1
0
mirror of https://github.com/pConst/basic_verilog.git synced 2025-01-14 06:42:54 +08:00
basic_verilog/main_tb.sv
2022-04-25 01:03:37 +03:00

182 lines
3.7 KiB
Systemverilog

//------------------------------------------------------------------------------
// main_tb.sv
// published as part of https://github.com/pConst/basic_verilog
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Testbench template with basic clocking, reset and random stimulus signals
// use this define to make some things differently in simulation
`define SIMULATION yes
`timescale 1ns / 1ps
module main_tb();
logic clk200;
initial begin
#0 clk200 = 1'b0;
forever
#2.5 clk200 = ~clk200;
end
// external device "asynchronous" clock
logic clk33a;
initial begin
#0 clk33a = 1'b0;
forever
#7 clk33a = ~clk33a;
end
logic clk33;
//assign clk33 = clk33a;
always @(*) begin
clk33 = #($urandom_range(0, 2000)*10ps) clk33a;
end
logic rst;
initial begin
#0 rst = 1'b0;
#10.2 rst = 1'b1;
#5 rst = 1'b0;
//#10000;
forever begin
#9985 rst = ~rst;
#5 rst = ~rst;
end
end
logic nrst;
assign nrst = ~rst;
logic rst_once;
initial begin
#0 rst_once = 1'b0;
#10.2 rst_once = 1'b1;
#5 rst_once = 1'b0;
end
logic nrst_once;
assign nrst_once = ~rst_once;
logic [31:0] DerivedClocks;
clk_divider #(
.WIDTH( 32 )
) cd1 (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.out( DerivedClocks[31:0] )
);
logic [31:0] E_DerivedClocks;
edge_detect ed1[31:0] (
.clk( {32{clk200}} ),
.nrst( {32{nrst_once}} ),
.in( DerivedClocks[31:0] ),
.rising( E_DerivedClocks[31:0] ),
.falling( ),
.both( )
);
logic [31:0] RandomNumber1;
c_rand rng1 (
.clk( clk200 ),
.rst( 1'b0 ),
.reseed( rst_once ),
.seed_val( DerivedClocks[31:0] ^ (DerivedClocks[31:0] << 1) ),
.out( RandomNumber1[15:0] )
);
c_rand rng2 (
.clk( clk200 ),
.rst( 1'b0 ),
.reseed( rst_once ),
.seed_val( DerivedClocks[31:0] ^ (DerivedClocks[31:0] << 2) ),
.out( RandomNumber1[31:16] )
);
logic start;
initial begin
#0 start = 1'b0;
#100 start = 1'b1;
#20 start = 1'b0;
end
// Module under test ==========================================================
logic [15:0] seq_cntr = '0;
logic [31:0] id = '0;
always_ff @(posedge clk200) begin
if( ~nrst_once ) begin
seq_cntr[15:0] <= '0;
id[31:0] <= '0;
end else begin
// incrementing sequence counter
if( seq_cntr[15:0]!= '1 ) begin
seq_cntr[15:0] <= seq_cntr[15:0] + 1'b1;
end
if( seq_cntr[15:0]<300 ) begin
id[31:0] <= '1;
//id[31:0] <= {4{RandomNumber1[15:0]}};
end else begin
id[31:0] <= '0;
end
end
end
module_under_test #(
.DEPTH( 255 ),
.DATA_W( 32 )
) M (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.id( id[31:0] ),
.od( )
);
// emulating external divice ==================================================
// that works asynchronously on clk33 clock
assign ADC1_SCLKOUT = clk33;
logic [15:0] test_data = 16'b1010_1100_1100_1111;
logic [7:0] adc1_seq_cntr = 0;
always_ff @(posedge clk33) begin
if( adc1_seq_cntr[7:0]==0 && ~ADC1_nCONV ) begin
ADC1_BUSY <= 1'b1;
ADC1_SDOUT <= test_data[15];
test_data[15:0] <= {test_data[14:0],1'b0};
adc1_seq_cntr[7:0] <= 1;
end
if( adc1_seq_cntr[7:0]>0 && adc1_seq_cntr[7:0]<33 && ADC1_SCLKOUT) begin
ADC1_SCLKOUT <= ~ADC1_SCLKOUT;
// emulating adc1 data
ADC1_SDOUT <= test_data[15];
test_data[15:0] <= {test_data[14:0],1'b0};
adc1_seq_cntr[7:0] <= adc1_seq_cntr[7:0] + 1'b1;
end
if( adc1_seq_cntr[7:0]>0 && adc1_seq_cntr[7:0]<33 && ~ADC1_SCLKOUT) begin
ADC1_SCLKOUT <= ~ADC1_SCLKOUT;
adc1_seq_cntr[7:0] <= adc1_seq_cntr[7:0] + 1'b1;
end
if( adc1_seq_cntr[7:0]==33 ) begin
ADC1_BUSY <= 0;
ADC1_SCLKOUT <= 0;
ADC1_SDOUT <= 0;
adc1_seq_cntr[7:0] <= 0;
end
end
endmodule