This Document

Implementing a Simple PicoBlaze Design in Vivado

Ken Chapman — 25t June 2014

This document is a worked example of a procedure that shows how to set up a PicoBlaze project in Vivado. The example is based on the
‘uart6_kc705’ reference design provided in the KCPSM6 package but it is presented in a way that pretends that it is a design being created
from scratch as if it were your own design.

This document is NOT intended to be replacement for all of the formal Vivado documentation or training courses. Neither is it intended to
teach you how to write VHDL, Verilog, XDC or PSM files. It is purely focussed on mechanisms to implement a design containing PicoBlaze
successfully when using Vivado.

This is my first experience of using PicoBlaze

I have implemented PicoBlaze designs before

This is my first
experience of
using Vivado

Whether you are an experienced designer or a novice,
following the steps presented in this document should be a
useful exercise. However, don’t expect ‘PicoBlaze’ to teach
you everything about FPGA design or Vivado. Before you
start, look at the first 30 pages of the ‘KCPSM6 User Guide’
provided in the KCPSM6 package. These introduce you to
PicoBlaze and show you a step by step guide to creating a
PicoBlaze design. When you then use Vivado you can decide
whether to use one of the reference designs provided or try
to implement something of your own.

Following the steps presented in this document
should give you a feel for Vivado and help to get you
started. The ‘uart6_kc705.xdc’ reference design
constraints file could well be your first experience of
XDC (rather than UCF). Take time to appreciate the
directory structure of a Vivado project and see the
scheme presented so that your assembled program
is used by the project (starting on page 14). You've
probably used JTAG Loader in the past so read about
the issue with ‘Hardware Manager’ on page 23.

| have
implemented
designs using

You probably don’t need most of this document! Begin with
learning a bit more about PicoBlaze; the first 30 pages of the
‘KCPSM6 User Guide’ provided in the KCPSM6 package
introduce PicoBlaze and show you how to include PicoBlaze in
your hardware design. The one area that you need to consider

As you know, the KCPSM6 Assembler generates the
program memory definition file. Each time you
modify your PSM code and re-run the assembler
that file is updated. Establishing a scheme in which
Vivado uses the updated file is really the key to

Vivado. most when incorporating PicoBlaze into your Vivado design success. Take a look at pages 14 to 18 of this
flow is the way in which the Assembler generates the program | document to appreciate the requirement so that
memory file. Review pages 14 to 18 of this document to your flow is also suitable. Also be aware of the issue
appreciate the requirement so that your flow is also suitable. with ‘Hardware Manager’ described on page 23.
Page 1

© Copyright 2014 Xilinx

Please note: The images shown throughout the following pages will only show the significant areas of each screen and describe the
particular things that you are required to do. Except for the example below, screens that only present supplementary information will not
be shown and it is assumed that you will just observe them and continue. Likewise, except for the example below, a ‘Next” button will not
be shown and it is expected that you will just click ‘Next’ to continue when you are ready to do so.

This sequence was captured using Vivado 2014.1 so there may be some differences when using a later version.

ML LRIV 1aN
. Xilinx Design Tools
f: Xilinx Information Center
. DocNav
Start Vivado from the desktop icon or the Start Programs menu... , ISE Design Suite 14.7
. Vivado 2014.1
£ Add Design Tools or Devices

€ oge .
s Manage Xilinx Licenses

& Uninstall 2014.1
Vivado 2014.1 Tcl Shell
¢ Vivado 2014.1

Vivado HLS

Select
‘Create New Project’
.. New Project X

\/ | \/A D O ‘ Create a New Vivado Project
o This wizard will guide you through the creation of a new project
To create a Vivado project you will need to provide a name and a location for your project files. Next, you
will specify the type of flow you'll be working with. Finally, you will specify your project sources and choose a

Qukk Start default part.
yan
\ To continue, dick Next.
A
Create New Project Or

Click ‘Next’ to continue.

Page 2 © Copyright 2014 Xilinx

This sequence illustrates the creation of a design called ‘uart6_kc705” which is a UART reference design for the KC705 Evaluation Platform.
The source files are provided for you in the ‘UART_and_PicoTerm\KC705_design’ directory of the PicoBlaze package. Although the source files
are provided (and you can make use of them), the object is to show you how you would create a PicoBlaze design from scratch in a Vivado
project. So please pretend that you are creating the design from scratch (and then cheat by copying from the files provided as you play along
©). Seriously, there are key points to be observed and learnt from rebuilding the reference design in this way.

4 New Project

Project Name
Enter a name for your project and specify a directory where the project data files will be stored

Project name: | uart6_kc705) <« Enteraname for your project.
Project jocationz| C: /Designs_Vivado_2014._1 This example is the UART reference design that is
presented on the KC705 Evaluation Platform and
provided in the PicoBlaze package contained in the

V| Create project subdirectory

Project will be created at: C:/Designs_Vivado_2014_1/uart6_kc705 ‘UART _and_PicoTerm\KC705_design’ directory.
4. New Project i:‘&
Project Type
Specify the type of project to create. ‘

RTL Project

Q@ = . . .

You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis, implementation, design This will be an RTL project
planning and analysis. (VHDL in this example).

/| Do not specify sources at this time

Even though you might be going to reuse code provided in the reference design we will pretend that we are
creating a design from scratch. So do check this box before you continue.

Observation — Selecting this option and creating design files later will have a distinct impact on the directory

structure that Vivado creates for your project and where each source file will be located. This
becomes relevant when we reach the point of assembling the PicoBlaze as you will see later.

Page 3 © Copyright 2014 Xilinx

Select the target device (under ‘Parts) or a target board (under ‘Boards’).
In this case the design will target the XC7K325T device on the KC705 Evaluation Platform so it is easier to select the board.

4 New Project 3]
Default Part
Choose a default Xilinx part or board for your project. This can be changed later. '

Specify Filter

& Parts Vendor | xilinx.com v

Boards | Display Name | Kintex-7 KC705 Evaluation Platform ~

BoardRey 1.1 v
| ResetAlFiters |
Search: | Q-
: : . - Availal

Display Name Vendor Board Rev Part I/O Pin Count File Version 10Bs

__Kintex-7 KC705 Evaluation Platform S xc7k325tffg900-2 Jsoo fi0

New Project Summary

The Vivado project has been created and we are ready to start designing.

(i) A new RTL project named 'uart6_kc705' will be created.

(i) The default part and product family for the new project:

Default Board: Kintex-7 KC705 Evaluation Platform
Default Part: xc7k325tffg900-2

Product: Kintex-7

Family: Kintex-7

Package: ffg900

Speed Grade: -2

Page 4

Click ‘Finish’ to continue

You may be interested to use Windows Explorer to see
the start of a directory structure for your project.

4 | Designs Vivado_2014 1
. uarth_kc705
. uarth_kci05.cache
b wt

F]

]

© Copyright 2014 Xilinx

You should now have an empty looking project that looks something like this...

)& uartb_kc705 - [C:/Designs_Vivado_2014_1/uart6_kc705/uart6_kc705.xpr] - Vivado 2014.1
File Edit Flow Tools Window

AR 0 REB X P DX S XX (@ 2SefaultLayout

Flow Navigator

el
i A

4 Project Manager
@ Project Settings
G% Add Sources
1F 1P Catalog

4 1P Integrator
,':% Create Block Design
55’ Open Block Design
Q Generate Block Design

4 Simulation
£f3 simulation Settings
(@) Run Simulation

4 RTL Analysis
- [@% Open Elaborated Design

4 Synthesis
{£3 Synthesis Settings
& Run Synthesis

Layout View Help

Project Manager - uart6_kc705

(TSou'cs

=< wat R[E

oK ®

(M

A

+{) Design Sources

(#-4) Constraints

=-{& Simulation Sources
b ™ | sim_l

Hierarchy | Libraries | Compile Order

4\ Sources) Templates

Properties
« +[x

[

3. Project Summary X

(S50
| project Settings
)
¥*| Project name: uarts_kc705

Product family: Kintex-7

Project part: Kintex-7 KC705 Evaluation Platform (xc7k325tffqg300-2)

Top module name: Not defined

Board Part

Synthesis

Status: =) Not started

Part: xc7k325tffg900-2

Display name: Kintex-7 KC705 Evaluation Platform

Board part name: xilinx.com:kc705:part0: 1.0

Repository path: C:/Xilinx/Vivado/2014. 1/data/boards/board_parts
URL: www. xilinx.com/kc705

Board overview: Kintex-7 KC705 Evaluation Platform

Messages: No errors or warnings

Strategy: Vivado Synthesis Defaults

We will now create some design files. Even if you are going to adopt some reference code, let’s continue to pretend that we are
creating a design from scratch. As previously stated, the ways files are created and added to a project will impact the directory
structure of a Vivado project and where Vivado locates the files. So until you become familiar with using Vivado it is probably best to
continue following the sequence presented so that everything works out the same way the first time.

Page 5

© Copyright 2014 Xilinx

Sources = (OE
1 m [}
A IS et RiE
) Design Sources
+-{) Constraints
=5 Slmulatlon SOUFCES :3 Ct(l i~ E
) sim_1
Hierarchy Update >
@ Refresh Hierarchy
IP Hierarchy »
Edit Constraints Sets...
Edit Simulation Sets...
@ Add Sources... Alt+A

&‘, Add Sources
Add or Create Design Sources

Specify HDL and netlist files, or directories containing HDL and ne

to your project.

Index Name Library Location

Select the ‘Create File’ option to make a new file.

Add Files...] [Add Directories...] [

Create File...

We are using the ‘Create File’ option as we are at least

pretending to be creating a design from scratch.

Page 6

Right click in the ‘Sources’” window and select ‘Add Sources...’

Then select ‘Add or Create Design Sources’

Add Sources

This guides you through the process of adding and creating sources for your project

") Add or Create Constraints
—» (@ Add or Create Design Sources

(©) Add or Create Simulation Sources

To begin with we will only define the top level file for the design.

éi, Create Source File

.‘0‘, Create a new source file and add it to your project

File type, name and location

File type: | @ VHDL Specify HDL

language and a

<— top levelfile
name for the
design

File name: | uart6_kc705

File location: | &3 <Local to Project>

We will continue with the default option of files being stored
locally within the project and then we will see where Vivado
puts them. However, you can see that this is where you may
choose to locate your source file somewhere else (but then you
will become responsible for managing them!).

© Copyright 2014 Xilinx

| AddFies... | | AddDectories... | | CreateFie... |

i-‘_) Add Sources
Add or Create Design Sources
Specify HDL and neftlist files, or directories containing HDL and netlist files, < Back Next > [Einish] [Cancel]

to your project. \

Index Name Library Location The new file is listed and we could go on to create some more files before
@1 uart6_kc705.vhd xil_defaultib <Local to Project> we continue. In this case we just click ‘Finish’ to continue with the one file
we have defined.
#2. Define Module [=

:)| Define a module and specdify I/O Ports to add to your source file.

" For each port specified:

MSB and LSB values will be ignored unless its Bus column is checked.
Ports with blank names will not be written.

Module Definition
Entity name: uarté_kc705
Architecture name: | Behavioral When creating a file from scratch the module
1/0 Port Definitions definition GUI can help you create the initial
Sort Name Direction S PV stru.cture for your code but this is completely
uart_rx in v [optional.
uart_tx out » [0 . .
20 o . = ? > In this exampl'e all the simple 1/0 of the UART
reference design have been entered but you
cka00_n " i N 5 can clock ‘Ok’ at anytime to continue. You can
always add or modify your 1/0O by editing the
HDL in the usual way later on.
| ok 4| cancel
Page 7

© Copyright 2014 Xilinx

Sources —_

AT 2 R " Your file will then appear as the top level file in the ‘Sources’ window of the project.
g b ¥ J

{2 Design Sources (1) Double click on the file name and the file will be opened in a window where you
[C@:.tr - Behavioral (Uart6_kc705.vhd) can view and edit it. In this example we can see how the entity and the

-4 Con: n . .

5B s:;ja:;n P fundamental structure of the VHDL file has already been generated by Vivado

G- sim 1 (1) based on the 1/0 previously specified.

2. Project Summary X | i uart6_kc705.vhd X t

=) C:/Designs_Vivado_2014_1/uart6_kc705/uart6_kc705.srcs/sources_1/newfuarté_kc705.vhd
0 17 -- Additional Comments:
Windows Explorer shows us how the 18 --
directory structure of the project has lﬂ R et L e e e A U e
developed and where our newly created b 32
file has been located. fj 22 1ibrary IEEE;
_ . Us)| 23 use IEEE.STD LOGIC 1164.ALL;
4 || Designs_Vivado_2014 1 % | 24 = =
4 | uarth_kc705 ” 25 -- Uncomment the following library declaration if using
4 || uarth_kcT05.cache P 26 -- arathmetic functions vith Signed or Unsigned values
= 27 --use :ESE..'.".'.\.'ER::_ST:..I.LL,‘
Wowt 7|28
4 | uarth_kc705.srcs ‘29 L Hnrrmment Fhe 417 A - vyt Aerlaratinan € inckantial:neg
__J CO c! Iollovaing librxary aeclaracion 1I i1nscanciacing
4 | zources_1 e 30 -- any Xi1linx leaf cells in this code.
| new |31 --1ibrary UNISIM;
. O |32 --use ISIM.VComponents.all
N V
* 33
@ 34 entity uarté_kc705 is
Mame ' 3 35 Port (uart_rx : in STD_LOGIC:
1|36 uart_tx : out STD_LOGIC:
=] artb_ke705.vhd =|37 c1k200_p : in STD LOGIC:
K1 clk200_n : in STD_LOGIC):
Unsurprisingly and logically Vivado has 39 end uarté_kc705;
created the file in a directory called ‘new’. 40
At least we know where itis © 41 architecture Behavioral of uarté_kc705 is

Page 8 © Copyright 2014 Xilinx

At this point we would start to write code to define the PicoBlaze design. Pages 5 to 20 of the KCPSM6 User Guide show you the
fundamental steps to include KCPSM6 in a design. Likewise, the UART6 User Guide show you how to include the UART macros in a design
and connect them to KCPSM6. To make your life easier the KCPSM6 package contains reference code and reference designs so most of your
design work is reduced to simple copy-and-paste tasks.

. . . 2. Project Summary X | wh uart6_kc705.vhd * X
The ultimate COpy'and'paSte! In this example the entire contents of :‘5 C:/Designs_Vivado_2014_1/uart6_kc705/uart6_kc705.srcs/sources_1/new/uarté_kc705.vhd

the ‘uart6_kc705.vhd’ reference design were copied and pasW e
@

in to the Vivado editor window and then the file was saved. 75
76 entity uarté_kc70S is
The alternative way to achieve this complete replacement would be Jp| 77 Port (uart rx : in Std_llfl’gic:
. ‘¢) Lol s f T 2| 78 rt_tx : out st ic;
to physically replace the ‘uart6_kc705.vhd’ file in the ‘new’ directory of - cii—zZoz " f: Sid(jo;?zf
the Vivado project with a copy of the reference design provided in the 3| eo clk200_n : in std logic):
KCPSM®6 package. X| 81 end uarté_kc705;

Whether (like me) you cheated or really did write your design from scratch then the keys points are that you will now have a design file in the
‘new’ directory of the Vivado project that contains instantiations of KCPSM6 and a program memory with a name that will be associated with

a PSM program. Like in this reference design, you may also have instantiated the UART macros if you need them.

kcpsm6

processor: kcpsmé
generic map (hwbuild =» X"41",
interrupt_wvector =» X"7FEF",
scratch_pad memory_size => 64)
port map(address =» address,
instruction => instruction,
bram ensble => bram enable,
port_id =» port_id,
write_strobe => write_strobe,
k_write_strobe =» k_write_strobe,
out_port => out_port,
read strobe => read strobe,
in port =» in port,
interrupt =» interrupt,
interrupt_ack => interrupt_ack,
sleep => kcpsmé_sleep,
reset => kcpamé_reset,
clk =» clk);

uart_tx6

tH: uart_txé
port map | data_in => uart_tx_data_in,

en 16 x baud => en_l6_x baud,

serial_out => uart_tx,

buffer write => write_to_uart_tx,

buffer data_present => uart_tx_data present,
buffer half full => uart_tx_half full,
buffer full => uarc_tx_full,
buffer_reset => uart_tx_reset,
clk =» clk);

Page 9

Having saved the design file containing the instantiations of

Program ROM which in this
reference design is called
‘auto_baud_rate_control’

program_rom: auto_baud_rate_control
generic map(C_FRMILY =» "75",
C_REM SIZE_KWORDS =» 2,
C_JTAG_LOADER_ENAELE =» 1)
address => address,
instruction =»> instruction,
enable => bram enable,
rdl => rdl,
clk =» clk);

port map(

uart_rx6

r®: uart_rxé
port map serial in =» uart_rx,
en_l16_x_baud => en_l6_x_baud,
data_cut => uart_rx_data_out,
buffer read => read from uart_rx,
buffer data_present => uart_rx data present,
buffer half full => uart_rx half full,
_full =>» uart_rx full,
buffer_reset => uart_rx_reset,
clk =» clk):

© Copyright 2014 Xilinx

these components the ‘Sources’” window of the Vivado project
will update to show the hierarchy of the design but also
indicate that there is no definition for these components.

A IS e 3|E
=J-{ Design Sources
—}-wh 2% uart6_kc705 - Behavioral (uarts_kc705

2) processor - kcpsmé
2 program_rom - auto_baud_rate_control
2 tx - uart_tx6
2 rx -uart_rx6

+ Constraints

+ Simulation Sources

First we will add the files that define KCPSM6 and the UART macros to the Vivado project. We would never want to create these files from
scratch so we will add them to the project as pre-existing files . The files are provided in the KCPSM6 package (i.e. ZIP file) but obviously you
need to know where they are located on your PC so that you can tell Vivado where to find them.

» . PicoBlaze

| In this example the KCPSM6 package was unzipped in a directory called ‘PicoBlaze’ and we can
. see the locations and names of the three files that we need to add to the Vivado project.

|
) ITAG_Loader
, Miscellaneous
| Reference_Designs

. ROM_form_temnplates

. UART and_PicoTerm ---------ooommmmooooo o > ATLYS_design
» | Verilog . KCT05_design
|Z| all_kcpsmib_syntax.psm MLEDS_design
& kcpsmb.exe v PicoTerm.exe
» =] kepsmé.vhd | PicoTerm_README.bxt
| kcpsmib_assembler_readme.tet 2| uart nd.v
|Z| kepsmb_design_template.vhd 5 uart_rxﬁ wvhd
'EI KCPSME_User_Guide_31Marchld, pdf 2] uart by
= READ_ME_FIRST bt & uart_txﬁ vh

'E] Reference_Design_License. pdf
|Z| ROM_form.vhd

= UART6_README txt
'EI UARTE_User_Guide_and_Reference Desig

The reason for showing you this directory structure will become apparent after the files have been added to the project.

» ‘kcpsmb.v’ is contained the Verilog subdirectory.

Page 10 © Copyright 2014 Xilinx

Sources = E S
AT Wt 2 As before, Right click in the ‘Sources’ window and select ‘Add Sources...’
E‘%C @esi.glualSo:ttsce:((:;)os - Behavioral (uart_kc705.vhd) (4) Then select ‘Add or Create Design Sources’
bR processor - kepsmé R
% Zogru:r:_ztg - auto_baud_rate_control Add Sources
P - rx -uart_rx6 B Exoperies: Cri+E This guides you through the process of adding and creating sources for your project
&5 Constraints Hierarchy Update >
)45 Simulation Sources (1)
@ Refresh Hierarchy () Add or Create Constraints
IP Hierarchy >
(@ Add or Create Design Sources
Edit Constraints Sets... —>
Edit Smulation Sets (© Add or Create Simulation Sources
&% Add Sources... Alt+A ||[€—

Hierarchy | Libraries | Compile Order |

m[O Templates |

Add or Create Design Sources
Specify HDL and netlist files, or directories containing HDL and ne /

to your project. [AddFies.. | [AddDrectories.. | [CreateFie... |

But this time we choose the ‘Add Files” option

Index Name Library Location
Use the ‘Look in’ tab to

locate the directory of the

R ——— next file to add.

Page 11 © Copyright 2014 Xilinx

Select a file and click ‘Ok’...

2. Add Source Files @
Lookh::,,PicoBlaze v:??%‘lﬂ»ﬁxs E-
T 1. JTAG_Loader Recent Diectories .) . i
<5 B §acaliareous © C:/Designs_Vivado_2014_1fuarté_kc705 v The file will appear on the list of files to be added
Recent Items |, Reference_Designs File Preview to the project.
/. ROM_form_templates 81 -- A
- . UART_and_PicoTerm 82 -- Main Entity for kcpsmé
Deskiop § Verilog :: ;nit" kcpsmé is > il
T ¥
@ kepsm6_design_template.vhd 85 generic(hwbuild : std logic_vec Add or Create Design Sources
‘; g6 interrupt_vector : std_logic_'vec‘i k g . . . Ul
{ | & 5 foamtii 87 scratch pad memory size : integer := G4 Spedify HDF and netlist files, or directories containing HDL ¢
My Documents | & oy 88 port (address : out std_logic to your project.
g9 instruction : in std_logic_
ah‘ 90 bram_enable : out std logic
- ‘w 91 in_port : in std logic_ Index Name Library Location
ompu 92 out_port : out std_logic v - - =
e gort. 1d 1 ‘out std 10g1e @ 1 kepsmé.vhd xil_defaultlib C:/PicoBlaze
. 94 write_strobe : out std_logic
H 95 k_write_strobe : out std logic
Network 96 read_strobe : out std logic~
< m] »
File name: kepsmé.vhd E}
Fies of type: | Al Design Source Fies (.vhd, vhd, vhf, vho, v, Vf, veriog, vr, v, Vb, tf, viog, v, Vor. |
J.. Add Source Files
Click on ‘Add Files’ again to repeat the Lookin: | |, UART_and_PicoTerm
procedure until you have added all the files
. i , ATLYS_desi
needed to the list. 3 - e
s |, KC705_design
) Recent Items ;
Hint — If more than one to be added to the ‘ J. ML605_design
[Addiea.; project is contained in the same directory - @ vart_nb.v
then you can cold the ‘Ctrl’ and click to select Desktop % uvart_n6.vhd
additional files and add them in one go. This [@ uart b6
example shows both of the UART macros My Documents Ik
being selected at the same time. ‘
A
Computer
":.\ File name: “uart_rx6.vhd" "uart_tx6.vhd"
Page 12 © Copyright 2014 Xilinx

Here we see the list
showing the three files to
be added to the project.

Check this box so that copies of these
files will be made and copied into the
project. This is optional but if you
decide to keep files in other locations
do remember that you become
responsible for managing them.

Click ‘Finish’ to continue ——»

The hierarchy of the project updates to reflect that three of

N/

J':‘, Add Sources
Add or Create Design Sources
Specify HDL and netlist files, or directories containing HDL and netlist files, to add to your project.
Create a new source file on disk and add it to your project.
Index Name Library Location %
@ 1 kepsmé.vhd xil_defaultlib C:/PicoBlaze
wh 2 uart_rx6.vhd xil_defaultib C:/PicoBlaze/UART _and_PicoTerm 2
@ 3 uart_tx6.vhd xil_defaultib C:/PicoBlaze/UART _and_PicoTerm
£
Add Files...] [Add Directories...] [Create File...
| Scan and add RTL include files into project
[¥] Copy sources into project
Add sources from subdirectories
> o) (o)

4 || Designs_Vivado 2014 1

the components have been resolved and now have sources

Sources

1 g J
q g 53 '} O‘g'

3 [E]

, uarth_kc705
. uarth_kci05.cache

 compile_simlib

— 12

=J-{ Design Sources (1

=}-wh % uart6_kc705 - Behavioral (uarts_kc705.vhd) (4
- processor - kcpsmé - low_level_definition (kcpsmé.vh

[2) program_rom - auto_baud_rate_control

@M tx - uart_tx6 - low_level_definition (uart_tx6.vhd
@ rx - uart_rx6 - low_level_definition (uart_n

i) Constraints
44 Simulation Sources (1

{+

Page 13

) wit
. uartd_kci05.5rcs

) sources_1

: | imports

) PicoBlaze

. UART and_PicoTerm

i NEw

~
~

Windows Explorer shows us when we add
existing files then Vivado places them in a
directory called ‘imports’. Not only does it
place copies of the files into this area, it
also copies the complete directory
structure in which you previously had the
files. Compare this directory structure with
the one shown 3 pages ago.

----» 2] kepsmb.vhd

|Z]| vart_rd.vhd
|Z| vart_tdb.wvhd

A 7] uartfi_ke705.vhd

© Copyright 2014 Xilinx

Hopefully you are beginning to appreciate that the way in which you create or add files to a Vivado project will determine where Vivado will
store them in the project directory structure. This does become significant as we move on to defining a PicoBlaze program memory.

PicoBlaze Program Memory your_program.psm

As described on page 11 of the KCPSM6 User Guide, the KCPSM6 Assembler will read ROM_form vhd your_program vhd

and assemble your PSM code and generate a VHDL or Verilog file of the same name ROM_form.v your_program.v
. . . (Template) (Used in design)

that defines the programme memory for your design. So once we have written some

PSM code we can assemble and generate the last HDL source file to complete the

definition of this design. (with the help of a ‘ROM_form’ template) —

KCPSMé
Assembler

The easiest and most straightforward way to assemble PSM code is to place the PSM code together with a copies of the KCPSM6 Assembler
and a ‘ROM_form’ template into the same directory and simply run the assembler . Depending on the ‘ROM_form’ template provided, the
assembler will generate a VHDL or Verilog file of the same name as the top level PSM file. Although rather obvious, it is important to
recognise that the HDL file is also generated in the same directory.

ROM form JTAGLoader Vivado 2Junel4.vhd When using Vivado, the default ‘/ROM_form’ template should be a copy of one of

. these files (or possibly one with a later date) provided in the KCPSM6 package.
ROM_form_JTAGLoader_Vivado_2Junel4.v Make a copy of the file of the desired language and name it ‘ROM_form.vhd’ or

‘ROM_form.v’ as appropriate.

Although it is easy to generate an HDL memory definition file and then to add it to a Vivado project, we should remember that it is also
highly likely that we will want to modify the PSM code in the future (i.e. as a program is being developed). Each time the assembler is run,
the HDL file in the same directory is updated (overwritten). However, we also need Vivado to use the updated file; not to continue using the
a copy of an older version that it imported the first time. This is the reason why it has been useful to know where Vivado creates and stores
files. With this knowledge it is possible to set up a simple scheme in which the file generated by the assembler is the one used by Vivado.

Please note that the scheme described is just one way to implement a PicoBlaze design when using Vivado. As you become more familiar

with using Vivado and the KCPSM3 Assembler then you may decide that a different scheme is better suited to your way of working. Just
make sure that whatever scheme you choose to use in the future correctly supports updates as well as the initial build.

Page 14 © Copyright 2014 Xilinx

In the same way that we created a top level design file, this scheme will initially ‘create’ a file as if it were being written from scratch. In this
way the file will be added to the project and located in the ‘new’ directory.

Sources o N
== e 3 Right click in the ‘Sources’” window and select ‘Add Sources...

[=)-{& Design Sources (1)
=¥ uart6_kc705 - Behavioral (uarts_ke705.vhd) (%) Then select ‘Add or Create Design Sources’
w4l processor - kcpsmé6 - low_level_definition (kcpsmé.vhd)
(2 program_rom - auto_baud_rate_control
i@ tx - uart_tx6 - low_level_definition (uart_tx6.vhd) Add Sources

@h rx - uart_rx6 - low_level_definition (uart_rx6.vhd - A) ‘
&-& Constraints This guides you through the process of adding and creating sources for your project
(-5 Simulation Sources (1 c Ctrl+E
Hierarchy Update b ") Add or Create Constraints
@ Refresh Herarchy —» (@ Add or Create Design Sources
IP Hierarchy >
2 : (©) Add or Create Simulation Sources
Edit Constraints Sets...
Edit Simulation Sets... J
| Hierarchy | Libraries | Compil @ Add — T
4\ Sources = Templates

Specify the name for the program definition file. This name must match...
i) The name of the top level PSM file name.

#*- Add Sources ii) The name of the component defined in the design.
Add or Create Design Sources
Spedify HDL and netlist files, or directories containing HDL and ne '\:) Create Source File

to your project.

,'0‘, Create a new source file and add it to your project

Index Name Library Location —
File type, name and location

. i Fil : | @ vHDL «—
Select the ‘Create File’ option to make a new file. Epe fype - HDL language
File name: | auto_baud_rate_control <+— Filename
\ File location: | &) <Local to Project>
AddFies... | | AddDrectories... | | createFie... |

We will continue to use the default option but clearly Vivdao is
presenting you with options to modify the scheme.

Page 15

© Copyright 2014 Xilinx

’\.‘, Add Sources
Add or Create Design Sources

Specify HDL and netlist files, or directories containing HDL and netlist files, to
to your project.

Index Name

Library Location
@ 1

auto_baud_rate_control.vhd xil_defaultib <Local to Project>

4. Define Module

EXS
[/) Define a module and spedify /O Ports to add to your source file.
For each port specified:
MSB and LSB values will be ignored unless its Bus column is checked.
Ports with blank names will not be written.
Module Definition
Entity name: auto_baud_rate_control
Architecture name: | Behavioral
1/O Port Definitions
Port Name Direction Bus MSB LSB
in -
\ 3
X
| >
\ ¢
o]

Initially the hierarchy in the ‘Sources’ window reflects that the

program memory is undefined but this is only because the file is
still almost empty.

7 Design Sources (3)

) Syntax Error Fdes (1)

) Non-module Files (1]

=} ¥h % vart6_kc705 - Behavioral (uarts_kc705.vhd)
&h processor - kcpsm6 - low_level deﬁnmon
Elrogron.on- auto baud rate_corva |
@h tx - uart tx6 |0A' level deﬁnnbon

@ rx - vart_rxé - IOA'_IeveI_deﬁnmon _ vhd)
#-{) Constraints

&
)

Page 16

The new program memory file is listed so just click ‘Finish’ to continue

The KCPSM3 assembler is really going to define the program memory

so we don’t need to waste time specifying the 1/O ports and can just
click ‘OK’ and then ‘Yes’ to continue.

N

4 | Designs_Vivado_2014 1

4 | uarth_kc705
4 | uarth_kci05.cache
, owit
4 | uartd_kci05.5rcs
4 | sources 1

| nEWw _

© Copyright 2014 Xilinx

#- Define Module 2]

(I

(0} The module definition has not been changed.

Mame

Are you sure you want to use these values?

]L No J

The important thing is that a place
keeper for the program memory
definition file has been created in
the ‘new’ directory and that file is
associated with the Vivado project.

|Z| auto_baud_rate_controlvhd <€——
|Z| varth_kc705.vhd

4 | Designs_Vivado_2014 1

4 | uarth_kc705

4 | uarth_kc705.cache

"
4 | uartd_kc705.srcs
4 | =sources_1

| NEW _

~
~
~

“A

Assemble the PSM file...

& kepsmb.exe
KCPSHM6 Assembler v2.70

Using Windows Explorer, place copies of the KCPSM6 Assembler and the desired ‘ROM_form’ template
into the ‘new’ directory.

Also provide the PSM code that needs to be assembled. If this was a real design then you would typically
create and write a new file using WordPad or other suitable text editor. In this case the PSM files provided
with the reference design in the KCPSM6 package have simply been copied into the ‘new’ directory. The
only requirement is that the top level PSM file name must match with the name of the place keeper file
created in the Vivado project and already in the ‘new’ directory.

Name

& kepsmb.exe

=, auto_baud_rate_control.psm
2| uart_interface_routines.psm
\Z| auto_baud_rate_control.vhd
2] ROM_form.vhd

| uartb_kc705.vhd

Ken Chapman - X¥ilinx Ltd - 16th May 2614

Reading top level PSH file...

<+—— KCPSM6 Assembler

}47 PSM source files (as required but the top level file name must match)

<+—— Place keeper file created in Vivado project
<+—— Renamed copy of ‘/ROM_form_JTAGLoader_Vivado_2Junel4.vhd’

Hint — A very quick way to run the assembler is to ‘drag and drop’
the top level PSM file over ‘kcpsm6.exe’. The Assembler will
open, assemble the program and close automatically (as soon as
there are no syntax errors in the PSM code).

C:\Designs_Uivado_2814_1\uarté_kc705\uarté_kc705.srcs\sources_1\new\auto_baud_rate_control.psm

Including PSHM files...

Mame

C:\Designs_Uivado_2014_1\uarté_kc705\uarté_kc7085.srcs\sources_1\new\uart_interface_routines.psm

A total of 777 lines of PSM code have been read

Checking line labels
Checking CONSTANT directives
Checking STRING directives
Checking TABLE directives
Checking instructions

Writing formatted PSHM files...

g kcpsmb.exe

=4

{1

—_

C:\Designs_Uivado_2014_1\uarté_kc705\uarté_kc7085.srcs\sources_1\new\auto_baud_rate_control.fmt

C:\Designs_Uivado_2014_1\uarté_kc705\uarté_kc7085.srcs\sources_1\new\uart_interface_routines.fmt

Expanding text strings
Expanding tables

Resolving addresses and Assembling Instructions

Last occupied address: 294 hex

Nominal program memory size: 1K (1024)

Occupied memory locations: 661

Assembly completed successfully

Writing LOG file...

C:\Designs_Uivado_2014_1\uarté_kc705\uarté_kc7085.srcs\sources_1\new\auto_baud_rate_control.log

Writing HEX file...

address{9:0)

{1

{1

C:\Designs_Uivado_2014_1\uarté_kc785\uarté_kc7@85.srcs\sources_1\new\auto_baud_rate_control.hex 5l

Writing UHDL file...

C:\Designs_Uivado_2814_1\uarté_kc705\uarté_kc705.srcs\sources_1\new\auto_baud_rate_control.vhd

Complete with @ Errors

Page 17

© Copyright 2014 Xilinx

auto_baud_rate_control.fmt
uart_interface_routines.frnt
auto_baud_rate_control.hex
autc_baud_rate_control.psm
uart_interface_routines.psm
autc_baud_rate_controllog
KCPSME_session_log.txt
auto_baud_rate_control.whd
ROM_form.vhd
uartd_kc705.vhd

The assembler will

generate LOG, HEX and

FMT files, but most

significantly of all, it will

overwrite the HDL memory
<+—— definition file.

Now that the assembler has generated a real program memory definition file the hierarchy in the ‘Sources’ window reflects that the design
is complete. The default ‘ROM_form’ template includes JTAG Loader so that has also appeared in the hierarchy.

Sources | I [e

e o3 é) |- {
= | 2 a% R |E

Design Sources (1
—}-wh 5% uart6_kc705 - Behavioral (uartc_kc705.vhd) (4
wh processor kcpsm6 -low_level deﬁnmon smé.vh

wh mstanhate loader Jtag Ioader _6_inst - Jtag Ioader _6- Behaworal —_.t:‘_:-r_ ud_rate_cont
@M tx - uart_tx6 - low_level_definition (uart_tx6.vh
-l rx - uart_rx6 - low_level_definition (uart_rx6.vh
#-1) Constraints
45 Simulation Sources (1

If you select a file in the ‘Sources’ window then the ‘Source
File Properties’ window tells you where the file is located and
the date and time that it was last modified. This is a

Useful to know....

File P j . e g
Source v': Topertes convenient way to check that program memory definition file
& _‘a:)! R | is being updated when you re-run the assembler.

@M auto_baud_rate_control.vhd

Location: C:/Designs_Vivado_2014_1fuart6_kc705/uart6_kc705.srcs/sources_1/new !n this example the programTrom defined by
auto_baud_rate_control.vhd’ has been selected .

Dp= S E] As expected, it is located the ‘new’ directory of the
Library: xil_defaultlib E] project and the ‘Modified’ date and time stamp

Size: 158.5KB (Today at 10:22:49 AM) .
Modified: Today at 10:22:49 AM 4—

Copied to: C:/Designs_Vivado_2014_1/uart6_kc705/uart6_kc705.srcs/sources_1/new | Modified: Today at 10:51:16 AM

F:idmlz: 22 Re-running the assembler updates the
General | Properties ‘auto_baud_rate_control.vhd’ file and, after a few
seconds, Vivado reacts to the change in one of its

source files and this is reflected by a new ‘Modified’
date and time stamp (Today at 10:51:16 AM) .

Page 18 © Copyright 2014 Xilinx

Constraints

Finally, we need to provide some design constraints. This document only shows how to create an XDC file for your Vivado
project. It is beyond the scope of this document to explain the details and syntax of XDC constraints, but in simple terms,

constraints must at least define which device pins inputs and outputs will be connected to and the performance that the

design must meet.

Sources — BRI
1]
= | o‘g' RE
7 Design Sources |
=} wh % vart6_| kc705 Behavioral (. kc705.vhd) (4)
i-4@h processor - kcpsmé - low Ievel deﬁnmon smé
(=)-@&h program_rom - auto_baud_rate_control - Io~ Ievel deﬁnlhon E
¥h instantiate_loader.jtag_loader_6_inst -]tag Ioader _6- Beha

@h tx - uart_tx6 - low_level_definition (uart_tx6.vhd
@R rx - uart_rx6 - low_level_definition (uart_rx6.vhd)

+-4) Constraints ‘ -
[#-45 Simulation Sources (1) 9 Ctrl+E
Hierarchy Update »
@ Refresh Hierarchy
IP Hierarchy >
K 1 Edit Constraints Sets...
Hierarchy | Libraries | Compild Edit Simulation Sets...
V £\ Sources |) Templatd & Add Sources... Alt+A

4. Add Sources
Add or Create Constraints

Right click in the ‘Sources’ window and select ‘Add Sources...”

This time select ‘Add or Create Constraints’

Add Sources

This guides you through the process of adding and creating sources for your project

—» (@ Add or Create Constraints
") Add or Create Design Sources

*) Add or Create Simulation Sources

Specify or create constraint files for physical and timing constraint to add to your project.

Specify constraint set: | & constrs_1 (active) v

Constraint File Location

Select the ‘Create File’ option to make a new file.

AddFies... | | createFie... |

Page 19

Again this is at least pretending to be creating a design from scratch.

© Copyright 2014 Xilinx

#-. Create Constraints File e %o

(0‘, Create a new constraints file and add it to your project
.\‘ /.’

File type, name and location
File type: | 3 XDC v

File name: | uart6_kc705.xdc <«— Define a name for your XDC constraints (typically the

Fie location: | 82 <Local to Project> . same name as your top level design)

™~

Use the default location.

Lox J[concel]

4 Add Sources The constraints file appears in the list. Click ‘Finish’ to continue.

Add or Create Constraints /

Specify or create constraint files for physical and timing constraint to add to your project.

vext> | gnish | [Cancel |
Specify constraint set: | & constrs_1 (active) v
Constraint File Location
Y varté_kc705.xdc <Local to Project> i
4 || Designs_Vivado_2014 1 Created constraints
files are located in their
The constraints file can be seen in the ‘Sources’ window. 4 1 uartb_ke703 own ‘new’ directory.
b :
F— ouartd_kc705.cache
=] 4 | uarth_kc705.5rcs
| ok B [E ' H
i 52 | LT @ 4 || constrs_1

(=)-{Z> Design Sources (1) R > [E] uartb_kc705.xdc

= y o ——-——>
=@ & vart6_kc705 - Behavioral (uarts_ ko705, Jie W new
i processor - kepsmé - low_level_definition (& né. L7 4 | sources_1
(=)@ program_rom - auto_baud_rate_control - low Ievel deﬁnlt:on . a imports
¥h instantiate_loader.jtag_loader_6_inst - jtag_loader_6 - Beh 0 ' R _ _ » (2 kcpsmﬂ.vhd
@ tx - vart_tx6 - low_level_definition (tx6.vhd) il 4} PicoBlaze ----- -
g Vs
“- @ rx - uart_rx6 - low_level_definition (uart_rx6.vhd) R . UART_and_PicoTerm - ________ y (2] uart_nb.vhd
Fiat, o s
Y Jarts_ke705. xdc [A (5] vart6_kc705.vhd
[#-{5 Simulation Sources (1) B to baud rat trolwhd
Z| auto_baud_rate_controlw
Page 20 e —

© Copyright 2014 Xilinx

3. Project Summary X | £ vart6_kc705.xdc X

B | C:/Designs_Vivado_2014_1/uart6_kc705/uarts_kc705.srcs/constrs_1/new fuarts_kc705.xdc

L ll
et

W) o5~

B
4

X

4 || Designs_VYivado_2014 1

4 | uarth_kc705
») uarth_kc705.cache
4 | uartd_kc705.srcs

4 trs 1
- » |E| uarth_kc705.xdc
new --~" "7
4 || sources 1
4 | imports
4 | PicoBlaze -----——"""7° » |Z| kepsmé.vhd
, UART and_PicoTerm - _______ > |Z] vart_né.vhd
1 il |Z] vart_tdvhd

~

A (3] uart6_kc705.vhd

|Z| aute_baud_rate_control.vhd

Page 21

-

T

The created XDC file will be completely empty. You can
double click on the file name in the ‘Sources’” window to
open itin an editing window.

11 S—
21 #

22 set_property PACKAGE_PIN M19 [get ports uart_rx]

23 set_property IOSTANDARD LVCMOS25 [get ports uart_rx]
24 #

25 set_property PACKAGE_PIN K24 [get ports uart_tx]

26 set_property IOSTANDARD LVCMOS25 [get ports uart_tx]
27 set_property SLEW SLOW [get ports uart_tx]

28 set property DRIVE 4 [get ports uart tx]

In this case an XDC file has been provided with the reference design so you
can either cut-and-paste the constraints provided in ‘uart6_kc705.xdc’ into
to the editor and save the file or you can directly replace the XDC file in the

project directory.

Hint — Remember that the location and date/time stamp of any
source files, including the constraints file, can be seen and
checked in the ‘Source File Properties” window.

Source File Properties = =]
+ B3R
L) uart6_kc765.xdc
Location: C:/Designs_Vivado_2014_1fuart6_kc705/uart6_kc705.srcs/constrs_1/new
Type: XDC ™
Size: 5.8KB
Modified: Today at 13:45:49 PM

© Copyright 2014 Xilinx

$- Run Synthesis

Implementing the design and generating the configuration BIT file

[> Run Implementation Assuming that your design synthesises, implements and generates a bit
%) Generate Bitstream stream successfully then you are ready to configure your device.

Configuring the device Vivado p

rovides ‘Hardware Manager’ which is shown below. However, there is an issue that

you should be aware of when using Vivado (up to and including at least version 2014.2).

4 @" Open Hardware Manage

=-Write Gitstream (write_bitstrean Make sure your target is connected

iz I : Clala o S A S ise,

‘3 Open Target
& Open New Target...

M

& Pro
Fro

L 4

ram

a

0

and powered and then Click on ‘Open
Target’ and then select ‘localhost...’

#% Add Conf @ localhost:60001,localhost: 3121, xilinx_tcf/Digilent/210203340043A,PARAM,FREQUENCY: 15000000

Hardware _ O = Debug Probes
Q T = > Q T = oo , . .
N e ol N e Once the connection is made, right click on the target device and
Name Status select ‘Program Device’.
= B localhost (1) Connected
= @ sdinx_tcf/Digilent/2102033400434 L1) Open Check that Vivado has identified the correct BIT file (or manually

select the file you want to use) and then click ‘Program’.

Program Device. ..

Refresh Device

é."_ Program Device @

\", Select a bitstream programming file and download it to your hardware device. You can optionally select a

f Program Device

1 Programming the device. ..

Page 22

& Add CDI‘IﬁQLIFEItiDI‘I Memory Device. .. L' debug probes file that corresponds to the debug cores contained in the bitstream programming file.
Export to SDFEEIIjShEEt. v Bitstream file: C:/Designs_Vivado_20 14_1;‘uart6_k1:?05;‘uart6_k1:?05.runsﬁmpl_lfuartﬁ_kl:?ﬂs.biﬂ E]
i Debug Probes file: | C:/Designs_Vivado_2014 1fuartd_kc705/uartd_kc705, runs fimpl_1/debug_nets. tx E]
[Program] [Cancel]
[=]
) Bz The device should be configured and PicoBlaze should become active.
Background
Lapdgand | In this example, communication via the USB/UART should result in something being

displayed on the terminal (e.g. PicoTerm).

© Copyright 2014 Xilinx

£ PicoTerm.exe

I AN Il |
I N R B b B Y |
- LI I I
(W, S I I

oA

Automatic BAUD Rate Control and Software Delay Loop Tuning

Assembly Date: 28 Jun 2814 Time: 16:46:55

Assembler Uersion: v2 .78
Hardware Design: A

Calculation of values used to define the BAUD rate

Declared clock frequency (HHz)
Converted clock frequency (Hz)
'‘set_baud _rate' value

C8 Hex
BBEEC280 Hex
6C Hex

Calculation of software delay values

Declared clock frequency (HHz}
Clock cycles for 1us delay
"1us_delay count' wvalue

Clock cycles for 1ms delay
"ims_delay_count® wvalue

C8 Hex

C8 Hex

31 Hex
830048 Hex
8235 Hex

Simple timer using the 1ms software delay loop

Press 'S' key to start timer

(Press 'R’ key to stop/reset timer)

ga:80
ga:m
aa: a2
ga:a3
ga:o4

If you have been reconstructing the ‘uarté_kc705’ reference
design ‘as is’ then with PicoTerm suitably connected to a KC705
board the design should come to life as shown here.

The ‘auto_baud_rate_control.psm’ program provided with the
‘uart6_kc705’ reference design ultimately implements a simple
minutes and seconds timer. However, this timer is really just a
way to demonstrate the more significant code which sets the
BAUD rate of the UART and adjusts software delay loops to reflect
the frequency of the clock provided to KCPSM6.

For more details please review the descriptions contained in the
source files and refer to the following document provided in the
KCPSM6 package....

“UART6_User_Guide_and_Reference_Designs_30Sept14.pd’

If your own design doesn’t do exactly what you were expecting
then you may have encountered the issue caused by ‘Hardware
Manager’ which is covered on the following pages.

© Copyright 2014 Xilinx

Known Issue - post-configuration issue caused by Vivado 'Hardware Manager‘ (up to and including at least version 2014.2)

‘JTAG Loader’ provides a way to upload a new PicoBlaze program to program _
memory within an active device. It facilitates rapid development of PSM code as -
well as ad hoc experiments (e.g. loading special programs to test, monitor and

. . . . : to baud T trol
diagnose hardware issues etc.). It s for these reasons that JTAG Loader is provided ~ F°9F=f_rem: SHEC _Baud Fake coneso

. . . , L. generic map(C FAMILY =»> "73",
as an option in the development ‘ROM_form’ template and it is generally C RAM STZE KWORDS => 2, ITAG Load
. . . . - - oader
recommended that you should enable this feature when developing designs. C_JTAG_LORDER_ENRBLE => 1} bled
port map(address => address, enable

. , instructicn =» instructicn,
The ‘uart6_kc705’ reference design illustrated in this document does enable the cnsble => bram_ensble,

JTAG Loader feature as shown in this abstract of the ‘uart6_kc705.vhd’ file. rdl =» rdl,
clk =» clk):

After ‘Hardware Manager’ has finished configuring the device it interrogates the internal BSCAN ports of the device to discover if there are
any Xilinx IP cores present in the design. Unfortunately this process does not respect the ‘USER’ addresses assigned to each BSCAN primitive
and this interrogation interferes with the JTAG Loader’ circuits in such a way that it results in corruption of the program memory contents.
Hopefully this undesirable behaviour will be resolved in later version of Vivado. On a positive note, the corruption is limited to program
address 003 which is always cleared. Op-code 00000 hex is a ‘LOAD s0, sO’ instruction which is ultimately has no effect on the contents of
registers or flags but that is of little comfort if the instruction it replaced was means to do something!

Workarounds

There is nothing fundamentally wrong with the configuration image (BIT file) so there would be no issues when a production design is
configured in an embedded system (e.g. from an image held in Flash memory). As such, this issue only tends to impact operation during design
development but that can lead to confusion exactly when you don’t need to be confused! Fortunately there are some workarounds...

a) Adjust the PSM code such that memory location 003 is not used by the program. b) Configure the device using iMPACT from ISE.
A example of suitable code to place at the start of your program is shown below. (Note that ChipScope Analyser has the same
issue as ‘Hardware Manager’).

JUMP cold start ;Avoid address 003 on start up c) Refresh the program memory using JTAG Loader.
JUMP cold start Just be aware of anything nasty the initial execution

JOHIP el sEen of the corrupted program may have done.
JUMP cold start ;Address 003

! d) Disable JTAG Loader. Of course this also inhibits
cold start: <normal program code starts here> .
- rapid code development!

Page 24 © Copyright 2014 Xilinx

Updating your PicoBlaze program using JTAG Loader More about JTAG Loader on pages 25-29 of ‘KCPSM6_User_Guide_30Sept14.pdf’

When you are developing a KCPSM6 program it only takes a few seconds to assemble the modified PSM code and generate a new VHDL or
Verilog file defining the new contents of the program memory. Although it doesn’t take tool long to run a small design through Vivado
synthesis and implementation again process a small design it soon becomes tiresome and unproductive. JTAG Loader is a mechanism that
enables you to load a newly assembled program (in the form of a HEX file) directly into the program memory inside the 7-Series or UltraScale
device whilst it remains configured and active with your design. This ability to assemble and execute a modified program in less than 15
seconds enables you to develop code in a very interactive way as well as facilitating experiments (e.g. loading different programs on a
temporary basis simply to test something).

As shown on the previous page, your design (like the reference design) needs to instantiate the development program memory with JTAG
Loader enabled (i.e. C_JTAG_LOADER_ENABLE => 1). This will insert the small JTAG Loader circuit in the design that connects the second port
of the BRAM(s) that form the program memory to the BSCAN primitive. The JTAG_Loader’ utility program then communicates with the device
using JTAG to control the BSCAN primitive and load (or read back) a program HEX file.

Note — The JTAG Loader utility uses the drivers and files associated with ChipScope which are in tern part of an ISE
installation. So at the time of writing it is required that you have an installation of ISE as well as Vivado.

In order that JTAG Loader can operate correctly it must also know where ISE has been installed and this is achieved by setting the PATH and a

XILINX environment variable.
REM Setting environment variables to define location of ISE wvl14.7

As shown in this example, it is probably paATH=$PATHS;C:\Xi1linx\14.7\ISE DS\ISE\1lib\nt64 Adiust od
easiest if you create a batch file which set XILINX=C:\Xilinx\14.7\ISE DS\ISE 4/ just as require
sets the environment variables and then -

runs JTAG Loader specifying the REM Upload program HEX using JTAG Loader

assembled HEX file which is to be loaded yTAG Loader Win7 64.exe -1 auto baud rate control.hex
into the program memory.

If you see a message like this then you still need to define your PATH appropriately.

ITAG Loader Win? 64.exe - System Eror X For example, with a default installation of ISE v14.7 your PATH is required to include
&7 C:\Xilinx\14.7\ISE_DS\ISE\lib\nt64;

@®% The program can't start because libCseFpga.dil is missing from your
!) computer, Try reinstalling the program to fix this problem,

JTAG_Loader_Win7?_64_exe

The HILIMNZ environment variahle iz not =set or iz empty.

O\

If you see a message like this then you still need to set a XILINX environment variable
appropriately. For example, with a default installation of ISE v14.7 you should set
XILINX=C:\Xilinx\14.7\ISE_DS\ISE

Page 25 © Copyright 2014 Xilinx

KCPSM6 Simulation

Along with the rest of a design, KCPSM®6 can be simulated in Vivado.Simulation .

A simple test bench simulation file called ‘testbench_uart6_kc705.vhd’ is provided with the reference design. This can be added to the Vivado
project in what should now be a familiar way (hint —select g add or Create Smulation Sources - When you ‘Add Sources’).

ﬁ_-,a uarth_kc705 - [T/ Designs_Vivado_2014_1/uartd_lc?05/uarth_kc705.xpr] - Vivade 2014.1
File Edit Flow Tools Window Layout View Help

L LR R e &

Flow Mavigator L5o | Project Manager - uartd_kc705
Test bench simulation file Q T = Sources O ®
added to the project. . =
o= et R

| 4 Project Manager | -
: [=-{=7 Design Sources (1)

{5 Project Settings - % uarté_kc705 - Behavioral (uarts ke705.0hd) (4)

Eﬁ‘ Add Sources i---alil processor - kepsmé - low_evel_definition (kepsma.vhd)

wh program_rom - auto_baud_rate_control - low_level_definition [z
i wh tx - uart_txé - low_level_definition {(uart_txs.vhd)

ol - LiArE_rx6 - low_level_definition (uart_rx&.vhd)

- Constraints (1)

== Simulation Sources (1)

4 [P Integrator
:ﬁl’, Create Block Design

ey _ \\E}--l.-—.' sim_1(1)
B Open Block Design -4l Ju testbench_uart6_kc705 - behavior (t=sthench_uarts_ke
& Generate Block Design =& uut - uarts_ke705 - Behavioral (Larts_ke705, vhd) [4)

R Behavi ISi lati il processor - kepsmé - low_level_definition (kepsmé.vhd)
un Benavioural Simulation ¥l program_rom - auto_baud_rate_control - low_level_defi

4 Simulation ! :
il B - wart_txE - low_level_definition (uart_t«d,vhd)
ﬁ- Simulation Settings iefilil P3¢ - wart_rxé - low _level_definition {(uart_rx6. vhd)
@ Run Simulatio il] | b [O
Run Behavioral Simulation |

4 RITL Analysis Run Post-5ynthesis Functional Simulation
g 52& Open Elaborg Run Post-Synthesis Timing Simulation
—_ O ©» =
4 Synthesis Run Post-Implementation Functional Simulation
ﬁ Synthesis Set Run Post-Implementation Timing Simulation

Page 26 © Copyright 2014 Xilinx

When the simulator opens for the first time the only signals shown in the waveform window are the inputs and outputs of the top level design
(i.e. the I/0 pins of the device). KCPSM6 simulation becomes more interesting and informative if you add internal signals to the waveform
viewer. A very useful signal to observe is the program ‘address’ as that tells you what instructions KCPSM6 is executing and this can be
compared with the Assembler LOG file. The KCPSM6 macro also includes some simulation only signals to help you more directly so look for
‘kepsm6_opcode' and 'kcpsm6_status' which are text strings that decode and display the instruction being executed and the status of the
flags. 'sim_s0' through to 'sim_sF‘ enable you to observe the contents of the registers sO through to sF, and likewise, 'sim_spmO00' through to
'sim_spmFF' allow you to observe the contents of scratch pad memory locations 00 through to FF so pick the ones of relevance to the PSM
code being examined. Note there is more about simulation pages 45-46 of ‘KCPSM6_User_Guide_30Sept14.pdf’.

Locate and select the KCPSM6 ‘processor’ Locate and select the ‘Objects’ of interest
\ /
| B-Ehavi\ral Simulation - Functional - sim_1 - testbench_uarts_kc705 /
Scopes S I 4 Objects / — O o™ = B testbhe
o= E=r e
Qg @eEHc@e =z
Mame Design Unit Block Type
= 4 testbenth_uarts_kc705 testbench_uart... WHDL Entity
= G uut uartd_kcF05(E... WHOL Entity
--Q processor kcpsm&{ow_le... WHDL Entity
--Q program_rom auto_baud_rat... WHDL Entity .
-- 9 tx uart_txs{ow _|... WHDL Entity B " kepsmé_opood... |"JUMP NZ, 0...
- G rx wart_rxs{low_|... WHDL Entity] kopsmé_status. .. |"A,MNZ NC,ID ...
' sim_s0[7:0] 00111000
sim_s1[7:0] 11111111
sim_s2[7:0] [+)]
- sim_s3[7:0] B Right click and select
sim_s4[7:0] N ‘Add To Wave Window’
sim_s5[7:0] -
' sim_s6[7:0]
sim_s7[7:0]
sim_s3[7:0]
A sim_s9[7:0]
sim_sA[7:0]
Asim_sB[7:0] | 000000
 sim_sC[7:0]
] sim_sD[7:0]
% Scope L,& Sources] | "2 sim_sE[7:0]
Simulation Object Properties — O » = Remove Farce

Page 27 © Copyright 2014 Xilinx

- ™ kopsmé_status[1:16]

- " sim_s0[7:0]
|- F4 sim_s1[7:0]
Select signals sim_s2[7:0]

and right click

B " sim_s&[7:0]

B "4 sim_s7[7:0]

&7 sim_s8[7:0]

E-"4 sim_s9[7:0]

EX-7# sim_sA[7:0]
Cut

Copy

Delete
Find...
Select Al
Expand

Collapse

Mame
Waveform Style
Radix

ke "E'(es3).
¢_generate/a
7' loaded.

13.21%

7 ogai Sianal Color

"A, Z,C,ID

10111001

« | Default

Binary
Hexadecimal
QOctal

ASCH

Unsigned Decirmal

Signed Decimal

i1

b Real Settings...

Hint — The assembler LOG file shows all values in Hexadecimal.

Addr Code
Address

10A 00760
\ 10B 19706

10C 01400

10D 11401

10E 19704

10F 3E10D

Page 28

calc lus delay count:

lus divide loop:

Having added various signals to the waveform
window then it is generally easy to digest the
information if you specify a suitable ‘Radix’. For
example, it is common practice to display the
KCPSM6 program address and the register and
scratch pad memory contents in Hexadecimal.

Values shown in hexadecimal
followed by their original

Thstruetlon definitions enclosed in brackets

s6
06[6'd]
00[0'd]
01[1'd]
04[14'd]
10D[1lus _divide loop]

LOAD s7,
SUB s7,
LOAD s4,
ADD s4,
SUB s7,
JUMP NC,

© Copyright 2014 Xilinx

Hint — ‘testbench_uart6_kc705.vhd’ has been written in a style that Hint — It can really help if you ‘Float’

has a pre-defined end after 5,000 clock cycles have been simulated O " «— the waveform window so that you
to you can use the ‘Run All’ button to run the full simulation. Py can then make it much larger.
= [;g:/bm T <z o ® Hint —Zoom in or out using these L"::
controls. Start with ‘Zoom Fit’ to \ -
Run All (F3) obtain an overall impression of Q]

jects Run the simulation until there are no more |y design activity. -4
an, events or until a Verilog '$finish' or "Sstop’.

TR T T e = =TT

Hint — Using the ‘New Divider’ option can be used to organise your waveforms into a nice display like this example.

015
“SUBCY sF,]
“A,NZ,NC,IC

B sim_s0[7:0]
B sim_s1[7:0]
B sim_s2[7:0]

The same code being executed in the /
simulator as seen in the assembler LOG file \

Addr Code Instruction

010 11001 set baud rate loop: ADD sO, 01[1'd]

011 19c00 SUB sC, 00

012 1BD20 SUBCY sD, 20

013 1BE1C SUBCY sE, 1C

014 1BFO0O SUBCY sF, 00

015 3EO010 JUMP NC, 010[set baud rate loop]

© Copyright 2014 Xilinx

This image shows the complete 5,000 clock cycle simulation. It can clearly be seen that KCPSM6 has taken 18.6425us to compute the
‘set_baud’rate’ value which it has output to the BAUD rate generator circuit so that it can generate ‘en_16_x_baud’ pulses at the correct rate.

Name
|D us ‘ |2D us
1 1 3 1 1 1 | 1 1

1 cyde_count
1 dk200_p
1 dk200_n

1 uart_rx

1 en_16_x_baud

B8 address[11:0]
B ™ kcpsm6_opcode[

-8 kepsmb_status[1 EEdE £%
legister Contents

-8 sim_s0[7:0] e X7
B8 sim_s1[7:0]
B ™ sim_s2{7:0]
-8 sim_s3[7:0]
B sim_s4[7:0]
B ™ sim_s5[7:0]
-8 sim_s6[7:0]
B sim_s7[7:0]
B ™ sim_s3[7:0]
-8 sim_s9[7:0]
B sim_sA[7:0] oo
™ sim_sB[7:0] oo
-84 sim_sC[7:0]
B8 sim_sD[7:0]
B ™ sim_sE[7:0]
4 s {7:0] (oo (oL)0z (03) 0a hCos JCos Y 07 (08)05 D e I b e IIIIIE I

.

B sim_spm3D[7:0] | 00
B ™ sim_spm3E[7:0] | oo
B sim_spm3F[7:0] | 00

————

Questions — Why does ‘s0’ sometimes contain unknown values (i.e. ‘X’)? Why is this valid and expected behaviour in this case?

© Copyright 2014 Xilinx

