have the following
values:

0xFFFFFFFE – 2 byte alignment
0xFFFFFFFC – 4 byte alignment
0xFFFFFFF8 – 8 byte alignment
0xFFFFFFF0 – 16 byte alignment
0xFFFFFFE0 – 32 byte alignment
0xFFFFFFC0 – 64 byte alignment
0xFFFFFF80 – 128 byte alignment

Minimum Transfer Size

You must never attempt to transfer less than a full data word using any of the master
templates. The control logic cannot handle being started and completing on the same
clock cycle. If the word size is 4 bytes then you must present a transfer length that is at
least 4.

	Disclaimer
	Change List
	Overview
	Installation
	Master Block Diagrams
	Usage
	HDL Port Listings
	Burst Read Master
	Burst Write Master
	Pipeline Read Master
	Simple Write Master

	Template
	Choosing a Master Type
	Caution
	Native Slave Port Access
	Address Alignment
	Minimum Transfer Size

