1
0
mirror of https://github.com/pConst/basic_verilog.git synced 2025-01-28 07:02:55 +08:00

1321 lines
67 KiB
Plaintext

; KCPSM3 Program - Program to test line stores using the Spartan-3E Starter Kit.
;
; Ken Chapman - Xilinx Ltd
;
; Version v1.00 - 26th June 2006
;
; PicoBlaze communicates via the UART to control the value applied to the inputs of
; line stores and enable them for a specified number of clock cycles. The outputs of
; all the line stores are then displayed.
;
;**************************************************************************************
; Port definitions
;**************************************************************************************
;
;
;
CONSTANT LED_port, 80 ;8 simple LEDs
CONSTANT LED0, 01 ; LED 0 - bit0
CONSTANT LED1, 02 ; 1 - bit1
CONSTANT LED2, 04 ; 2 - bit2
CONSTANT LED3, 08 ; 3 - bit3
CONSTANT LED4, 10 ; 4 - bit4
CONSTANT LED5, 20 ; 5 - bit5
CONSTANT LED6, 40 ; 6 - bit6
CONSTANT LED7, 80 ; 7 - bit7
;
;
;UART ports
;
CONSTANT status_port, 00 ;UART status input
CONSTANT tx_half_full, 01 ; Transmitter half full - bit0
CONSTANT tx_full, 02 ; FIFO full - bit1
CONSTANT rx_data_present, 04 ; Receiver data present - bit2
CONSTANT rx_half_full, 08 ; FIFO half full - bit3
CONSTANT rx_full, 10 ; full - bit4
;
CONSTANT UART_read_port, 01 ;UART Rx data input
;
CONSTANT UART_write_port, 40 ;UART Tx data output
;
;
;The first line store input is 18-bits and requires 3 bytes
;to be written to a holding register. Then when required,
;the whole 18-bit value can be stored in the line store
;using a dummy write (data not used) to a forth port.
;
;
CONSTANT line_store_input_L, 01 ;Line Store input bits [7:0]
CONSTANT line_store_input_M, 02 ;Line Store input bits [15:8]
CONSTANT line_store_input_H, 04 ;Line Store input bits [17:16]
CONSTANT line_store_write_en, 08 ;Line Store clock enable (dummy write)
;
;
;
;The first line store 768x24 and requires 3 bytes to be read.
;
CONSTANT line_store1_output_L, 02 ;Line Store output bits [7:0]
CONSTANT line_store1_output_M, 03 ;Line Store output bits [15:8]
CONSTANT line_store1_output_H, 04 ;Line Store output bits [23:16]
;
;
;The second line store 1024x18 and requires 3 bytes to be read.
;
CONSTANT line_store2_output_L, 05 ;Line Store output bits [7:0]
CONSTANT line_store2_output_M, 06 ;Line Store output bits [15:8]
CONSTANT line_store2_output_H, 07 ;Line Store output bits [17:16]
;
;
;The third line store 1280x13 and requires 2 bytes to be read.
;
CONSTANT line_store3_output_L, 08 ;Line Store output bits [7:0]
CONSTANT line_store3_output_H, 09 ;Line Store output bits [12:8]
;
;
;The forth line store is 1280x72 so to make it more manageable it has been
;folded to make it 3 times longer and only 24-bits wide. This requires 3 bytes
;to be read at each 1280 delay tapping point.
;
CONSTANT line_store4a_output_L, 0A ;Line Store output bits [7:0] First tap
CONSTANT line_store4a_output_M, 0B ;Line Store output bits [15:8]
CONSTANT line_store4a_output_H, 0C ;Line Store output bits [23:16]
;
CONSTANT line_store4b_output_L, 0D ;Line Store output bits [31:24] Second tap
CONSTANT line_store4b_output_M, 0E ;Line Store output bits [39:32]
CONSTANT line_store4b_output_H, 0F ;Line Store output bits [47:40]
;
CONSTANT line_store4c_output_L, 10 ;Line Store output bits [55:48] Third tap
CONSTANT line_store4c_output_M, 11 ;Line Store output bits [63:56]
CONSTANT line_store4c_output_H, 12 ;Line Store output bits [71:64]
;
;
;The fifth line store 1536x12 and requires 2 bytes to be read.
;
CONSTANT line_store5_output_L, 13 ;Line Store output bits [7:0]
CONSTANT line_store5_output_H, 14 ;Line Store output bits [11:8]
;
;
;The sixth line store 1920x9 and requires 2 bytes to be read.
;
CONSTANT line_store6_output_L, 15 ;Line Store output bits [7:0]
CONSTANT line_store6_output_H, 16 ;Line Store output bit [8]
;
;
;The seventh line store is 1920x48 so to make it more manageable it has been
;folded to make it 2 times longer and only 24-bits wide. This requires 3 bytes
;to be read at each 1920 delay tapping point.
;
CONSTANT line_store7a_output_L, 17 ;Line Store output bits [7:0] First tap
CONSTANT line_store7a_output_M, 18 ;Line Store output bits [15:8]
CONSTANT line_store7a_output_H, 19 ;Line Store output bits [23:16]
;
CONSTANT line_store7b_output_L, 1A ;Line Store output bits [31:24] Second tap
CONSTANT line_store7b_output_M, 1B ;Line Store output bits [39:32]
CONSTANT line_store7b_output_H, 1C ;Line Store output bits [47:40]
;
;
;**************************************************************************************
; Special Register usage
;**************************************************************************************
;
NAMEREG sF, UART_data ;used to pass data to and from the UART
;
;
;
;**************************************************************************************
;Scratch Pad Memory Locations
;**************************************************************************************
;
CONSTANT step_counter0, 00 ;decimal count of line store write operations
CONSTANT step_counter1, 01
CONSTANT step_counter2, 02
CONSTANT step_counter3, 03
CONSTANT step_counter4, 04
;
CONSTANT test_data_in0, 05 ;24-bit data applied to line store input
CONSTANT test_data_in1, 06
CONSTANT test_data_in2, 07
;
CONSTANT n_count0, 08 ;decimal count cycles to count in command
CONSTANT n_count1, 09
CONSTANT n_count2, 0A
CONSTANT n_count3, 0B
;
;
CONSTANT auto_inc, 0C ;Determines if auto increment is active
;
CONSTANT fast_mode, 0D ;Determines if fast mode is active
;
;UART character strings will be stored in scratch pad memory ending in carriage return.
;A string can be up to 16 characters with the start location defined by this constant.
;
CONSTANT string_start, 30
;
;
;
;**************************************************************************************
;Useful data constants
;**************************************************************************************
;
;
;
;
;ASCII table
;
CONSTANT character_a, 61
CONSTANT character_b, 62
CONSTANT character_c, 63
CONSTANT character_d, 64
CONSTANT character_e, 65
CONSTANT character_f, 66
CONSTANT character_g, 67
CONSTANT character_h, 68
CONSTANT character_i, 69
CONSTANT character_j, 6A
CONSTANT character_k, 6B
CONSTANT character_l, 6C
CONSTANT character_m, 6D
CONSTANT character_n, 6E
CONSTANT character_o, 6F
CONSTANT character_p, 70
CONSTANT character_q, 71
CONSTANT character_r, 72
CONSTANT character_s, 73
CONSTANT character_t, 74
CONSTANT character_u, 75
CONSTANT character_v, 76
CONSTANT character_w, 77
CONSTANT character_x, 78
CONSTANT character_y, 79
CONSTANT character_z, 7A
CONSTANT character_A, 41
CONSTANT character_B, 42
CONSTANT character_C, 43
CONSTANT character_D, 44
CONSTANT character_E, 45
CONSTANT character_F, 46
CONSTANT character_G, 47
CONSTANT character_H, 48
CONSTANT character_I, 49
CONSTANT character_J, 4A
CONSTANT character_K, 4B
CONSTANT character_L, 4C
CONSTANT character_M, 4D
CONSTANT character_N, 4E
CONSTANT character_O, 4F
CONSTANT character_P, 50
CONSTANT character_Q, 51
CONSTANT character_R, 52
CONSTANT character_S, 53
CONSTANT character_T, 54
CONSTANT character_U, 55
CONSTANT character_V, 56
CONSTANT character_W, 57
CONSTANT character_X, 58
CONSTANT character_Y, 59
CONSTANT character_Z, 5A
CONSTANT character_0, 30
CONSTANT character_1, 31
CONSTANT character_2, 32
CONSTANT character_3, 33
CONSTANT character_4, 34
CONSTANT character_5, 35
CONSTANT character_6, 36
CONSTANT character_7, 37
CONSTANT character_8, 38
CONSTANT character_9, 39
CONSTANT character_colon, 3A
CONSTANT character_stop, 2E
CONSTANT character_semi_colon, 3B
CONSTANT character_minus, 2D
CONSTANT character_divide, 2F ;'/'
CONSTANT character_plus, 2B
CONSTANT character_comma, 2C
CONSTANT character_less_than, 3C
CONSTANT character_greater_than, 3E
CONSTANT character_equals, 3D
CONSTANT character_space, 20
CONSTANT character_CR, 0D ;carriage return
CONSTANT character_question, 3F ;'?'
CONSTANT character_dollar, 24
CONSTANT character_exclaim, 21 ;'!'
CONSTANT character_BS, 08 ;Back Space command character
;
;
;
;
;
;**************************************************************************************
;Initialise the system
;**************************************************************************************
;
;
cold_start: LOAD s0, LED0
OUTPUT s0, LED_port
;
CALL send_welcome ;Write welcome message to UART
;
LOAD s0, 00 ;clear counter
STORE s0, step_counter4
STORE s0, step_counter3
STORE s0, step_counter2
STORE s0, step_counter1
STORE s0, step_counter0
;
OUTPUT s0, line_store_input_L ;Clear input to line store
OUTPUT s0, line_store_input_M
OUTPUT s0, line_store_input_H
STORE s0, test_data_in0
STORE s0, test_data_in1
STORE s0, test_data_in2
;
;
LOAD s2, 0F ;purge line stores with 4000 writes of zero
LOAD s1, A0
purge_loop: OUTPUT s0, line_store_write_en ;dummy write to enable line store
SUB s1, 01
JUMP NC, purge_loop
SUB s2, 01
JUMP NC, purge_loop
;
;
STORE s0, fast_mode ;turn off fast mode by default
;
LOAD s0, 01 ;default first value is 000001 hex
OUTPUT s0, line_store_input_L
STORE s0, test_data_in0
;
STORE s0, auto_inc ;turn auto increment on by default
;
;**************************************************************************************
; Main program
;**************************************************************************************
;
; Provides a prompt to which an input with one of the following formats is expected...
;
; set hhhhhh - Set value to be written into line store.
; 'hhhhhh' is a 6 digit hex value.
;
; cycle n - drive line store with 'n' cycles and display results.
; 'n' is a decimal number up to 9999.
;
; reset - Clears the counter and also purges all line store of all values.
;
; auto on - Turns on the auto increment of the set value so that each
; seccessive write of data will be different and useful for
; determining the delay length.
;
; auto off - Turns off the auto increment function so that all successive writes
; to the line stores will be identical.
;
;
; fast on - Turns on the fast execute mode in which the output to the
; display via the UART is turned off during multi-cycle operations.
; This results in much greater speed.
;
; fast off - Turns off fast execution mode allowing all data to be displayed.
;
; The input allows a degree of editing to be performed and upper and lower case letters
; to be used.
;
warm_start: FETCH s0, auto_inc ;use LED0 to display state of auto increment
FETCH s1, fast_mode ;use LED1 to display state of fast mode
COMPARE s1, 00
JUMP Z, set_LEDs
OR s0, LED1
set_LEDs: OUTPUT s0, LED_port
;
CALL send_prompt ;Prompt 'KCPSM3>'
CALL receive_string ;obtain input string of up to 16 characters
CALL upper_case_string ;convert string to upper case
;
LOAD sE, string_start ;sE is memory pointer
FETCH s0, (sE) ;test for carriage return
COMPARE s0, character_CR
JUMP Z, warm_start
COMPARE s0, character_S ;test for 'S' of 'SET' command
JUMP Z, SET_command
COMPARE s0, character_C ;test for 'C' of 'CYCLE' command
JUMP Z, CYCLE_command
COMPARE s0, character_R ;test for 'R' of 'RESET' command
JUMP Z, RESET_command
COMPARE s0, character_A ;test for 'A' of 'AUTO' command
JUMP Z, AUTO_command
COMPARE s0, character_F ;test for 'F' of 'FAST' command
JUMP Z, FAST_command
bad_command: CALL send_CR ;no valid command entered
CALL send_Error
JUMP warm_start
;
;Processing potential 'RESET' command
;
RESET_command: CALL read_next_char ;test for 'E' of 'RESET' command
COMPARE s0, character_E
JUMP NZ, bad_command
CALL read_next_char ;test for 'S' of 'RESET' command
COMPARE s0, character_S
JUMP NZ, bad_command
CALL read_next_char ;test for 'E' of 'RESET' command
COMPARE s0, character_E
JUMP NZ, bad_command
CALL read_next_char ;test for 'T' of 'RESET' command
COMPARE s0, character_T
JUMP NZ, bad_command
CALL read_next_char ;test for a carriage return
COMPARE s0, character_CR
JUMP NZ, bad_command
JUMP cold_start
;
;Processing potential 'SET' command
;
SET_command: CALL read_next_char ;test for 'E' of 'SET' command
COMPARE s0, character_E
JUMP NZ, bad_command
CALL read_next_char ;test for 'T' of 'SET' command
COMPARE s0, character_T
JUMP NZ, bad_command
CALL read_next_char ;test for a space
COMPARE s0, character_space
JUMP NZ, bad_command
;read value into register set [sC,sB,sA]
CALL read_next_char ;read two character hex value
LOAD s3, s0
CALL read_next_char
LOAD s2, s0
CALL ASCII_byte_to_hex ;convert to value in s0
JUMP C, bad_command
LOAD sC, s0 ;remember value
CALL read_next_char ;read two character hex value
LOAD s3, s0
CALL read_next_char
LOAD s2, s0
CALL ASCII_byte_to_hex ;convert to value in s0
JUMP C, bad_command
LOAD sB, s0 ;remember value
CALL read_next_char ;read two character hex value
LOAD s3, s0
CALL read_next_char
LOAD s2, s0
CALL ASCII_byte_to_hex ;convert to value in s0
JUMP C, bad_command
LOAD sA, s0 ;remember value
CALL read_next_char ;test for carriage return to end command
COMPARE s0, character_CR
JUMP NZ, bad_command
STORE sA, test_data_in0 ;store new line store input value
STORE sB, test_data_in1
STORE sC, test_data_in2
OUTPUT sA, line_store_input_L ;Write data to register driving line store
OUTPUT sB, line_store_input_M
OUTPUT sC, line_store_input_H
CALL send_OK
JUMP warm_start
;
;Processing potential 'AUTO' command
;
AUTO_command: CALL read_next_char
COMPARE s0, character_U ;test for 'U' of 'AUTO' command
JUMP NZ, bad_command
CALL read_next_char
COMPARE s0, character_T ;test for 'T' of 'AUTO' command
JUMP NZ, bad_command
CALL read_next_char
COMPARE s0, character_O ;test for 'O' of 'AUTO' command
JUMP NZ, bad_command
CALL read_next_char ;test for a space
COMPARE s0, character_space
JUMP NZ, bad_command
CALL read_next_char
COMPARE s0, character_O ;test for 'O' of 'ON' or 'OFF'
JUMP NZ, bad_command
CALL read_next_char
COMPARE s0, character_N ;test for 'N' of 'ON'
JUMP Z, test_auto_ON
COMPARE s0, character_F ;test for 'F' of 'OFF'
JUMP NZ, bad_command
CALL read_next_char
COMPARE s0, character_F ;test for 'F' of 'OFF'
JUMP NZ, bad_command
CALL read_next_char
COMPARE s0, character_CR ;test for carriage return
JUMP NZ, bad_command
LOAD s0, 00 ;turn off auto increment
JUMP update_auto
test_auto_ON: CALL read_next_char
COMPARE s0, character_CR ;test for carriage return
JUMP NZ, bad_command
LOAD s0, 01 ;turn on auto increment
update_auto: STORE s0, auto_inc
CALL send_OK
JUMP warm_start
;
;Processing potential 'FAST' command
;
FAST_command: CALL read_next_char
COMPARE s0, character_A ;test for 'A' of 'FAST' command
JUMP NZ, bad_command
CALL read_next_char
COMPARE s0, character_S ;test for 'S' of 'FAST' command
JUMP NZ, bad_command
CALL read_next_char
COMPARE s0, character_T ;test for 'T' of 'FAST' command
JUMP NZ, bad_command
CALL read_next_char ;test for a space
COMPARE s0, character_space
JUMP NZ, bad_command
CALL read_next_char
COMPARE s0, character_O ;test for 'O' of 'ON' or 'OFF'
JUMP NZ, bad_command
CALL read_next_char
COMPARE s0, character_N ;test for 'N' of 'ON'
JUMP Z, test_fast_ON
COMPARE s0, character_F ;test for 'F' of 'OFF'
JUMP NZ, bad_command
CALL read_next_char
COMPARE s0, character_F ;test for 'F' of 'OFF'
JUMP NZ, bad_command
CALL read_next_char
COMPARE s0, character_CR ;test for carriage return
JUMP NZ, bad_command
LOAD s0, 00 ;turn off fast mode
JUMP update_fast
test_fast_ON: CALL read_next_char
COMPARE s0, character_CR ;test for carriage return
JUMP NZ, bad_command
LOAD s0, 01 ;turn on fast mode
update_fast: STORE s0, fast_mode
CALL send_OK
JUMP warm_start
;
;Processing potential 'CYCLE' command
;
CYCLE_command: CALL read_next_char
COMPARE s0, character_Y ;test for 'Y' of 'CYCLE' command
JUMP NZ, bad_command
CALL read_next_char
COMPARE s0, character_C ;test for 'C' of 'CYCLE' command
JUMP NZ, bad_command
CALL read_next_char
COMPARE s0, character_L ;test for 'L' of 'CYCLE' command
JUMP NZ, bad_command
CALL read_next_char
COMPARE s0, character_E ;test for 'E' of 'CYCLE' command
JUMP NZ, bad_command
CALL read_next_char ;test for a space
COMPARE s0, character_space
JUMP NZ, bad_command
CALL read_next_char ;determine decimal value of 'n' in [s9,s8,s7,s6]
COMPARE s0, character_CR
JUMP Z, bad_command ;need at least 1 digit
CALL ASCII_to_decimal ;convert to decimal and test
JUMP C, bad_command
LOAD s6, s0
LOAD s7, 00
LOAD s8, 00
LOAD s9, 00
CALL read_next_char
COMPARE s0, character_CR
JUMP Z, store_n
CALL ASCII_to_decimal
JUMP C, bad_command
LOAD s7, s6
LOAD s6, s0
CALL read_next_char
COMPARE s0, character_CR
JUMP Z, store_n
CALL ASCII_to_decimal
JUMP C, bad_command
LOAD s8, s7
LOAD s7, s6
LOAD s6, s0
CALL read_next_char
COMPARE s0, character_CR
JUMP Z, store_n
CALL ASCII_to_decimal
JUMP C, bad_command
LOAD s9, s8
LOAD s8, s7
LOAD s7, s6
LOAD s6, s0
CALL read_next_char
COMPARE s0, character_CR
JUMP NZ, bad_command ;only 4 digits supported so must be a CR next
store_n: STORE s6, n_count0 ;store value of 'n'
STORE s7, n_count1
STORE s8, n_count2
STORE s9, n_count3
CALL send_CR
n_loop: FETCH s6, n_count0 ;Execute cycle command 'n' times
FETCH s7, n_count1
FETCH s8, n_count2
FETCH s9, n_count3
SUB s6, 01 ;decrement counter
JUMP NC, update_n
LOAD s6, 09
SUB s7, 01
JUMP NC, update_n
LOAD s7, 09
SUB s8, 01
JUMP NC, update_n
LOAD s8, 09
SUB s9, 01
JUMP NC, update_n
JUMP end_cycle ;roll under to 9999 signifies end of command
update_n: STORE s6, n_count0 ;updated stored value of 'n'
STORE s7, n_count1
STORE s8, n_count2
STORE s9, n_count3
FETCH sE, fast_mode ;determine display mode
COMPARE sE, 00 ;display active if fast mode is off
JUMP Z, step_test
LOAD sE, 01 ;turn display off for fast mode on
COMPARE s6, 00 ;but display last line of cycle command
JUMP NZ, step_test
COMPARE s7, 00
JUMP NZ, step_test
COMPARE s8, 00
JUMP NZ, step_test
COMPARE s9, 00
JUMP NZ, step_test
LOAD sE, 00
step_test: CALL step_line_store ;execute one test step of the line store
JUMP n_loop
end_cycle: CALL send_index ;display index card for data
CALL send_OK
JUMP warm_start
;
;
;Read next character from scratch pad memory
;
read_next_char: ADD sE, 01
FETCH s0, (sE) ;test for space
RETURN
;
;
;
;**************************************************************************************
; Line Store step
;**************************************************************************************
;
; Performs one step of the line stores in which the following sequence is followed.
;
; 1) The cycle counter is incremented and then displayed.
; 2) Display the value about to be stored.
; 3) The current output from each line store is read and displayed.
; This is representative of the value which would be captured on the next rising clock.
; 4) The clock enable to the line stores is activated storing the value held in the
; line_store_input register.
; 5) Increment the value to be stored next time if function has been turned on.
;
; The display output is suppressed when register 'sE' is not zero.
;
;
step_line_store: FETCH s9, step_counter4 ;increment step counter
FETCH s8, step_counter3
FETCH s7, step_counter2
FETCH s6, step_counter1
FETCH s5, step_counter0
ADD s5, 01
COMPARE s5, 0A
JUMP NZ, store_step_count
LOAD s5, 00
ADD s6, 01
COMPARE s6, 0A
JUMP NZ, store_step_count
LOAD s6, 00
ADD s7, 01
COMPARE s7, 0A
JUMP NZ, store_step_count
LOAD s7, 00
ADD s8, 01
COMPARE s8, 0A
JUMP NZ, store_step_count
LOAD s8, 00
ADD s9, 01
COMPARE s9, 0A
JUMP NZ, store_step_count
LOAD s9, 00
store_step_count: STORE s9, step_counter4
STORE s8, step_counter3
STORE s7, step_counter2
STORE s6, step_counter1
STORE s5, step_counter0
COMPARE sE, 00 ;suppress display
JUMP NZ, skip_display
LOAD UART_data, s9 ;display step counter
ADD UART_data, 30
CALL send_to_UART
LOAD UART_data, s8
ADD UART_data, 30
CALL send_to_UART
LOAD UART_data, s7
ADD UART_data, 30
CALL send_to_UART
LOAD UART_data, s6
ADD UART_data, 30
CALL send_to_UART
LOAD UART_data, s5
ADD UART_data, 30
CALL send_to_UART
CALL send_space
CALL send_space
CALL send_space
FETCH sA, test_data_in0 ;Read set value into [sC,sB,sA]
FETCH sB, test_data_in1
FETCH sC, test_data_in2
FETCH s0, auto_inc
LOAD s0, sC ;display value being input to line store
CALL send_hex_byte
LOAD s0, sB
CALL send_hex_byte
LOAD s0, sA
CALL send_hex_byte
CALL send_space
CALL send_space
INPUT s0, line_store1_output_H ;read 24-bit line store 1 output and display
CALL send_hex_byte
INPUT s0, line_store1_output_M
CALL send_hex_byte
INPUT s0, line_store1_output_L
CALL send_hex_byte
CALL send_space
CALL send_space
INPUT s0, line_store2_output_H ;read 18-bit line store 2 output and display
CALL send_nibble
INPUT s0, line_store2_output_M
CALL send_hex_byte
INPUT s0, line_store2_output_L
CALL send_hex_byte
CALL send_space
CALL send_space
INPUT s0, line_store3_output_H ;read 13-bit line store 3 output and display
CALL send_hex_byte
INPUT s0, line_store3_output_L
CALL send_hex_byte
CALL send_space
CALL send_space
INPUT s0, line_store4a_output_H ;read 24-bit line store 4 output 'A' and display
CALL send_hex_byte
INPUT s0, line_store4a_output_M
CALL send_hex_byte
INPUT s0, line_store4a_output_L
CALL send_hex_byte
CALL send_space
INPUT s0, line_store4b_output_H ;read 24-bit line store 4 output 'B' and display
CALL send_hex_byte
INPUT s0, line_store4b_output_M
CALL send_hex_byte
INPUT s0, line_store4b_output_L
CALL send_hex_byte
CALL send_space
INPUT s0, line_store4c_output_H ;read 24-bit line store 4 output 'C' and display
CALL send_hex_byte
INPUT s0, line_store4c_output_M
CALL send_hex_byte
INPUT s0, line_store4c_output_L
CALL send_hex_byte
CALL send_space
CALL send_space
INPUT s0, line_store5_output_H ;read 12-bit line store 5 output and display
CALL send_nibble
INPUT s0, line_store5_output_L
CALL send_hex_byte
CALL send_space
CALL send_space
INPUT s0, line_store6_output_H ;read 9-bit line store 6 output and display
CALL send_nibble
INPUT s0, line_store6_output_L
CALL send_hex_byte
CALL send_space
CALL send_space
INPUT s0, line_store7a_output_H ;read 24-bit line store 7 output 'A' and display
CALL send_hex_byte
INPUT s0, line_store7a_output_M
CALL send_hex_byte
INPUT s0, line_store7a_output_L
CALL send_hex_byte
CALL send_space
INPUT s0, line_store7b_output_H ;read 24-bit line store 7 output 'B' and display
CALL send_hex_byte
INPUT s0, line_store7b_output_M
CALL send_hex_byte
INPUT s0, line_store7b_output_L
CALL send_hex_byte
CALL send_CR
;
;
skip_display: OUTPUT s0, line_store_write_en ;dummy write to enable line stores
FETCH s0, auto_inc ;increment input value if auto is 'on'
ADD sA, s0
ADDCY sB, 00
ADDCY sC, 00
STORE sA, test_data_in0 ;store new line store input value
STORE sB, test_data_in1
STORE sC, test_data_in2
OUTPUT sA, line_store_input_L ;Write data to register driving line store
OUTPUT sB, line_store_input_M
OUTPUT sC, line_store_input_H
RETURN
;
;
;**************************************************************************************
; UART communication routines
;**************************************************************************************
;
; Read one character from the UART
;
; Character read will be returned in a register called 'UART_data'.
;
; The routine first tests the receiver FIFO buffer to see if data is present.
; If the FIFO is empty, the routine waits until there is a character to read.
; As this could take any amount of time the wait loop could include a call to a
; subroutine which performs a useful function.
;
;
; Registers used s0 and UART_data
;
read_from_UART: INPUT s0, status_port ;test Rx_FIFO buffer
TEST s0, rx_data_present ;wait if empty
JUMP NZ, read_character
JUMP read_from_UART
read_character: INPUT UART_data, UART_read_port ;read from FIFO
RETURN
;
;
;
; Transmit one character to the UART
;
; Character supplied in register called 'UART_data'.
;
; The routine first tests the transmit FIFO buffer to see if it is full.
; If the FIFO is full, then the routine waits until it there is space.
;
; Registers used s0
;
send_to_UART: INPUT s0, status_port ;test Tx_FIFO buffer
TEST s0, tx_full ;wait if full
JUMP Z, UART_write
JUMP send_to_UART
UART_write: OUTPUT UART_data, UART_write_port
RETURN
;
;
;**************************************************************************************
; Receive ASCII string from UART
;**************************************************************************************
;
;An ASCII string will be read from the UART and stored in scratch pad memory
;commencing at the location specified by a constant named 'string_start'.
;The string will have a maximum length of 16 characters including a
;carriage return (0D) denoting the end of the string.
;
;As each character is read, it is echoed to the UART transmitter.
;Some minor editing is supported using backspace (BS=08) which is used
;to adjust what is stored in scratch pad memory and adjust the display
;on the terminal screen using characters sent to the UART transmitter.
;
;A test is made for the receiver FIFO becoming full. A full status is treated as
;a potential error situation and will result in a 'Overflow Error' message being
;transmitted to the UART, the receiver FIFO being purged of all data and an
;empty string being stored (carriage return at first location).
;
;Registers used s0, s1, s2 and 'UART_data'.
;
receive_string: LOAD s1, string_start ;locate start of string
LOAD s2, s1 ;compute 16 character address
ADD s2, 10
receive_full_test: INPUT s0, status_port ;test Rx_FIFO buffer for full
TEST s0, rx_full
JUMP NZ, read_error
CALL read_from_UART ;obtain and echo character
CALL send_to_UART
STORE UART_data, (s1) ;write to memory
COMPARE UART_data, character_CR ;test for end of string
RETURN Z
COMPARE UART_data, character_BS ;test for back space
JUMP Z, BS_edit
ADD s1, 01 ;increment memory pointer
COMPARE s1, s2 ;test for pointer exceeding 16 characters
JUMP NZ, receive_full_test ;next character
CALL send_backspace ;hold end of string position on terminal display
BS_edit: SUB s1, 01 ;memory pointer back one
COMPARE s1, string_start ;test for under flow
JUMP C, string_start_again
CALL send_space ;clear character at current position
CALL send_backspace ;position cursor
JUMP receive_full_test ;next character
string_start_again: CALL send_greater_than ;restore '>' at prompt
JUMP receive_string ;begin again
;Receiver buffer overflow condition
read_error: CALL send_CR ;Transmit error message
STORE UART_data, string_start ;empty string in memory (start with CR)
CALL send_Overflow_Error
CALL send_CR
clear_UART_Rx_loop: INPUT s0, status_port ;test Rx_FIFO buffer for data
TEST s0, rx_data_present
RETURN Z ;finish when buffer is empty
INPUT UART_data, UART_read_port ;read from FIFO and ignore
JUMP clear_UART_Rx_loop
;
;
;**************************************************************************************
; Useful ASCII conversion and handling routines
;**************************************************************************************
;
;
;
; Convert character to upper case
;
; The character supplied in register s0.
; If the character is in the range 'a' to 'z', it is converted
; to the equivalent upper case character in the range 'A' to 'Z'.
; All other characters remain unchanged.
;
; Registers used s0.
;
upper_case: COMPARE s0, 61 ;eliminate character codes below 'a' (61 hex)
RETURN C
COMPARE s0, 7B ;eliminate character codes above 'z' (7A hex)
RETURN NC
AND s0, DF ;mask bit5 to convert to upper case
RETURN
;
;
;
; Convert string held in scratch pad memory to upper case.
;
; Registers used s0, s1
;
upper_case_string: LOAD s1, string_start
ucs_loop: FETCH s0, (s1)
COMPARE s0, character_CR
RETURN Z
CALL upper_case
STORE s0, (s1)
ADD s1, 01
JUMP ucs_loop
;
;
; Convert character '0' to '9' to numerical value in range 0 to 9
;
; The character supplied in register s0. If the character is in the
; range '0' to '9', it is converted to the equivalent decimal value.
; Characters not in the range '0' to '9' are signified by the return
; with the CARRY flag set.
;
; Registers used s0.
;
onechar_to_value: ADD s0, C6 ;reject character codes above '9' (39 hex)
RETURN C ;carry flag is set
SUB s0, F6 ;reject character codes below '0' (30 hex)
RETURN ;carry is set if value not in range
;
;
;
; Convert the HEX ASCII characters contained in 's3' and 's2' into
; an equivalent hexadecimal value in register 's0'.
; The upper nibble is represented by an ASCII character in register s3.
; The lower nibble is represented by an ASCII character in register s2.
;
; Input characters must be in the range 00 to FF hexadecimal or the CARRY flag
; will be set on return.
;
; Registers used s0, s2 and s3.
;
ASCII_byte_to_hex: LOAD s0, s3 ;Take upper nibble
CALL ASCII_to_hex ;convert to value
RETURN C ;reject if out of range
LOAD s3, s0 ;remember value
SL0 s3 ;multiply value by 16 to put in upper nibble
SL0 s3
SL0 s3
SL0 s3
LOAD s0, s2 ;Take lower nibble
CALL ASCII_to_hex ;convert to value
RETURN C ;reject if out of range
OR s0, s3 ;merge in the upper nibble with CARRY reset
RETURN
;
;
; Routine to convert ASCII data in 's0' to an equivalent HEX value.
;
; If character is not valid for hex, then CARRY is set on return.
;
; Register used s0
;
ASCII_to_hex: ADD s0, B9 ;test for above ASCII code 46 ('F')
RETURN C
SUB s0, E9 ;normalise 0 to 9 with A-F in 11 to 16 hex
RETURN C ;reject below ASCII code 30 ('0')
SUB s0, 11 ;isolate A-F down to 00 to 05 hex
JUMP NC, ASCII_letter
ADD s0, 07 ;test for above ASCII code 46 ('F')
RETURN C
SUB s0, F6 ;convert to range 00 to 09
RETURN
ASCII_letter: ADD s0, 0A ;convert to range 0A to 0F
RETURN
;
;
;
;
; Routine to convert ASCII data in 's0' to an equivalent DECIMAL value.
;
; If character is not valid for decimal, then CARRY is set on return.
;
; Register used s0
;
ASCII_to_decimal: ADD s0, C6 ;test for above ASCII code 39 ('9')
RETURN C
SUB s0, F6 ;normalise to 0 to 9
RETURN ;carry set for ASCII code below 30 ('0')
;
;
;
; Convert hexadecimal value provided in register s0 into ASCII characters
;
; The value provided must can be any value in the range 00 to FF and will be converted into
; two ASCII characters.
; The upper nibble will be represented by an ASCII character returned in register s2.
; The lower nibble will be represented by an ASCII character returned in register s1.
;
; The ASCII representations of '0' to '9' are 30 to 39 hexadecimal which is simply 30 hex
; added to the actual decimal value. The ASCII representations of 'A' to 'F' are 41 to 46
; hexadecimal requiring a further addition of 07 to the 30 already added.
;
; Registers used s0, s1 and s2.
;
hex_byte_to_ASCII: LOAD s1, s0 ;remember value supplied
SR0 s0 ;isolate upper nibble
SR0 s0
SR0 s0
SR0 s0
CALL hex_to_ASCII ;convert
LOAD s2, s0 ;upper nibble value in s2
LOAD s0, s1 ;restore complete value
AND s0, 0F ;isolate lower nibble
CALL hex_to_ASCII ;convert
LOAD s1, s0 ;lower nibble value in s1
RETURN
;
; Convert hexadecimal value provided in register s0 into ASCII character
;
;Register used s0
;
hex_to_ASCII: SUB s0, 0A ;test if value is in range 0 to 9
JUMP C, number_char
ADD s0, 07 ;ASCII char A to F in range 41 to 46
number_char: ADD s0, 3A ;ASCII char 0 to 9 in range 30 to 40
RETURN
;
;
; Send the two character HEX value of the register contents 's0' to the UART
;
; Registers used s0, s1, s2
;
send_hex_byte: CALL hex_byte_to_ASCII
LOAD UART_data, s2
CALL send_to_UART
LOAD UART_data, s1
CALL send_to_UART
RETURN
;
;
;
; Send the single HEX value representing the lower 4-bits of the register 's0'
; to the UART
;
; Registers used s0, s1, s2
;
send_nibble: CALL hex_to_ASCII
LOAD UART_data, s0
CALL send_to_UART
RETURN
;
;
;
;**************************************************************************************
; Text messages
;**************************************************************************************
;
;
; Send Carriage Return to the UART
;
send_CR: LOAD UART_data, character_CR
CALL send_to_UART
RETURN
;
; Send a space to the UART
;
send_space: LOAD UART_data, character_space
CALL send_to_UART
RETURN
;
;
;
;Send a back space to the UART
;
send_backspace: LOAD UART_data, character_BS
CALL send_to_UART
RETURN
;
;
; Send 'PicoBlaze Servo Control' string to the UART
;
send_welcome: CALL send_CR
CALL send_CR
LOAD UART_data, character_P
CALL send_to_UART
LOAD UART_data, character_i
CALL send_to_UART
LOAD UART_data, character_c
CALL send_to_UART
LOAD UART_data, character_o
CALL send_to_UART
LOAD UART_data, character_B
CALL send_to_UART
LOAD UART_data, character_l
CALL send_to_UART
LOAD UART_data, character_a
CALL send_to_UART
LOAD UART_data, character_z
CALL send_to_UART
LOAD UART_data, character_e
CALL send_to_UART
CALL send_space
LOAD UART_data, character_L
CALL send_to_UART
LOAD UART_data, character_i
CALL send_to_UART
LOAD UART_data, character_n
CALL send_to_UART
LOAD UART_data, character_e
CALL send_to_UART
CALL send_space
LOAD UART_data, character_S
CALL send_to_UART
LOAD UART_data, character_t
CALL send_to_UART
LOAD UART_data, character_o
CALL send_to_UART
LOAD UART_data, character_r
CALL send_to_UART
LOAD UART_data, character_e
CALL send_to_UART
CALL send_space
LOAD UART_data, character_T
CALL send_to_UART
LOAD UART_data, character_e
CALL send_to_UART
LOAD UART_data, character_s
CALL send_to_UART
LOAD UART_data, character_t
CALL send_to_UART
LOAD UART_data, character_e
CALL send_to_UART
LOAD UART_data, character_r
CALL send_to_UART
CALL send_CR
CALL send_CR
RETURN
;
;
;Send 'KCPSM3>' prompt to the UART
;
send_prompt: CALL send_CR ;start new line
LOAD UART_data, character_K
CALL send_to_UART
LOAD UART_data, character_C
CALL send_to_UART
LOAD UART_data, character_P
CALL send_to_UART
LOAD UART_data, character_S
CALL send_to_UART
LOAD UART_data, character_M
CALL send_to_UART
LOAD UART_data, character_3
CALL send_to_UART
;
;Send '>' character to the UART
;
send_greater_than: LOAD UART_data, character_greater_than
CALL send_to_UART
RETURN
;
;
;Send 'Overflow Error' to the UART
;
send_Overflow_Error: LOAD UART_data, character_O
CALL send_to_UART
LOAD UART_data, character_v
CALL send_to_UART
LOAD UART_data, character_e
CALL send_to_UART
LOAD UART_data, character_r
CALL send_to_UART
LOAD UART_data, character_f
CALL send_to_UART
LOAD UART_data, character_l
CALL send_to_UART
LOAD UART_data, character_o
CALL send_to_UART
LOAD UART_data, character_w
CALL send_to_UART
send_space_Error: CALL send_space
;
;Send 'Error' to the UART
;
send_Error: LOAD UART_data, character_E
CALL send_to_UART
LOAD UART_data, character_r
CALL send_to_UART
CALL send_to_UART
LOAD UART_data, character_o
CALL send_to_UART
LOAD UART_data, character_r
CALL send_to_UART
JUMP send_CR
;
;
;Send 'OK' to the UART
;
send_OK: CALL send_CR
CALL send_CR
LOAD UART_data, character_O
CALL send_to_UART
LOAD UART_data, character_K
CALL send_to_UART
JUMP send_CR
;
;
;Send index to data being displayed
;
send_index: CALL send_CR
LOAD UART_data, character_c
CALL send_to_UART
LOAD UART_data, character_y
CALL send_to_UART
LOAD UART_data, character_c
CALL send_to_UART
LOAD UART_data, character_l
CALL send_to_UART
LOAD UART_data, character_e
CALL send_to_UART
CALL send_space
CALL send_space
CALL send_space
CALL send_space
LOAD UART_data, character_i
CALL send_to_UART
LOAD UART_data, character_n
CALL send_to_UART
LOAD UART_data, character_p
CALL send_to_UART
LOAD UART_data, character_u
CALL send_to_UART
LOAD UART_data, character_t
CALL send_to_UART
CALL send_space
CALL send_space
CALL send_space
CALL send_space
CALL send_space
LOAD UART_data, character_7
CALL send_to_UART
LOAD UART_data, character_6
CALL send_to_UART
LOAD UART_data, character_8
CALL send_to_UART
CALL send_space
CALL send_space
CALL send_space
LOAD UART_data, character_1
CALL send_to_UART
LOAD UART_data, character_0
CALL send_to_UART
LOAD UART_data, character_2
CALL send_to_UART
LOAD UART_data, character_4
CALL send_to_UART
CALL send_space
CALL send_space
CALL send_1280
CALL send_space
CALL send_space
CALL send_space
CALL send_1280
LOAD UART_data, character_a
CALL send_to_UART
CALL send_space
CALL send_space
CALL send_1280
LOAD UART_data, character_b
CALL send_to_UART
CALL send_space
CALL send_space
CALL send_1280
LOAD UART_data, character_c
CALL send_to_UART
CALL send_space
LOAD UART_data, character_1
CALL send_to_UART
LOAD UART_data, character_5
CALL send_to_UART
LOAD UART_data, character_3
CALL send_to_UART
LOAD UART_data, character_6
CALL send_to_UART
CALL send_space
CALL send_1920
CALL send_space
CALL send_space
CALL send_space
CALL send_1920
LOAD UART_data, character_a
CALL send_to_UART
CALL send_space
CALL send_space
CALL send_1920
LOAD UART_data, character_b
CALL send_to_UART
CALL send_CR
RETURN
;
send_1280: LOAD UART_data, character_1
CALL send_to_UART
LOAD UART_data, character_2
CALL send_to_UART
LOAD UART_data, character_8
CALL send_to_UART
LOAD UART_data, character_0
CALL send_to_UART
RETURN
;
send_1920: LOAD UART_data, character_1
CALL send_to_UART
LOAD UART_data, character_9
CALL send_to_UART
LOAD UART_data, character_2
CALL send_to_UART
LOAD UART_data, character_0
CALL send_to_UART
RETURN
;
;**************************************************************************************
; Interrupt Service Routine (ISR)
;**************************************************************************************
;
; Interrupts are not used in this program.
;
ISR: RETURNI ENABLE
;
;
;**************************************************************************************
; Interrupt Vector
;**************************************************************************************
;
ADDRESS 3FF
JUMP ISR
;
;