//------------------------------------------------------------------------------ // lifo.sv // Konstantin Pavlov, pavlovconst@gmail.com //------------------------------------------------------------------------------ // INFO ------------------------------------------------------------------------ // Single-clock LIFO buffer implementation, also known as "stack" // // Features: // - single clock operation // - configurable depth and data width // - one write- and one read- port in "FWFT" or "normal" mode // - protected against overflow and underflow // - simultaneous read and write operations supported if not full and not empty // - only read operation is performed when (full && r_req && w_req) // - only write operation is performed when (empty && r_req && w_req) // // See also "fifo_Single_clock_reg_*.sv" modules for similar FIFO buffer implementation /* --- INSTANTIATION TEMPLATE BEGIN --- lifo #( .FWFT_MODE( "TRUE" ), .DEPTH( 8 ), .DATA_W( 32 ) ) LF1 ( .clk( clk ), .nrst( 1'b1 ), .w_req( ), .w_data( ), .r_req( ), .r_data( ), .cnt( ), .empty( ), .full( ) ); --- INSTANTIATION TEMPLATE END ---*/ module lifo #( parameter FWFT_MODE = "TRUE", // "TRUE" - first word fall-trrough" mode // "FALSE" - normal fifo mode DEPTH = 8, // max elements count == DEPTH, DEPTH MUST be power of 2 DEPTH_W = $clog2(DEPTH)+1, // elements counter width, extra bit to store // "fifo full" state, see cnt[] variable comments DATA_W = 32 // data field width )( input clk, input nrst, // inverted reset // input port input w_req, input [DATA_W-1:0] w_data, // output port input r_req, output logic [DATA_W-1:0] r_data, // helper ports output logic [DEPTH_W-1:0] cnt = '0, output logic empty, output logic full, output logic fail ); // lifo data logic [DEPTH-1:0][DATA_W-1:0] data = '0; // data output buffer for normal fifo mode logic [DATA_W-1:0] data_buf = '0; // cnt[] vector always holds lifo elements count // data[cnt[]] points to the first empty lifo slot // when lifo is full data[cnt[]] points "outside" of data[] // filtered requests logic w_req_f; assign w_req_f = w_req && ~full; logic r_req_f; assign r_req_f = r_req && ~empty; integer i; always_ff @(posedge clk) begin if ( ~nrst ) begin data <= '0; cnt[DEPTH_W-1:0] <= '0; data_buf[DATA_W-1:0] <= '0; end else begin unique case ({w_req_f, r_req_f}) 2'b00: ; // nothing 2'b01 : begin // reading out for ( i = (DEPTH-1); i > 0; i-- ) begin data[i-1] <= data[i]; end cnt[DEPTH_W-1:0] <= cnt[DEPTH_W-1:0] - 1'b1; end 2'b10 : begin // writing in data[cnt[DEPTH_W-1:0]] <= w_data[DATA_W-1:0]; cnt[DEPTH_W-1:0] <= cnt[DEPTH_W-1:0] + 1'b1; end 2'b11 : begin // simultaneously reading and writing data[cnt[DEPTH_W-1:0]-1] <= w_data[DATA_W-1:0]; // data counter does not change here end endcase // data buffer works only for normal lifo mode if( r_req_f ) begin data_buf[DATA_W-1:0] <= data[0]; end end end always_comb begin empty = ( cnt[DEPTH_W-1:0] == '0 ); full = ( cnt[DEPTH_W-1:0] == DEPTH ); if( FWFT_MODE == "TRUE" ) begin if (~empty) begin r_data[DATA_W-1:0] = data[0]; // first-word fall-through mode end else begin r_data[DATA_W-1:0] = '0; end end else begin r_data[DATA_W-1:0] = data_buf[DATA_W-1:0]; // normal mode end fail = ( empty && r_req ) || ( full && w_req ); end endmodule