mirror of
https://github.com/pConst/basic_verilog.git
synced 2025-01-14 06:42:54 +08:00
224 lines
5.0 KiB
Systemverilog
Executable File
224 lines
5.0 KiB
Systemverilog
Executable File
//------------------------------------------------------------------------------
|
|
// fifo_single_clock_ram.sv
|
|
// Konstantin Pavlov, pavlovconst@gmail.com
|
|
//------------------------------------------------------------------------------
|
|
|
|
// INFO ------------------------------------------------------------------------
|
|
// Single-clock FIFO buffer implementation, also known as "queue"
|
|
//
|
|
// This fifo variant should synthesize into block RAM seamlessly, both for
|
|
// Altera and for Xilinx chips. Simulation is also consistent.
|
|
// Use this fifo when you need cross-vendor and sim/synth compatibility.
|
|
//
|
|
// Features:
|
|
// - single clock operation
|
|
// - configurable depth and data width
|
|
// - only "normal" mode is supported here, no FWFT mode
|
|
// - protected against overflow and underflow
|
|
//
|
|
|
|
|
|
/* --- INSTANTIATION TEMPLATE BEGIN ---
|
|
|
|
fifo_single_clock_ram #(
|
|
.DEPTH( 8 ),
|
|
.DATA_W( 32 )
|
|
) FF1 (
|
|
.clk( clk ),
|
|
.nrst( 1'b1 ),
|
|
|
|
.w_req( ),
|
|
.w_data( ),
|
|
|
|
.r_req( ),
|
|
.r_data( ),
|
|
|
|
.cnt( ),
|
|
.empty( ),
|
|
.full( )
|
|
);
|
|
|
|
--- INSTANTIATION TEMPLATE END ---*/
|
|
|
|
module fifo_single_clock_ram #( parameter
|
|
|
|
//FWFT_MODE = "TRUE", // "TRUE" - first word fall-trrough" mode
|
|
// "FALSE" - normal fifo mode
|
|
|
|
DEPTH = 8, // max elements count == DEPTH, DEPTH MUST be power of 2
|
|
DEPTH_W = $clog2(DEPTH)+1, // elements counter width, extra bit to store
|
|
// "fifo full" state, see cnt[] variable comments
|
|
|
|
DATA_W = 32 // data field width
|
|
)(
|
|
|
|
input clk,
|
|
input nrst, // inverted reset
|
|
|
|
// input port
|
|
input w_req,
|
|
input [DATA_W-1:0] w_data,
|
|
|
|
// output port
|
|
input r_req,
|
|
output [DATA_W-1:0] r_data,
|
|
|
|
// helper ports
|
|
output logic [DEPTH_W-1:0] cnt = '0,
|
|
output logic empty,
|
|
output logic full,
|
|
|
|
output logic fail
|
|
);
|
|
|
|
|
|
// read and write pointers
|
|
logic [DEPTH_W-1:0] w_ptr = '0;
|
|
logic [DEPTH_W-1:0] r_ptr = '0;
|
|
|
|
// filtered requests
|
|
logic w_req_f;
|
|
assign w_req_f = w_req && ~full;
|
|
|
|
logic r_req_f;
|
|
assign r_req_f = r_req && ~empty;
|
|
|
|
|
|
true_dual_port_write_first_2_clock_ram #(
|
|
.RAM_WIDTH( DATA_W ),
|
|
.RAM_DEPTH( DEPTH ),
|
|
.INIT_FILE( "" )
|
|
) data_ram (
|
|
.clka( clk ),
|
|
.addra( w_ptr[DEPTH_W-1:0] ),
|
|
.ena( w_req_f ),
|
|
.wea( 1'b1 ),
|
|
.dina( w_data[DATA_W-1:0] ),
|
|
.douta( ),
|
|
|
|
.clkb( clk ),
|
|
.addrb( r_ptr[DEPTH_W-1:0] ),
|
|
.enb( r_req_f ),
|
|
.web( 1'b0 ),
|
|
.dinb( '0 ),
|
|
.doutb( r_data[DATA_W-1:0] )
|
|
);
|
|
|
|
|
|
function [DEPTH_W-1:0] inc_ptr (
|
|
input [DEPTH_W-1:0] ptr
|
|
);
|
|
|
|
if( ptr[DEPTH_W-1:0] == DEPTH-1 ) begin
|
|
inc_ptr[DEPTH_W-1:0] = '0;
|
|
end else begin
|
|
inc_ptr[DEPTH_W-1:0] = ptr[DEPTH_W-1:0] + 1'b1;
|
|
end
|
|
endfunction
|
|
|
|
|
|
always_ff @(posedge clk) begin
|
|
if ( ~nrst ) begin
|
|
w_ptr[DEPTH_W-1:0] <= '0;
|
|
r_ptr[DEPTH_W-1:0] <= '0;
|
|
|
|
cnt[DEPTH_W-1:0] <= '0;
|
|
end else begin
|
|
|
|
if( w_req_f ) begin
|
|
w_ptr[DEPTH_W-1:0] <= inc_ptr(w_ptr[DEPTH_W-1:0]);
|
|
end
|
|
|
|
if( r_req_f ) begin
|
|
r_ptr[DEPTH_W-1:0] <= inc_ptr(r_ptr[DEPTH_W-1:0]);
|
|
end
|
|
|
|
if( w_req_f && ~r_req_f ) begin
|
|
cnt[DEPTH_W-1:0] <= cnt[DEPTH_W-1:0] + 1'b1;
|
|
end else if( ~w_req_f && r_req_f ) begin
|
|
cnt[DEPTH_W-1:0] <= cnt[DEPTH_W-1:0] - 1'b1;
|
|
end
|
|
|
|
end
|
|
end
|
|
|
|
always_comb begin
|
|
empty = ( cnt[DEPTH_W-1:0] == '0 );
|
|
full = ( cnt[DEPTH_W-1:0] == DEPTH );
|
|
|
|
fail = ( empty && r_req ) ||
|
|
( full && w_req );
|
|
end
|
|
|
|
endmodule
|
|
|
|
|
|
|
|
module true_dual_port_write_first_2_clock_ram #( parameter
|
|
RAM_WIDTH = 16,
|
|
RAM_DEPTH = 8,
|
|
INIT_FILE = ""
|
|
)(
|
|
input clka,
|
|
input [clogb2(RAM_DEPTH-1)-1:0] addra,
|
|
input ena,
|
|
input wea,
|
|
input [RAM_WIDTH-1:0] dina,
|
|
output [RAM_WIDTH-1:0] douta,
|
|
|
|
input clkb,
|
|
input [clogb2(RAM_DEPTH-1)-1:0] addrb,
|
|
input enb,
|
|
input web,
|
|
input [RAM_WIDTH-1:0] dinb,
|
|
output [RAM_WIDTH-1:0] doutb
|
|
);
|
|
|
|
reg [RAM_WIDTH-1:0] BRAM [RAM_DEPTH-1:0];
|
|
reg [RAM_WIDTH-1:0] ram_data_a = {RAM_WIDTH{1'b0}};
|
|
reg [RAM_WIDTH-1:0] ram_data_b = {RAM_WIDTH{1'b0}};
|
|
|
|
// either initializes the memory values to a specified file or to all zeros
|
|
// to match hardware
|
|
generate
|
|
if (INIT_FILE != "") begin: use_init_file
|
|
initial
|
|
$readmemh(INIT_FILE, BRAM, 0, RAM_DEPTH-1);
|
|
end else begin: init_bram_to_zero
|
|
integer ram_index;
|
|
initial
|
|
for (ram_index = 0; ram_index < RAM_DEPTH; ram_index = ram_index + 1)
|
|
BRAM[ram_index] = {RAM_WIDTH{1'b0}};
|
|
end
|
|
endgenerate
|
|
|
|
always @(posedge clka)
|
|
if (ena)
|
|
if (wea) begin
|
|
BRAM[addra] <= dina;
|
|
ram_data_a <= dina;
|
|
end else
|
|
ram_data_a <= BRAM[addra];
|
|
|
|
always @(posedge clkb)
|
|
if (enb)
|
|
if (web) begin
|
|
BRAM[addrb] <= dinb;
|
|
ram_data_b <= dinb;
|
|
end else
|
|
ram_data_b <= BRAM[addrb];
|
|
|
|
// no output register
|
|
assign douta = ram_data_a;
|
|
assign doutb = ram_data_b;
|
|
|
|
// calculates the address width based on specified RAM depth
|
|
function integer clogb2;
|
|
input integer depth;
|
|
for (clogb2=0; depth>0; clogb2=clogb2+1)
|
|
depth = depth >> 1;
|
|
endfunction
|
|
|
|
endmodule
|
|
|