1
0
mirror of https://github.com/pConst/basic_verilog.git synced 2025-01-14 06:42:54 +08:00
basic_verilog/gray_functions_tb.sv
2023-02-24 05:59:40 +03:00

176 lines
3.9 KiB
Systemverilog

//------------------------------------------------------------------------------
// gray_functions_tb.sv
// published as part of https://github.com/pConst/basic_verilog
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Testbench for gray_functions class
// use this define to make some things differently in simulation
`define SIMULATION yes
`timescale 1ns / 1ps
module gray_functions_tb();
initial begin
// Print out time markers in nanoseconds
// Example: $display("[T=%0t] start=%d", $realtime, start);
$timeformat(-9, 3, " ns");
// seed value setting is intentionally manual to achieve repeatability between sim runs
$urandom( 1 ); // SEED value
end
logic clk200;
sim_clk_gen #(
.FREQ( 200_000_000 ), // in Hz
.PHASE( 0 ), // in degrees
.DUTY( 50 ), // in percentage
.DISTORT( 10 ) // in picoseconds
) clk200_gen (
.ena( 1'b1 ),
.clk( clk200 ),
.clkd( )
);
logic nrst_once;
logic [31:0] clk200_div;
clk_divider #(
.WIDTH( 32 )
) cd1 (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.out( clk200_div[31:0] )
);
logic [31:0] clk200_div_rise;
edge_detect ed1[31:0] (
.clk( {32{clk200}} ),
.anrst( {32{nrst_once}} ),
.in( clk200_div[31:0] ),
.rising( clk200_div_rise[31:0] ),
.falling( ),
.both( )
);
// external device "asynchronous" clock
logic clk33;
logic clk33d;
sim_clk_gen #(
.FREQ( 200_000_000 ), // in Hz
.PHASE( 0 ), // in degrees
.DUTY( 50 ), // in percentage
.DISTORT( 1000 ) // in picoseconds
) clk33_gen (
.ena( 1'b1 ),
.clk( clk33 ),
.clkd( clk33d )
);
logic rst;
initial begin
rst = 1'b0; // initialization
repeat( 1 ) @(posedge clk200);
forever begin
repeat( 1 ) @(posedge clk200); // synchronous rise
rst = 1'b1;
//$urandom( 1 ); // uncomment to get the same random pattern EVERY nrst
repeat( 2 ) @(posedge clk200); // synchronous fall, controls rst pulse width
rst = 1'b0;
repeat( 100 ) @(posedge clk200); // controls test body width
end
end
logic nrst;
assign nrst = ~rst;
logic rst_once;
initial begin
rst_once = 1'b0; // initialization
repeat( 1 ) @(posedge clk200);
repeat( 1 ) @(posedge clk200); // synchronous rise
rst_once = 1'b1;
repeat( 2 ) @(posedge clk200); // synchronous fall, controls rst_once pulse width
rst_once = 1'b0;
end
//logic nrst_once; // declared before
assign nrst_once = ~rst_once;
// random pattern generation
logic [31:0] rnd_data;
always_ff @(posedge clk200) begin
rnd_data[31:0] <= $urandom;
end
initial forever begin
@(posedge nrst);
$display("[T=%0t] rnd_data[]=%h", $realtime, rnd_data[31:0]);
end
// helper start strobe appears unpredictable up to 20 clocks after nrst
logic start;
initial forever begin
start = 1'b0; // initialization
@(posedge nrst); // synchronous rise after EVERY nrst
repeat( $urandom_range(0, 20) ) @(posedge clk200);
start = 1'b1;
@(posedge clk200); // synchronous fall exactly 1 clock after rise
start = 1'b0;
end
initial begin
// #10000 $stop;
// #10000 $finish;
end
// Module under test ===========================================================
logic [15:0] seq_cntr = '0;
logic [31:0] id = '0;
always_ff @(posedge clk200) begin
if( ~nrst_once ) begin
seq_cntr[15:0] <= '0;
id[31:0] <= '0;
end else begin
// incrementing sequence counter
if( seq_cntr[15:0]!= '1 ) begin
seq_cntr[15:0] <= seq_cntr[15:0] + 1'b1;
end
if( seq_cntr[15:0]<300 ) begin
id[31:0] <= '1;
//id[31:0] <= {4{rnd_data[15:0]}};
end else begin
id[31:0] <= '0;
end
end
end
`include "gray_functions.vh"
logic [15:0] gray;
logic [15:0] bin;
always_comb begin
gray[15:0] = gray_functions#(16)::bin2gray( seq_cntr[15:0] );
bin[15:0] = gray_functions#(16)::gray2bin( gray[15:0] );
end
endmodule