1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_eth_fcs_insert.v

321 lines
10 KiB
Coq
Raw Normal View History

2015-02-26 19:00:33 -08:00
/*
Copyright (c) 2015 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream Ethernet FCS inserter
*/
module axis_eth_fcs_insert #
(
parameter ENABLE_PADDING = 0,
parameter MIN_FRAME_LENGTH = 64
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [7:0] input_axis_tdata,
input wire input_axis_tvalid,
output wire input_axis_tready,
input wire input_axis_tlast,
input wire input_axis_tuser,
/*
* AXI output
*/
output wire [7:0] output_axis_tdata,
output wire output_axis_tvalid,
input wire output_axis_tready,
output wire output_axis_tlast,
output wire output_axis_tuser,
/*
* Status
*/
output wire busy
);
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_PAYLOAD = 2'd1,
STATE_PAD = 2'd2,
STATE_FCS = 2'd3;
reg [1:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg [7:0] frame_ptr_reg = 0, frame_ptr_next;
reg busy_reg = 0;
reg input_axis_tready_reg = 0, input_axis_tready_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
wire [31:0] crc_next;
// internal datapath
reg [7:0] output_axis_tdata_int;
reg output_axis_tvalid_int;
reg output_axis_tready_int = 0;
reg output_axis_tlast_int;
reg output_axis_tuser_int;
wire output_axis_tready_int_early;
assign input_axis_tready = input_axis_tready_reg;
assign busy = busy_reg;
eth_crc_8
eth_crc_8_inst (
.data_in(output_axis_tdata_int),
.crc_state(crc_state),
.crc_next(crc_next)
);
always @* begin
state_next = STATE_IDLE;
reset_crc = 0;
update_crc = 0;
frame_ptr_next = frame_ptr_reg;
input_axis_tready_next = 0;
output_axis_tdata_int = 0;
output_axis_tvalid_int = 0;
output_axis_tlast_int = 0;
output_axis_tuser_int = 0;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for data
input_axis_tready_next = output_axis_tready_int_early;
frame_ptr_next = 0;
reset_crc = 1;
output_axis_tdata_int = input_axis_tdata;
output_axis_tvalid_int = input_axis_tvalid;
output_axis_tlast_int = 0;
output_axis_tuser_int = 0;
if (input_axis_tready & input_axis_tvalid) begin
frame_ptr_next = 1;
reset_crc = 0;
update_crc = 1;
state_next = STATE_PAYLOAD;
end else begin
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// transfer payload
input_axis_tready_next = output_axis_tready_int_early;
output_axis_tdata_int = input_axis_tdata;
output_axis_tvalid_int = input_axis_tvalid;
output_axis_tlast_int = 0;
output_axis_tuser_int = 0;
if (input_axis_tready & input_axis_tvalid) begin
frame_ptr_next = frame_ptr_reg + 1;
update_crc = 1;
if (input_axis_tlast) begin
if (input_axis_tuser) begin
output_axis_tlast_int = 1;
output_axis_tuser_int = 1;
reset_crc = 1;
state_next = STATE_IDLE;
end else begin
input_axis_tready_next = 0;
if (ENABLE_PADDING && frame_ptr_next < MIN_FRAME_LENGTH-5) begin
state_next = STATE_PAD;
end else begin
frame_ptr_next = 0;
state_next = STATE_FCS;
end
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_PAYLOAD;
end
end
STATE_PAD: begin
// insert padding
input_axis_tready_next = 0;
output_axis_tdata_int = 0;
output_axis_tvalid_int = 1;
output_axis_tlast_int = 0;
output_axis_tuser_int = 0;
if (output_axis_tready_int) begin
frame_ptr_next = frame_ptr_reg + 1;
update_crc = 1;
if (frame_ptr_next < MIN_FRAME_LENGTH-5) begin
state_next = STATE_PAD;
end else begin
frame_ptr_next = 0;
state_next = STATE_FCS;
end
end
end
STATE_FCS: begin
// send FCS
input_axis_tready_next = 0;
case (frame_ptr_reg)
2'd0: output_axis_tdata_int = ~crc_state[7:0];
2'd1: output_axis_tdata_int = ~crc_state[15:8];
2'd2: output_axis_tdata_int = ~crc_state[23:16];
2'd3: output_axis_tdata_int = ~crc_state[31:24];
endcase
output_axis_tvalid_int = 1;
output_axis_tlast_int = 0;
output_axis_tuser_int = 0;
if (output_axis_tready_int) begin
frame_ptr_next = frame_ptr_reg + 1;
if (frame_ptr_reg < 3) begin
state_next = STATE_FCS;
end else begin
reset_crc = 1;
frame_ptr_next = 0;
output_axis_tlast_int = 1;
input_axis_tready_next = output_axis_tready_int_early;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_FCS;
end
end
endcase
end
always @(posedge clk or posedge rst) begin
if (rst) begin
state_reg <= STATE_IDLE;
frame_ptr_reg <= 0;
input_axis_tready_reg <= 0;
busy_reg <= 0;
crc_state <= 32'hFFFFFFFF;
end else begin
state_reg <= state_next;
frame_ptr_reg <= frame_ptr_next;
input_axis_tready_reg <= input_axis_tready_next;
busy_reg <= state_next != STATE_IDLE;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else if (update_crc) begin
crc_state <= crc_next;
end
end
end
// output datapath logic
reg [7:0] output_axis_tdata_reg = 0;
reg output_axis_tvalid_reg = 0;
reg output_axis_tlast_reg = 0;
reg output_axis_tuser_reg = 0;
reg [7:0] temp_axis_tdata_reg = 0;
reg temp_axis_tvalid_reg = 0;
reg temp_axis_tlast_reg = 0;
reg temp_axis_tuser_reg = 0;
assign output_axis_tdata = output_axis_tdata_reg;
assign output_axis_tvalid = output_axis_tvalid_reg;
assign output_axis_tlast = output_axis_tlast_reg;
assign output_axis_tuser = output_axis_tuser_reg;
// enable ready input next cycle if output is ready or if there is space in both output registers or if there is space in the temp register that will not be filled next cycle
assign output_axis_tready_int_early = output_axis_tready | (~temp_axis_tvalid_reg & ~output_axis_tvalid_reg) | (~temp_axis_tvalid_reg & ~output_axis_tvalid_int);
always @(posedge clk or posedge rst) begin
if (rst) begin
output_axis_tdata_reg <= 0;
output_axis_tvalid_reg <= 0;
output_axis_tlast_reg <= 0;
output_axis_tuser_reg <= 0;
output_axis_tready_int <= 0;
temp_axis_tdata_reg <= 0;
temp_axis_tvalid_reg <= 0;
temp_axis_tlast_reg <= 0;
temp_axis_tuser_reg <= 0;
end else begin
// transfer sink ready state to source
output_axis_tready_int <= output_axis_tready_int_early;
if (output_axis_tready_int) begin
// input is ready
if (output_axis_tready | ~output_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
output_axis_tdata_reg <= output_axis_tdata_int;
output_axis_tvalid_reg <= output_axis_tvalid_int;
output_axis_tlast_reg <= output_axis_tlast_int;
output_axis_tuser_reg <= output_axis_tuser_int;
end else begin
// output is not ready and currently valid, store input in temp
temp_axis_tdata_reg <= output_axis_tdata_int;
temp_axis_tvalid_reg <= output_axis_tvalid_int;
temp_axis_tlast_reg <= output_axis_tlast_int;
temp_axis_tuser_reg <= output_axis_tuser_int;
end
end else if (output_axis_tready) begin
// input is not ready, but output is ready
output_axis_tdata_reg <= temp_axis_tdata_reg;
output_axis_tvalid_reg <= temp_axis_tvalid_reg;
output_axis_tlast_reg <= temp_axis_tlast_reg;
output_axis_tuser_reg <= temp_axis_tuser_reg;
temp_axis_tdata_reg <= 0;
temp_axis_tvalid_reg <= 0;
temp_axis_tlast_reg <= 0;
temp_axis_tuser_reg <= 0;
end
end
end
endmodule