// Copyright 2011 Altera Corporation. All rights reserved. // Altera products are protected under numerous U.S. and foreign patents, // maskwork rights, copyrights and other intellectual property laws. // // This reference design file, and your use thereof, is subject to and governed // by the terms and conditions of the applicable Altera Reference Design // License Agreement (either as signed by you or found at www.altera.com). By // using this reference design file, you indicate your acceptance of such terms // and conditions between you and Altera Corporation. In the event that you do // not agree with such terms and conditions, you may not use the reference // design file and please promptly destroy any copies you have made. // // This reference design file is being provided on an "as-is" basis and as an // accommodation and therefore all warranties, representations or guarantees of // any kind (whether express, implied or statutory) including, without // limitation, warranties of merchantability, non-infringement, or fitness for // a particular purpose, are specifically disclaimed. By making this reference // design file available, Altera expressly does not recommend, suggest or // require that this reference design file be used in combination with any // other product not provided by Altera. ///////////////////////////////////////////////////////////////////////////// module quad_stream_grabber_tb (); parameter DAT_WIDTH = 72; // multiple of 8 parameter ADDR_BITS = 4; // depth of the sample memory // streams to observe - independently clocked wire [3:0] clk_str; reg [3:0] arst_str; reg [DAT_WIDTH*4-1:0] data_in; reg [3:0] data_in_valid = 4'hf; // system clk / ctrl reg clk_sys, arst_sys; reg start_harvest; // combined output wire [7:0] dout; reg dout_ready = 1'b1; reg dout_valid; reg reporting; quad_stream_grabber dut ( .* ); defparam dut .DAT_WIDTH = DAT_WIDTH; // multiple of 8 defparam dut .ADDR_BITS = ADDR_BITS; // depth of the sample memory ////////////////////////////////////////////////// // rough test data ////////////////////////////////////////////////// genvar i; initial data_in = {72'h010101010101010101, 72'h111111111111111111, 72'h212121212121212121, 72'h313131313131313131}; for (i=0; i<4; i=i+1) begin : foo always @(posedge clk_str[i]) begin data_in[DAT_WIDTH*(i+1)-1:DAT_WIDTH*i] <= data_in[DAT_WIDTH*(i+1)-1:DAT_WIDTH*i] + 72'h010101010101010101; end end initial begin start_harvest = 0; #1000 @(negedge clk_sys); start_harvest = 1; @(posedge reporting); start_harvest = 0; @(negedge reporting); #1000 @(negedge clk_sys); start_harvest = 1; @(posedge reporting); start_harvest = 0; @(negedge reporting); #1000 @(negedge clk_sys); start_harvest = 1; @(posedge reporting); start_harvest = 0; end ////////////////////////////////////////////////// // clock driver ////////////////////////////////////////////////// always begin #5 clk_sys = ~clk_sys; end assign #1 clk_str[0] = clk_sys; assign #2 clk_str[1] = clk_sys; assign #3 clk_str[2] = clk_sys; assign #4 clk_str[3] = clk_sys; initial begin clk_sys = 0; arst_sys = 0; #1 arst_sys = 1; arst_str <= 4'b1111; @(negedge clk_sys) arst_sys = 0; @(negedge clk_str[0]) arst_str[0] = 0; @(negedge clk_str[1]) arst_str[1] = 0; @(negedge clk_str[2]) arst_str[2] = 0; @(negedge clk_str[3]) arst_str[3] = 0; end endmodule