1
0
mirror of https://github.com/pConst/basic_verilog.git synced 2025-01-14 06:42:54 +08:00
basic_verilog/uart_rx.sv
2022-07-12 20:03:13 +03:00

128 lines
3.0 KiB
Systemverilog

//------------------------------------------------------------------------------
// uart_rx.sv
// published as part of https://github.com/pConst/basic_verilog
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Straightforward yet simple UART receiver implementation
// for FPGA written in SystemVerilog
//
// Expects at least one stop bit
// Features continuous data aquisition at BAUD levels up to CLK_HZ / 2
// Features early asynchronous 'busy' reset
//
// see also "uart_rx.v" for equivalent Verilog version
//
/* --- INSTANTIATION TEMPLATE BEGIN ---
uart_rx #(
.CLK_HZ( 200_000_000 ), // in Hertz
.BAUD( 9600 ) // max. BAUD is CLK_HZ / 2
)(
.clk( ),
.nrst( ),
.rx_data( ),
.rx_done( ),
.rxd( )
);
--- INSTANTIATION TEMPLATE END ---*/
module uart_rx #( parameter
CLK_HZ = 200_000_000,
BAUD = 9600,
bit [15:0] BAUD_DIVISOR_2 = CLK_HZ / BAUD / 2
)(
input clk,
input nrst,
output logic [7:0] rx_data = '0,
output logic rx_busy = 1'b0,
output logic rx_done, // read strobe
output logic rx_err,
input rxd
);
// synchronizing external rxd pin to avoid metastability
logic rxd_s;
delay #(
.LENGTH( 2 ),
.WIDTH( 1 )
) rxd_synch (
.clk( clk ),
.nrst( nrst ),
.ena( 1'b1 ),
.in( rxd ),
.out( rxd_s )
);
logic start_bit_strobe;
edge_detect rxd_fall_detector (
.clk( clk ),
.anrst( nrst ),
.in( rxd_s ),
.falling( start_bit_strobe )
);
logic [15:0] rx_sample_cntr = (BAUD_DIVISOR_2 - 1'b1);
logic rx_do_sample;
assign rx_do_sample = (rx_sample_cntr[15:0] == '0);
// {rx_data[7:0],rx_data_9th_bit} is actually a shift register
logic rx_data_9th_bit = 1'b0;
always_ff @ (posedge clk) begin
if( ~nrst ) begin
rx_busy <= 1'b0;
rx_sample_cntr <= (BAUD_DIVISOR_2 - 1'b1);
{rx_data[7:0],rx_data_9th_bit} <= '0;
end else begin
if( ~rx_busy ) begin
if( start_bit_strobe ) begin
// wait for 1,5-bit period till next sample
rx_sample_cntr[15:0] <= (BAUD_DIVISOR_2 * 3 - 1'b1);
rx_busy <= 1'b1;
{rx_data[7:0],rx_data_9th_bit} <= 9'b10000000_0;
end
end else begin
if( rx_sample_cntr[15:0] == '0 ) begin
// wait for 1-bit-period till next sample
rx_sample_cntr[15:0] <= (BAUD_DIVISOR_2 * 2 - 1'b1);
end else begin
// counting and sampling only when 'busy'
rx_sample_cntr[15:0] <= rx_sample_cntr[15:0] - 1'b1;
end
if( rx_do_sample ) begin
if( rx_data_9th_bit == 1'b1 ) begin
// early asynchronous 'busy' reset
rx_busy <= 1'b0;
end else begin
{rx_data[7:0],rx_data_9th_bit} <= {rxd_s, rx_data[7:0]};
end
end
end // ~rx_busy
end // ~nrst
end
always_comb begin
// rx_done and rx_busy fall simultaneously
rx_done <= rx_data_9th_bit && rx_do_sample && rxd_s;
rx_err <= rx_data_9th_bit && rx_do_sample && ~rxd_s;
end
endmodule