1
0
mirror of https://github.com/pConst/basic_verilog.git synced 2025-01-14 06:42:54 +08:00
basic_verilog/fifo_single_clock_reg_v2.sv
2021-07-05 09:12:14 +03:00

176 lines
4.3 KiB
Systemverilog

//------------------------------------------------------------------------------
// fifo_single_clock_reg_v2.sv
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Single-clock FIFO buffer implementation, also known as "queue"
//
// Features:
// - single clock operation
// - configurable depth and data width
// - one write- and one read- port in "FWFT" or "normal" mode
// - protected against overflow and underflow
// - simultaneous read and write operations supported if not full and not empty
// - only read operation is performed when (full && r_req && w_req)
// - only write operation is performed when (empty && r_req && w_req)
//
// See also "lifo.sv" module for similar LIFO buffer implementation
/* --- INSTANTIATION TEMPLATE BEGIN ---
fifo_single_clock_reg_v2 #(
.FWFT_MODE( "TRUE" ),
.DEPTH( 8 ),
.DATA_W( 32 )
) FF1 (
.clk( clk ),
.nrst( 1'b1 ),
.w_req( ),
.w_data( ),
.r_req( ),
.r_data( ),
.cnt( ),
.empty( ),
.full( )
);
--- INSTANTIATION TEMPLATE END ---*/
module fifo_single_clock_reg_v2 #( parameter
FWFT_MODE = "TRUE", // "TRUE" - first word fall-trrough" mode
// "FALSE" - normal fifo mode
DEPTH = 8, // max elements count == DEPTH, DEPTH MUST be power of 2
DEPTH_W = $clog2(DEPTH)+1, // elements counter width, extra bit to store
// "fifo full" state, see cnt[] variable comments
DATA_W = 32 // data field width
)(
input clk,
input nrst, // inverted reset
// input port
input w_req,
input [DATA_W-1:0] w_data,
// output port
input r_req,
output logic [DATA_W-1:0] r_data,
// helper ports
output logic [DEPTH_W-1:0] cnt = '0,
output logic empty,
output logic full,
output logic fail
);
// fifo data, extra element to keep pointer positions always valid,
// even when fifo is empty or full
logic [DEPTH-1:0][DATA_W-1:0] data = '0;
// read and write pointers
logic [DEPTH_W-1:0] w_ptr = '0;
logic [DEPTH_W-1:0] r_ptr = '0;
// data output buffer for normal fifo mode
logic [DATA_W-1:0] data_buf = '0;
// filtered requests
logic w_req_f;
assign w_req_f = w_req && ~full;
logic r_req_f;
assign r_req_f = r_req && ~empty;
function [DEPTH_W-1:0] inc_ptr (
input [DEPTH_W-1:0] ptr
);
if( ptr[DEPTH_W-1:0] == DEPTH-1 ) begin
inc_ptr[DEPTH_W-1:0] = '0;
end else begin
inc_ptr[DEPTH_W-1:0] = ptr[DEPTH_W-1:0] + 1'b1;
end
endfunction
integer i;
always_ff @(posedge clk) begin
if ( ~nrst ) begin
data <= '0;
cnt[DEPTH_W-1:0] <= '0;
w_ptr[DEPTH_W-1:0] <= '0;
r_ptr[DEPTH_W-1:0] <= '0;
data_buf[DATA_W-1:0] <= '0;
end else begin
unique case ({w_req_f, r_req_f})
2'b00: ; // nothing
2'b01: begin // reading out
if( ~empty ) begin
r_ptr[DEPTH_W-1:0] <= inc_ptr(r_ptr[DEPTH_W-1:0]);
end
cnt[DEPTH_W-1:0] <= cnt[DEPTH_W-1:0] - 1'b1;
end
2'b10: begin // writing in
if( ~full ) begin
w_ptr[DEPTH_W-1:0] <= inc_ptr(w_ptr[DEPTH_W-1:0]);
end
data[w_ptr[DEPTH_W-1:0]] <= w_data[DATA_W-1:0];
cnt[DEPTH_W-1:0] <= cnt[DEPTH_W-1:0] + 1'b1;
end
2'b11: begin // simultaneously reading and writing
if( ~empty ) begin
r_ptr[DEPTH_W-1:0] <= inc_ptr(r_ptr[DEPTH_W-1:0]);
end
if( ~full ) begin
w_ptr[DEPTH_W-1:0] <= inc_ptr(w_ptr[DEPTH_W-1:0]);
end
data[w_ptr[DEPTH_W-1:0]] <= w_data[DATA_W-1:0];
// data counter does not change here
end
endcase
// data buffer works only for normal fifo mode
if( r_req_f ) begin
data_buf[DATA_W-1:0] <= data[r_ptr[DEPTH_W-1:0]];
end
end
end
always_comb begin
empty = ( cnt[DEPTH_W-1:0] == '0 );
full = ( cnt[DEPTH_W-1:0] == DEPTH );
if( FWFT_MODE == "TRUE" ) begin
if (~empty) begin
r_data[DATA_W-1:0] = data[r_ptr[DEPTH_W-1:0]]; // first-word fall-through mode
end else begin
r_data[DATA_W-1:0] = '0;
end
end else begin
r_data[DATA_W-1:0] = data_buf[DATA_W-1:0]; // normal mode
end
fail = ( empty && r_req ) ||
( full && w_req );
end
endmodule