//------------------------------------------------------------------------------ // reverse_vector_tb.sv // Konstantin Pavlov, pavlovconst@gmail.com //------------------------------------------------------------------------------ // INFO ------------------------------------------------------------------------ // testbench for reverse_vector module `timescale 1ns / 1ps module reverse_vector_tb(); logic clk200; initial begin #0 clk200 = 1; forever #2.5 clk200 = ~clk200; end logic rst; initial begin #10.2 rst = 1; #5 rst = 0; //#10000; forever begin #9985 rst = ~rst; #5 rst = ~rst; end end logic nrst; assign nrst = ~rst; logic rst_once; initial begin // initializing non-X data before PLL starts #10.2 rst_once = 1; #5 rst_once = 0; end initial begin #510.2 rst_once = 1; // PLL starts at 500ns, clock appears, so doing the reset for modules #5 rst_once = 0; end logic nrst_once; assign nrst_once = ~rst_once; logic [31:0] DerivedClocks; ClkDivider #( .WIDTH( 32 ) ) CD1 ( .clk( clk200 ), .nrst( nrst_once ), .out( DerivedClocks[31:0] ) ); logic [31:0] E_DerivedClocks; EdgeDetect ED1[31:0] ( .clk( {32{clk200}} ), .nrst( {32{nrst_once}} ), .in( DerivedClocks[31:0] ), .rising( E_DerivedClocks[31:0] ), .falling( ), .both( ) ); logic [15:0] RandomNumber1; c_rand RNG1 ( .clk( clk200 ), .rst( rst_once ), .reseed( 1'b0 ), .seed_val( DerivedClocks[31:0] ), .out( RandomNumber1[15:0] ) ); logic start; initial begin #0 start = 1'b0; #100.2 start = 1'b1; #5 start = 1'b0; end // Module under test ========================================================== // odd width logic [14:0] reversed1; reverse_vector #( .WIDTH( 15 ) // WIDTH must be >=2 ) RV1 ( .in( RandomNumber1[14:0] ), .out( reversed1[14:0] ) // reversed bit order ); // even width logic [13:0] reversed2; reverse_vector #( .WIDTH( 14 ) // WIDTH must be >=2 ) RV2 ( .in( reversed1[13:0] ), .out( reversed2[13:0] ) // reversed bit order ); endmodule