1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_stat_counter.v

367 lines
12 KiB
Coq
Raw Normal View History

/*
2018-02-26 12:25:20 -08:00
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream statistics counter
*/
module axis_stat_counter #
(
2019-07-24 13:54:21 -07:00
// Width of AXI stream interfaces in bits
parameter DATA_WIDTH = 64,
2019-07-24 13:54:21 -07:00
// Propagate tkeep signal
// If disabled, tkeep assumed to be 1'b1
parameter KEEP_ENABLE = (DATA_WIDTH>8),
2019-07-24 13:54:21 -07:00
// tkeep signal width (words per cycle)
2014-11-19 23:06:43 -08:00
parameter KEEP_WIDTH = (DATA_WIDTH/8),
2019-07-24 13:54:21 -07:00
// Prepend data with tag
2014-11-19 23:06:43 -08:00
parameter TAG_ENABLE = 1,
2019-07-24 13:54:21 -07:00
// Tag field width
2014-11-19 23:06:43 -08:00
parameter TAG_WIDTH = 16,
2019-07-24 13:54:21 -07:00
// Count cycles
2014-11-19 23:06:43 -08:00
parameter TICK_COUNT_ENABLE = 1,
2019-07-24 13:54:21 -07:00
// Cycle counter width
2014-11-19 23:06:43 -08:00
parameter TICK_COUNT_WIDTH = 32,
2019-07-24 13:54:21 -07:00
// Count bytes
2014-11-19 23:06:43 -08:00
parameter BYTE_COUNT_ENABLE = 1,
2019-07-24 13:54:21 -07:00
// Byte counter width
2014-11-19 23:06:43 -08:00
parameter BYTE_COUNT_WIDTH = 32,
2019-07-24 13:54:21 -07:00
// Count frames
2014-11-19 23:06:43 -08:00
parameter FRAME_COUNT_ENABLE = 1,
2019-07-24 13:54:21 -07:00
// Frame counter width
2014-11-19 23:06:43 -08:00
parameter FRAME_COUNT_WIDTH = 32
)
(
input wire clk,
input wire rst,
/*
* AXI monitor
*/
input wire [KEEP_WIDTH-1:0] monitor_axis_tkeep,
input wire monitor_axis_tvalid,
input wire monitor_axis_tready,
input wire monitor_axis_tlast,
/*
* AXI status data output
*/
2018-10-25 11:59:13 -07:00
output wire [7:0] m_axis_tdata,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire m_axis_tuser,
/*
* Configuration
*/
input wire [TAG_WIDTH-1:0] tag,
input wire trigger,
/*
* Status
*/
output wire busy
);
2014-11-19 23:06:43 -08:00
localparam TAG_BYTE_WIDTH = (TAG_WIDTH + 7) / 8;
localparam TICK_COUNT_BYTE_WIDTH = (TICK_COUNT_WIDTH + 7) / 8;
localparam BYTE_COUNT_BYTE_WIDTH = (BYTE_COUNT_WIDTH + 7) / 8;
localparam FRAME_COUNT_BYTE_WIDTH = (FRAME_COUNT_WIDTH + 7) / 8;
localparam TOTAL_LENGTH = TAG_BYTE_WIDTH + TICK_COUNT_BYTE_WIDTH + BYTE_COUNT_BYTE_WIDTH + FRAME_COUNT_BYTE_WIDTH;
// state register
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_OUTPUT_DATA = 2'd1;
reg [1:0] state_reg = STATE_IDLE, state_next;
2014-11-19 23:06:43 -08:00
reg [TICK_COUNT_WIDTH-1:0] tick_count_reg = 0, tick_count_next;
reg [BYTE_COUNT_WIDTH-1:0] byte_count_reg = 0, byte_count_next;
reg [FRAME_COUNT_WIDTH-1:0] frame_count_reg = 0, frame_count_next;
reg frame_reg = 1'b0, frame_next;
reg store_output;
2014-11-19 23:06:43 -08:00
reg [$clog2(TOTAL_LENGTH)-1:0] frame_ptr_reg = 0, frame_ptr_next;
2014-11-19 23:06:43 -08:00
reg [TICK_COUNT_WIDTH-1:0] tick_count_output_reg = 0;
reg [BYTE_COUNT_WIDTH-1:0] byte_count_output_reg = 0;
reg [FRAME_COUNT_WIDTH-1:0] frame_count_output_reg = 0;
reg busy_reg = 1'b0;
// internal datapath
2018-10-25 11:59:13 -07:00
reg [7:0] m_axis_tdata_int;
reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg m_axis_tuser_int;
wire m_axis_tready_int_early;
assign busy = busy_reg;
2014-11-19 23:06:43 -08:00
integer offset, i, bit_cnt;
always @* begin
state_next = STATE_IDLE;
tick_count_next = tick_count_reg;
byte_count_next = byte_count_reg;
frame_count_next = frame_count_reg;
frame_next = frame_reg;
2018-10-25 11:59:13 -07:00
m_axis_tdata_int = 8'd0;
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
store_output = 1'b0;
frame_ptr_next = frame_ptr_reg;
// data readout
case (state_reg)
STATE_IDLE: begin
if (trigger) begin
store_output = 1'b1;
tick_count_next = 0;
byte_count_next = 0;
frame_count_next = 0;
frame_ptr_next = 0;
2018-10-25 11:59:13 -07:00
if (m_axis_tready_int_reg) begin
frame_ptr_next = 1;
2014-11-19 23:06:43 -08:00
if (TAG_ENABLE) begin
2018-10-25 11:59:13 -07:00
m_axis_tdata_int = tag[(TAG_BYTE_WIDTH-1)*8 +: 8];
2014-11-19 23:06:43 -08:00
end else if (TICK_COUNT_ENABLE) begin
2018-10-25 11:59:13 -07:00
m_axis_tdata_int = tick_count_reg[(TICK_COUNT_BYTE_WIDTH-1)*8 +: 8];
2014-11-19 23:06:43 -08:00
end else if (BYTE_COUNT_ENABLE) begin
2018-10-25 11:59:13 -07:00
m_axis_tdata_int = byte_count_reg[(BYTE_COUNT_BYTE_WIDTH-1)*8 +: 8];
2014-11-19 23:06:43 -08:00
end else if (FRAME_COUNT_ENABLE) begin
2018-10-25 11:59:13 -07:00
m_axis_tdata_int = frame_count_reg[(FRAME_COUNT_BYTE_WIDTH-1)*8 +: 8];
2014-11-19 23:06:43 -08:00
end
2018-10-25 11:59:13 -07:00
m_axis_tvalid_int = 1'b1;
end
state_next = STATE_OUTPUT_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_OUTPUT_DATA: begin
2018-10-25 11:59:13 -07:00
if (m_axis_tready_int_reg) begin
state_next = STATE_OUTPUT_DATA;
frame_ptr_next = frame_ptr_reg + 1;
2018-10-25 11:59:13 -07:00
m_axis_tvalid_int = 1'b1;
2014-11-19 23:06:43 -08:00
offset = 0;
if (TAG_ENABLE) begin
for (i = TAG_BYTE_WIDTH-1; i >= 0; i = i - 1) begin
if (frame_ptr_reg == offset) begin
2018-10-25 11:59:13 -07:00
m_axis_tdata_int = tag[i*8 +: 8];
2014-11-19 23:06:43 -08:00
end
offset = offset + 1;
end
end
if (TICK_COUNT_ENABLE) begin
for (i = TICK_COUNT_BYTE_WIDTH-1; i >= 0; i = i - 1) begin
if (frame_ptr_reg == offset) begin
2018-10-25 11:59:13 -07:00
m_axis_tdata_int = tick_count_output_reg[i*8 +: 8];
2014-11-19 23:06:43 -08:00
end
offset = offset + 1;
end
2014-11-19 23:06:43 -08:00
end
if (BYTE_COUNT_ENABLE) begin
for (i = BYTE_COUNT_BYTE_WIDTH-1; i >= 0; i = i - 1) begin
if (frame_ptr_reg == offset) begin
2018-10-25 11:59:13 -07:00
m_axis_tdata_int = byte_count_output_reg[i*8 +: 8];
2014-11-19 23:06:43 -08:00
end
offset = offset + 1;
end
end
if (FRAME_COUNT_ENABLE) begin
for (i = FRAME_COUNT_BYTE_WIDTH-1; i >= 0; i = i - 1) begin
if (frame_ptr_reg == offset) begin
2018-10-25 11:59:13 -07:00
m_axis_tdata_int = frame_count_output_reg[i*8 +: 8];
2014-11-19 23:06:43 -08:00
end
offset = offset + 1;
end
end
if (frame_ptr_reg == offset-1) begin
2018-10-25 11:59:13 -07:00
m_axis_tlast_int = 1'b1;
2014-11-19 23:06:43 -08:00
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_OUTPUT_DATA;
end
end
endcase
// stats collection
// increment tick count by number of words that can be transferred per cycle
tick_count_next = tick_count_next + (KEEP_ENABLE ? KEEP_WIDTH : 1);
2018-10-25 11:59:13 -07:00
if (monitor_axis_tready && monitor_axis_tvalid) begin
// valid transfer cycle
// increment byte count by number of words transferred
if (KEEP_ENABLE) begin
bit_cnt = 0;
for (i = 0; i <= KEEP_WIDTH; i = i + 1) begin
//bit_cnt = bit_cnt + monitor_axis_tkeep[i];
if (monitor_axis_tkeep == ({KEEP_WIDTH{1'b1}}) >> (KEEP_WIDTH-i)) bit_cnt = i;
end
byte_count_next = byte_count_next + bit_cnt;
end else begin
byte_count_next = byte_count_next + 1;
2014-11-19 23:06:43 -08:00
end
// count frames
if (monitor_axis_tlast) begin
// end of frame
frame_next = 1'b0;
2018-10-25 11:59:13 -07:00
end else if (!frame_reg) begin
// first word after end of frame
frame_count_next = frame_count_next + 1;
frame_next = 1'b1;
end
end
end
2015-10-08 11:26:32 -07:00
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
tick_count_reg <= 0;
byte_count_reg <= 0;
frame_count_reg <= 0;
frame_reg <= 1'b0;
frame_ptr_reg <= 0;
busy_reg <= 1'b0;
end else begin
state_reg <= state_next;
tick_count_reg <= tick_count_next;
byte_count_reg <= byte_count_next;
frame_count_reg <= frame_count_next;
frame_reg <= frame_next;
frame_ptr_reg <= frame_ptr_next;
busy_reg <= state_next != STATE_IDLE;
end
if (store_output) begin
tick_count_output_reg <= tick_count_reg;
byte_count_output_reg <= byte_count_reg;
frame_count_output_reg <= frame_count_reg;
end
end
// output datapath logic
2018-10-25 11:59:13 -07:00
reg [7:0] m_axis_tdata_reg = 8'd0;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg m_axis_tuser_reg = 1'b0;
2018-10-25 11:59:13 -07:00
reg [7:0] temp_m_axis_tdata_reg = 8'd0;
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg temp_m_axis_tuser_reg = 1'b0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
2018-10-25 11:59:13 -07:00
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = m_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
2018-10-25 11:59:13 -07:00
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
2018-10-25 11:59:13 -07:00
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
2018-10-25 11:59:13 -07:00
if (m_axis_tready_int_reg) begin
// input is ready
2018-10-25 11:59:13 -07:00
if (m_axis_tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
2018-10-25 11:59:13 -07:00
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
2018-10-25 11:59:13 -07:00
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
2018-10-25 11:59:13 -07:00
end else if (m_axis_tready) begin
// input is not ready, but output is ready
2018-10-25 11:59:13 -07:00
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
2014-10-22 15:10:07 -07:00
2015-10-08 11:26:32 -07:00
always @(posedge clk) begin
if (rst) begin
2018-10-25 11:59:13 -07:00
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
2018-10-25 11:59:13 -07:00
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
// datapath
if (store_axis_int_to_output) begin
2018-10-25 11:59:13 -07:00
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
2018-10-25 11:59:13 -07:00
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
2018-10-25 11:59:13 -07:00
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
end
endmodule