1
0
mirror of https://github.com/pConst/basic_verilog.git synced 2025-01-28 07:02:55 +08:00
Konstantin Pavlov (pt) 40533743d7 Added altera cookbook
2015-12-15 22:44:58 +03:00

286 lines
7.3 KiB
Verilog

// Copyright 2007 Altera Corporation. All rights reserved.
// Altera products are protected under numerous U.S. and foreign patents,
// maskwork rights, copyrights and other intellectual property laws.
//
// This reference design file, and your use thereof, is subject to and governed
// by the terms and conditions of the applicable Altera Reference Design
// License Agreement (either as signed by you or found at www.altera.com). By
// using this reference design file, you indicate your acceptance of such terms
// and conditions between you and Altera Corporation. In the event that you do
// not agree with such terms and conditions, you may not use the reference
// design file and please promptly destroy any copies you have made.
//
// This reference design file is being provided on an "as-is" basis and as an
// accommodation and therefore all warranties, representations or guarantees of
// any kind (whether express, implied or statutory) including, without
// limitation, warranties of merchantability, non-infringement, or fitness for
// a particular purpose, are specifically disclaimed. By making this reference
// design file available, Altera expressly does not recommend, suggest or
// require that this reference design file be used in combination with any
// other product not provided by Altera.
/////////////////////////////////////////////////////////////////////////////
// baeckler - 08-25-2006
//////////////////////////////////////////
// 8 bit to 13 bit ECC encoder
//////////////////////////////////////////
module ecc_encode_8bit (d,c);
input [7:0] d;
output [12:0] c;
wire [12:0] c;
assign c[0] = d[0] ^ d[1] ^ d[3] ^ d[4] ^ d[6];
assign c[1] = d[0] ^ d[2] ^ d[3] ^ d[5] ^ d[6];
assign c[2] = d[0];
assign c[3] = d[1] ^ d[2] ^ d[3] ^ d[7];
assign c[4] = d[1];
assign c[5] = d[2];
assign c[6] = d[3];
assign c[7] = d[4] ^ d[5] ^ d[6] ^ d[7];
assign c[8] = d[4];
assign c[9] = d[5];
assign c[10] = d[6];
assign c[11] = d[7];
wire [0:0] help_c12;
xor6 help_c12_0 (help_c12[0],d[0],d[1],d[2],d[4],d[5],d[7]);
assign c[12] = ^help_c12;
endmodule
//////////////////////////////////////////
// compute a syndrome from the code word
//////////////////////////////////////////
module ecc_syndrome_8bit (clk,rst,c,s);
// optional register on the outputs
// of bits 0..6 and back one level in bit 7
parameter REGISTER = 0;
input clk,rst;
input [12:0] c;
output [4:0] s;
reg [4:0] s;
// 6 terms
wire [0:0] help_s0;
xor6 help_s0_0 (help_s0[0],c[0],c[2],c[4],c[6],c[8],c[10]);
generate
if (REGISTER) begin
always @(posedge clk or posedge rst) begin
if (rst) s[0] <= 0;
else s[0] <= ^help_s0;
end
end else begin
always @(help_s0) begin
s[0] = ^help_s0;
end
end
endgenerate
// 6 terms
wire [0:0] help_s1;
xor6 help_s1_0 (help_s1[0],c[1],c[2],c[5],c[6],c[9],c[10]);
generate
if (REGISTER) begin
always @(posedge clk or posedge rst) begin
if (rst) s[1] <= 0;
else s[1] <= ^help_s1;
end
end else begin
always @(help_s1) begin
s[1] = ^help_s1;
end
end
endgenerate
// 5 terms
wire [0:0] help_s2;
xor6 help_s2_0 (help_s2[0],c[3],c[4],c[5],c[6],c[11],1'b0);
generate
if (REGISTER) begin
always @(posedge clk or posedge rst) begin
if (rst) s[2] <= 0;
else s[2] <= ^help_s2;
end
end else begin
always @(help_s2) begin
s[2] = ^help_s2;
end
end
endgenerate
// 5 terms
wire [0:0] help_s3;
xor6 help_s3_0 (help_s3[0],c[7],c[8],c[9],c[10],c[11],1'b0);
generate
if (REGISTER) begin
always @(posedge clk or posedge rst) begin
if (rst) s[3] <= 0;
else s[3] <= ^help_s3;
end
end else begin
always @(help_s3) begin
s[3] = ^help_s3;
end
end
endgenerate
// 13 terms
wire [2:0] help_s4;
xor6 help_s4_0 (help_s4[0],c[0],c[1],c[2],c[3],c[4],c[5]);
xor6 help_s4_1 (help_s4[1],c[6],c[7],c[8],c[9],c[10],c[11]);
assign help_s4[2] = c[12];
generate
if (REGISTER) begin
always @(posedge clk or posedge rst) begin
if (rst) s[4] <= 0;
else s[4] <= ^help_s4;
end
end else begin
always @(help_s4) begin
s[4] = ^help_s4;
end
end
endgenerate
endmodule
//////////////////////////////////////////
// From the syndrome compute the correction
// needed to fix the data, or set fatal = 1
// and no correction if there are too many.
//////////////////////////////////////////
module ecc_correction_8bit (s,e,fatal);
input [4:0] s;
output [7:0] e;
output fatal;
wire [7:0] e;
// decode the syndrome
reg [31:0] d;
wire [31:0] dw /* synthesis keep */;
always @(s) begin
d = 32'b0;
d[{!s[4],s[3:0]}] = 1'b1;
end
assign dw = d;
// Identify uncorrectable errors
wire fatal = (|s[3:0]) & !s[4] /* synthesis keep */;
assign e = {
dw[12],dw[11],dw[10],dw[9],
dw[7],dw[6],dw[5],dw[3]
};
endmodule
//////////////////////////////////////////
// select the (uncorrected) data bits out
// of the code word.
//////////////////////////////////////////
module ecc_raw_data_8bit (clk,rst,c,d);
parameter REGISTER = 0;
input clk,rst;
input [12:0] c;
output [7:0] d;
reg [7:0] d;
wire [7:0] d_int;
// pull out the pure data bits
assign d_int = {
c[11],c[10],c[9],c[8],c[6],c[5],c[4],c[2]
};
// conditional output register
generate
if (REGISTER) begin
always @(posedge clk or posedge rst) begin
if (rst) d <= 0;
else d <= d_int;
end
end else begin
always @(d_int) begin
d <= d_int;
end
end
endgenerate
endmodule
//////////////////////////////////////////
// 13 bit to 8 bit ECC decoder
//////////////////////////////////////////
module ecc_decode_8bit (clk,rst,c,d,no_err,err_corrected,err_fatal);
// optional pipeline registers at the halfway
// point and on the outputs
parameter MIDDLE_REG = 0;
parameter OUTPUT_REG = 0;
input clk,rst;
input [12:0] c;
output [7:0] d;
output no_err, err_corrected, err_fatal;
reg [7:0] d;
reg no_err, err_corrected, err_fatal;
// Pull the raw (uncorrected) data from the codeword
wire [7:0] raw_bits;
ecc_raw_data_8bit raw (.clk(clk),.rst(rst),.c(c),.d(raw_bits));
defparam raw .REGISTER = MIDDLE_REG;
// Build syndrome, which will be 0 for correct
// correct codewords, otherwise a pointer to the
// error.
wire [4:0] syndrome;
ecc_syndrome_8bit syn (.clk(clk),.rst(rst),.c(c),.s(syndrome));
defparam syn .REGISTER = MIDDLE_REG;
// Use the the syndrome to find a correction, or 0 for no correction
wire [7:0] err_flip;
wire fatal;
ecc_correction_8bit cor (.s(syndrome),.e(err_flip),.fatal(fatal));
// Classify error types and correct data as appropriate
// If there is a multibit error take care not to make
// the data worse.
generate
if (OUTPUT_REG) begin
always @(posedge clk or posedge rst) begin
if (rst) begin
no_err <= 1'b0;
err_corrected <= 1'b0;
err_fatal <= 1'b0;
d <= 1'b0;
end else begin
no_err <= ~| syndrome;
err_corrected <= syndrome[4];
err_fatal <= fatal;
d <= err_flip ^ raw_bits;
end
end
end else begin
always @(*) begin
no_err = ~| syndrome;
err_corrected = syndrome[4];
err_fatal = fatal;
d = err_flip ^ raw_bits;
end
end
endgenerate
endmodule