1
0
mirror of https://github.com/pConst/basic_verilog.git synced 2025-01-14 06:42:54 +08:00
basic_verilog/fifo_single_clock_ram.sv
2021-07-19 01:45:45 +03:00

224 lines
5.0 KiB
Systemverilog
Executable File

//------------------------------------------------------------------------------
// fifo_single_clock_ram.sv
// Konstantin Pavlov, pavlovconst@gmail.com
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Single-clock FIFO buffer implementation, also known as "queue"
//
// This fifo variant should synthesize into block RAM seamlessly, both for
// Altera and for Xilinx chips. Simulation is also consistent.
// Use this fifo when you need cross-vendor and sim/synth compatibility.
//
// Features:
// - single clock operation
// - configurable depth and data width
// - only "normal" mode is supported here, no FWFT mode
// - protected against overflow and underflow
//
/* --- INSTANTIATION TEMPLATE BEGIN ---
fifo_single_clock_ram #(
.DEPTH( 8 ),
.DATA_W( 32 )
) FF1 (
.clk( clk ),
.nrst( 1'b1 ),
.w_req( ),
.w_data( ),
.r_req( ),
.r_data( ),
.cnt( ),
.empty( ),
.full( )
);
--- INSTANTIATION TEMPLATE END ---*/
module fifo_single_clock_ram #( parameter
//FWFT_MODE = "TRUE", // "TRUE" - first word fall-trrough" mode
// "FALSE" - normal fifo mode
DEPTH = 8, // max elements count == DEPTH, DEPTH MUST be power of 2
DEPTH_W = $clog2(DEPTH)+1, // elements counter width, extra bit to store
// "fifo full" state, see cnt[] variable comments
DATA_W = 32 // data field width
)(
input clk,
input nrst, // inverted reset
// input port
input w_req,
input [DATA_W-1:0] w_data,
// output port
input r_req,
output [DATA_W-1:0] r_data,
// helper ports
output logic [DEPTH_W-1:0] cnt = '0,
output logic empty,
output logic full,
output logic fail
);
// read and write pointers
logic [DEPTH_W-1:0] w_ptr = '0;
logic [DEPTH_W-1:0] r_ptr = '0;
// filtered requests
logic w_req_f;
assign w_req_f = w_req && ~full;
logic r_req_f;
assign r_req_f = r_req && ~empty;
true_dual_port_write_first_2_clock_ram #(
.RAM_WIDTH( DATA_W ),
.RAM_DEPTH( DEPTH ),
.INIT_FILE( "" )
) data_ram (
.clka( clk ),
.addra( w_ptr[DEPTH_W-1:0] ),
.ena( w_req_f ),
.wea( 1'b1 ),
.dina( w_data[DATA_W-1:0] ),
.douta( ),
.clkb( clk ),
.addrb( r_ptr[DEPTH_W-1:0] ),
.enb( r_req_f ),
.web( 1'b0 ),
.dinb( '0 ),
.doutb( r_data[DATA_W-1:0] )
);
function [DEPTH_W-1:0] inc_ptr (
input [DEPTH_W-1:0] ptr
);
if( ptr[DEPTH_W-1:0] == DEPTH-1 ) begin
inc_ptr[DEPTH_W-1:0] = '0;
end else begin
inc_ptr[DEPTH_W-1:0] = ptr[DEPTH_W-1:0] + 1'b1;
end
endfunction
always_ff @(posedge clk) begin
if ( ~nrst ) begin
w_ptr[DEPTH_W-1:0] <= '0;
r_ptr[DEPTH_W-1:0] <= '0;
cnt[DEPTH_W-1:0] <= '0;
end else begin
if( w_req_f ) begin
w_ptr[DEPTH_W-1:0] <= inc_ptr(w_ptr[DEPTH_W-1:0]);
end
if( r_req_f ) begin
r_ptr[DEPTH_W-1:0] <= inc_ptr(r_ptr[DEPTH_W-1:0]);
end
if( w_req_f && ~r_req_f ) begin
cnt[DEPTH_W-1:0] <= cnt[DEPTH_W-1:0] + 1'b1;
end else if( ~w_req_f && r_req_f ) begin
cnt[DEPTH_W-1:0] <= cnt[DEPTH_W-1:0] - 1'b1;
end
end
end
always_comb begin
empty = ( cnt[DEPTH_W-1:0] == '0 );
full = ( cnt[DEPTH_W-1:0] == DEPTH );
fail = ( empty && r_req ) ||
( full && w_req );
end
endmodule
module true_dual_port_write_first_2_clock_ram #( parameter
RAM_WIDTH = 16,
RAM_DEPTH = 8,
INIT_FILE = ""
)(
input clka,
input [clogb2(RAM_DEPTH-1)-1:0] addra,
input ena,
input wea,
input [RAM_WIDTH-1:0] dina,
output [RAM_WIDTH-1:0] douta,
input clkb,
input [clogb2(RAM_DEPTH-1)-1:0] addrb,
input enb,
input web,
input [RAM_WIDTH-1:0] dinb,
output [RAM_WIDTH-1:0] doutb
);
reg [RAM_WIDTH-1:0] BRAM [RAM_DEPTH-1:0];
reg [RAM_WIDTH-1:0] ram_data_a = {RAM_WIDTH{1'b0}};
reg [RAM_WIDTH-1:0] ram_data_b = {RAM_WIDTH{1'b0}};
// either initializes the memory values to a specified file or to all zeros
// to match hardware
generate
if (INIT_FILE != "") begin: use_init_file
initial
$readmemh(INIT_FILE, BRAM, 0, RAM_DEPTH-1);
end else begin: init_bram_to_zero
integer ram_index;
initial
for (ram_index = 0; ram_index < RAM_DEPTH; ram_index = ram_index + 1)
BRAM[ram_index] = {RAM_WIDTH{1'b0}};
end
endgenerate
always @(posedge clka)
if (ena)
if (wea) begin
BRAM[addra] <= dina;
ram_data_a <= dina;
end else
ram_data_a <= BRAM[addra];
always @(posedge clkb)
if (enb)
if (web) begin
BRAM[addrb] <= dinb;
ram_data_b <= dinb;
end else
ram_data_b <= BRAM[addrb];
// no output register
assign douta = ram_data_a;
assign doutb = ram_data_b;
// calculates the address width based on specified RAM depth
function integer clogb2;
input integer depth;
for (clogb2=0; depth>0; clogb2=clogb2+1)
depth = depth >> 1;
endfunction
endmodule