1
0
mirror of https://github.com/pConst/basic_verilog.git synced 2025-01-28 07:02:55 +08:00
Konstantin Pavlov (pt) 40533743d7 Added altera cookbook
2015-12-15 22:44:58 +03:00

195 lines
5.2 KiB
Verilog

// Copyright 2007 Altera Corporation. All rights reserved.
// Altera products are protected under numerous U.S. and foreign patents,
// maskwork rights, copyrights and other intellectual property laws.
//
// This reference design file, and your use thereof, is subject to and governed
// by the terms and conditions of the applicable Altera Reference Design
// License Agreement (either as signed by you or found at www.altera.com). By
// using this reference design file, you indicate your acceptance of such terms
// and conditions between you and Altera Corporation. In the event that you do
// not agree with such terms and conditions, you may not use the reference
// design file and please promptly destroy any copies you have made.
//
// This reference design file is being provided on an "as-is" basis and as an
// accommodation and therefore all warranties, representations or guarantees of
// any kind (whether express, implied or statutory) including, without
// limitation, warranties of merchantability, non-infringement, or fitness for
// a particular purpose, are specifically disclaimed. By making this reference
// design file available, Altera expressly does not recommend, suggest or
// require that this reference design file be used in combination with any
// other product not provided by Altera.
/////////////////////////////////////////////////////////////////////////////
// baeckler - 08-24-2007
//
// Memory and tiny state machine to implement ternary CAM.
// Intended for stitching to build larger CAMs
//
// RAM is addressed by data bits, the stored content represents
// one hot coded address lines, eg. data 0 = 110 means data 0
// matches addresses 1 and 2.
//
// The state machine handles don't cares, writing a new value
// takes approximately 128 ticks (blocking), as the machine
// iterates the data to see which slots match the don't care mask.
//
// Lookup is pipelined, at the RAM latency of 2
//
module cam_ram_block (
clk,rst,
waddr,wdata,wcare,start_write,ready,
lookup_data,match_lines
);
// data 7 addr 5 produces 2^7 words of 2^5 bits
// natural for a SII 4K RAM block
parameter DATA_WIDTH = 7;
parameter ADDR_WIDTH = 5;
parameter WORDS = (1<<ADDR_WIDTH);
input clk,rst,start_write;
input [ADDR_WIDTH-1:0] waddr;
input [DATA_WIDTH-1:0] wdata,wcare;
input [DATA_WIDTH-1:0] lookup_data;
output [WORDS-1:0] match_lines;
wire [WORDS-1:0] match_lines;
output ready;
reg ready;
reg [WORDS-1:0] waddr_dec;
always @(*) begin
waddr_dec = 0;
waddr_dec[waddr] = 1'b1;
end
//////////////////////////////////////
// RAM address pointer
//////////////////////////////////////
reg rst_ptr;
reg [DATA_WIDTH-1:0] addr_ptr,last_addr_ptr,last2_addr_ptr;
reg ptr_max;
always @(posedge clk) begin
if (rst_ptr) begin
ptr_max <= 1'b0;
addr_ptr <= 0;
end
else begin
if (addr_ptr == {{DATA_WIDTH-1{1'b1}},1'b0})
ptr_max <= 1'b1;
addr_ptr <= addr_ptr + 1'b1;
end
end
always @(posedge clk) begin
last_addr_ptr <= addr_ptr;
last2_addr_ptr <= last_addr_ptr;
end
//////////////////////////////////////
// storage table
//////////////////////////////////////
wire [DATA_WIDTH-1:0] ram_raddr, ram_waddr;
reg ram_we;
wire [WORDS-1:0] ram_data, ram_match_lines;
ram_block storage (
.clk(clk),
.data(ram_data),
.rdaddress(ram_raddr),
.wraddress(ram_waddr),
.wren(ram_we),
.q(ram_match_lines)
);
defparam storage .DAT_WIDTH = WORDS;
defparam storage .ADDR_WIDTH = DATA_WIDTH;
reg ram_addr_select, zero_ram_data;
assign ram_raddr = ram_addr_select ? addr_ptr : lookup_data;
assign ram_waddr = zero_ram_data ? addr_ptr : last2_addr_ptr;
assign ram_data = (~{WORDS{zero_ram_data}}) &
(waddr_dec | ram_match_lines);
assign match_lines = ram_match_lines;
//////////////////////////////////////
// decide to write at this data
// location or not, with dont care
//////////////////////////////////////
reg write_here;
reg [DATA_WIDTH-1:0] bit_match;
always @(posedge clk) begin
bit_match <= ~wcare | ~(wdata ^ addr_ptr);
write_here <= &bit_match;
end
//////////////////////////////////////
// control
//////////////////////////////////////
parameter INIT = 0, WIPE = 1, READY = 2, WRITE_A = 3,
WRITE_B = 4, WRITE_C = 5, WRITE_D = 6;
reg [3:0] state,next_state;
always @(*) begin
rst_ptr = 1'b0;
ram_we = 1'b0;
ram_addr_select = 1'b1;
next_state = state;
ready = 1'b0;
zero_ram_data = 1'b0;
case (state)
INIT : begin
rst_ptr = 1'b1;
next_state = WIPE;
end
WIPE : begin
ram_we = 1'b1;
zero_ram_data = 1'b1;
if (ptr_max) begin
next_state = READY;
rst_ptr = 1'b1;
end
end
READY : begin
ready = 1'b1;
ram_addr_select = 1'b0;
rst_ptr = 1'b1;
if (start_write) begin
next_state = WRITE_A;
rst_ptr = 1'b0;
end
end
WRITE_A : begin
next_state = WRITE_B;
end
WRITE_B : begin
ram_we = write_here;
if (ptr_max) begin
next_state = WRITE_C;
end
end
WRITE_C : begin
ram_we = write_here;
next_state = WRITE_D;
end
WRITE_D : begin
ram_we = write_here;
next_state = READY;
rst_ptr = 1'b1;
end
endcase
end
always @(posedge clk) begin
if (rst) state <= INIT;
else state <= next_state;
end
endmodule