//------------------------------------------------------------------------------ // main_tb.sv // published as part of https://github.com/pConst/basic_verilog // Konstantin Pavlov, pavlovconst@gmail.com //------------------------------------------------------------------------------ // INFO ------------------------------------------------------------------------ // Testbench template with basic clocking, reset and random stimulus signals // use this define to make some things differently in simulation `define SIMULATION yes `timescale 1ns / 1ps module main_tb(); logic clk200; initial begin #0 clk200 = 1'b0; forever #2.5 clk200 = ~clk200; end // external device "asynchronous" clock logic clk33a; initial begin #0 clk33a = 1'b0; forever #7 clk33a = ~clk33a; end logic clk33; //assign clk33 = clk33a; always @(*) begin clk33 = #($urandom_range(0, 2000)*10ps) clk33a; end logic rst; initial begin #0 rst = 1'b0; #10.2 rst = 1'b1; #5 rst = 1'b0; //#10000; forever begin #9985 rst = ~rst; #5 rst = ~rst; end end logic nrst; assign nrst = ~rst; logic rst_once; initial begin #0 rst_once = 1'b0; #10.2 rst_once = 1'b1; #5 rst_once = 1'b0; end logic nrst_once; assign nrst_once = ~rst_once; logic [31:0] DerivedClocks; clk_divider #( .WIDTH( 32 ) ) cd1 ( .clk( clk200 ), .nrst( nrst_once ), .ena( 1'b1 ), .out( DerivedClocks[31:0] ) ); logic [31:0] E_DerivedClocks; edge_detect ed1[31:0] ( .clk( {32{clk200}} ), .nrst( {32{nrst_once}} ), .in( DerivedClocks[31:0] ), .rising( E_DerivedClocks[31:0] ), .falling( ), .both( ) ); logic [31:0] RandomNumber1; c_rand rng1 ( .clk( clk200 ), .rst( 1'b0 ), .reseed( rst_once ), .seed_val( DerivedClocks[31:0] ^ (DerivedClocks[31:0] << 1) ), .out( RandomNumber1[15:0] ) ); c_rand rng2 ( .clk( clk200 ), .rst( 1'b0 ), .reseed( rst_once ), .seed_val( DerivedClocks[31:0] ^ (DerivedClocks[31:0] << 2) ), .out( RandomNumber1[31:16] ) ); logic start; initial begin #0 start = 1'b0; #100 start = 1'b1; #20 start = 1'b0; end // Module under test ========================================================== logic [15:0] seq_cntr = '0; logic [31:0] id = '0; always_ff @(posedge clk200) begin if( ~nrst_once ) begin seq_cntr[15:0] <= '0; id[31:0] <= '0; end else begin // incrementing sequence counter if( seq_cntr[15:0]!= '1 ) begin seq_cntr[15:0] <= seq_cntr[15:0] + 1'b1; end if( seq_cntr[15:0]<300 ) begin id[31:0] <= '1; //id[31:0] <= {4{RandomNumber1[15:0]}}; end else begin id[31:0] <= '0; end end end module_under_test #( .DEPTH( 255 ), .DATA_W( 32 ) ) M ( .clk( clk200 ), .nrst( nrst_once ), .ena( 1'b1 ), .id( id[31:0] ), .od( ) ); // emulating external divice ================================================== // that works asynchronously on clk33 clock assign ADC1_SCLKOUT = clk33; logic [15:0] test_data = 16'b1010_1100_1100_1111; logic [7:0] adc1_seq_cntr = 0; always_ff @(posedge clk33) begin if( adc1_seq_cntr[7:0]==0 && ~ADC1_nCONV ) begin ADC1_BUSY <= 1'b1; ADC1_SDOUT <= test_data[15]; test_data[15:0] <= {test_data[14:0],1'b0}; adc1_seq_cntr[7:0] <= 1; end if( adc1_seq_cntr[7:0]>0 && adc1_seq_cntr[7:0]<33 && ADC1_SCLKOUT) begin ADC1_SCLKOUT <= ~ADC1_SCLKOUT; // emulating adc1 data ADC1_SDOUT <= test_data[15]; test_data[15:0] <= {test_data[14:0],1'b0}; adc1_seq_cntr[7:0] <= adc1_seq_cntr[7:0] + 1'b1; end if( adc1_seq_cntr[7:0]>0 && adc1_seq_cntr[7:0]<33 && ~ADC1_SCLKOUT) begin ADC1_SCLKOUT <= ~ADC1_SCLKOUT; adc1_seq_cntr[7:0] <= adc1_seq_cntr[7:0] + 1'b1; end if( adc1_seq_cntr[7:0]==33 ) begin ADC1_BUSY <= 0; ADC1_SCLKOUT <= 0; ADC1_SDOUT <= 0; adc1_seq_cntr[7:0] <= 0; end end endmodule