//------------------------------------------------------------------------------ // main_tb.sv // Konstantin Pavlov, pavlovconst@gmail.com //------------------------------------------------------------------------------ // INFO ------------------------------------------------------------------------ // Testbench template with basic clocking, reset and random stimulus signals // use this define to make some things differently in simulation `define SIMULATION yes `timescale 1ns / 1ps module main_tb(); logic clk200; initial begin #0 clk200 = 1'b0; forever #2.5 clk200 = ~clk200; end // external device "asynchronous" clock logic clk33; initial begin #0 clk33 = 1'b0; forever #15.151 clk33 = ~clk33; end logic rst; initial begin #0 rst = 1'b0; #10.2 rst = 1'b1; #5 rst = 1'b0; //#10000; forever begin #9985 rst = ~rst; #5 rst = ~rst; end end logic nrst; assign nrst = ~rst; logic rst_once; initial begin #0 rst_once = 1'b0; #10.2 rst_once = 1'b1; #5 rst_once = 1'b0; end end logic nrst_once; assign nrst_once = ~rst_once; logic [31:0] DerivedClocks; clk_divider #( .WIDTH( 32 ) ) cd1 ( .clk( clk200 ), .nrst( nrst_once ), .ena( 1'b1 ), .out( DerivedClocks[31:0] ) ); logic [31:0] E_DerivedClocks; edge_detect ed1[31:0] ( .clk( {32{clk200}} ), .nrst( {32{nrst_once}} ), .in( DerivedClocks[31:0] ), .rising( E_DerivedClocks[31:0] ), .falling( ), .both( ) ); logic [31:0] RandomNumber1; c_rand rng1 ( .clk( clk200 ), .rst( 1'b0 ), .reseed( rst_once ), .seed_val( DerivedClocks[31:0] ^ (DerivedClocks[31:0] << 1) ), .out( RandomNumber1[15:0] ) ); c_rand rng2 ( .clk( clk200 ), .rst( 1'b0 ), .reseed( rst_once ), .seed_val( DerivedClocks[31:0] ^ (DerivedClocks[31:0] << 2) ), .out( RandomNumber1[31:16] ) ); logic start; initial begin #0 start = 1'b0; #100 start = 1'b1; #20 start = 1'b0; end // Module under test ========================================================== wire out1,out2; Main M ( // module under test clk200,~clk200, rst_once, out1,out2 // for compiler not to remove logic ); // emulating external divice ================================================== // that works asynchronously on clk33 clock reg [15:0] test_data = 16'b1010_1100_1100_1111; reg [7:0] adc1_seq_cntr = 0; always_ff @(posedge clk33) begin if( adc1_seq_cntr[7:0]==0 && ~ADC1_nCONV ) begin ADC1_BUSY <= 1'b1; ADC1_SDOUT <= test_data[15]; test_data[15:0] <= {test_data[14:0],1'b0}; adc1_seq_cntr[7:0] <= 1; end if( adc1_seq_cntr[7:0]>0 && adc1_seq_cntr[7:0]<33 && ADC1_SCLKOUT) begin ADC1_SCLKOUT <= ~ADC1_SCLKOUT; // emulating adc1 data ADC1_SDOUT <= test_data[15]; test_data[15:0] <= {test_data[14:0],1'b0}; adc1_seq_cntr[7:0] <= adc1_seq_cntr[7:0] + 1'b1; end if( adc1_seq_cntr[7:0]>0 && adc1_seq_cntr[7:0]<33 && ~ADC1_SCLKOUT) begin ADC1_SCLKOUT <= ~ADC1_SCLKOUT; adc1_seq_cntr[7:0] <= adc1_seq_cntr[7:0] + 1'b1; end if( adc1_seq_cntr[7:0]==33 ) begin ADC1_BUSY <= 0; ADC1_SCLKOUT <= 0; ADC1_SDOUT <= 0; adc1_seq_cntr[7:0] <= 0; end end endmodule