1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axi_adapter_wr.v

769 lines
32 KiB
Coq
Raw Normal View History

2018-08-20 19:10:08 -07:00
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 width adapter
*/
module axi_adapter_wr #
(
2018-08-21 22:38:32 -07:00
parameter ADDR_WIDTH = 32,
2018-08-20 19:10:08 -07:00
parameter S_DATA_WIDTH = 32,
parameter S_STRB_WIDTH = (S_DATA_WIDTH/8),
parameter M_DATA_WIDTH = 32,
parameter M_STRB_WIDTH = (M_DATA_WIDTH/8),
parameter ID_WIDTH = 8,
parameter AWUSER_ENABLE = 0,
parameter AWUSER_WIDTH = 1,
parameter WUSER_ENABLE = 0,
parameter WUSER_WIDTH = 1,
parameter BUSER_ENABLE = 0,
parameter BUSER_WIDTH = 1,
parameter CONVERT_BURST = 1,
parameter CONVERT_NARROW_BURST = 0,
parameter FORWARD_ID = 0
2018-08-20 19:10:08 -07:00
)
(
input wire clk,
input wire rst,
/*
* AXI slave interface
*/
input wire [ID_WIDTH-1:0] s_axi_awid,
input wire [ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [7:0] s_axi_awlen,
input wire [2:0] s_axi_awsize,
input wire [1:0] s_axi_awburst,
input wire s_axi_awlock,
input wire [3:0] s_axi_awcache,
input wire [2:0] s_axi_awprot,
input wire [3:0] s_axi_awqos,
input wire [3:0] s_axi_awregion,
input wire [AWUSER_WIDTH-1:0] s_axi_awuser,
input wire s_axi_awvalid,
output wire s_axi_awready,
input wire [S_DATA_WIDTH-1:0] s_axi_wdata,
input wire [S_STRB_WIDTH-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [WUSER_WIDTH-1:0] s_axi_wuser,
input wire s_axi_wvalid,
output wire s_axi_wready,
output wire [ID_WIDTH-1:0] s_axi_bid,
output wire [1:0] s_axi_bresp,
output wire [BUSER_WIDTH-1:0] s_axi_buser,
output wire s_axi_bvalid,
input wire s_axi_bready,
/*
* AXI master interface
*/
output wire [ID_WIDTH-1:0] m_axi_awid,
output wire [ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [7:0] m_axi_awlen,
output wire [2:0] m_axi_awsize,
output wire [1:0] m_axi_awburst,
output wire m_axi_awlock,
output wire [3:0] m_axi_awcache,
output wire [2:0] m_axi_awprot,
output wire [3:0] m_axi_awqos,
output wire [3:0] m_axi_awregion,
output wire [AWUSER_WIDTH-1:0] m_axi_awuser,
output wire m_axi_awvalid,
input wire m_axi_awready,
output wire [M_DATA_WIDTH-1:0] m_axi_wdata,
output wire [M_STRB_WIDTH-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [WUSER_WIDTH-1:0] m_axi_wuser,
output wire m_axi_wvalid,
input wire m_axi_wready,
input wire [ID_WIDTH-1:0] m_axi_bid,
input wire [1:0] m_axi_bresp,
input wire [BUSER_WIDTH-1:0] m_axi_buser,
input wire m_axi_bvalid,
output wire m_axi_bready
);
parameter S_ADDR_BIT_OFFSET = $clog2(S_STRB_WIDTH);
parameter M_ADDR_BIT_OFFSET = $clog2(M_STRB_WIDTH);
parameter S_VALID_ADDR_WIDTH = ADDR_WIDTH - S_ADDR_BIT_OFFSET;
parameter M_VALID_ADDR_WIDTH = ADDR_WIDTH - M_ADDR_BIT_OFFSET;
parameter S_WORD_WIDTH = S_STRB_WIDTH;
parameter M_WORD_WIDTH = M_STRB_WIDTH;
parameter S_WORD_SIZE = S_DATA_WIDTH/S_WORD_WIDTH;
parameter M_WORD_SIZE = M_DATA_WIDTH/M_WORD_WIDTH;
parameter S_BURST_SIZE = $clog2(S_STRB_WIDTH);
parameter M_BURST_SIZE = $clog2(M_STRB_WIDTH);
parameter S_MAX_BURST_SIZE = 256 << S_BURST_SIZE;
parameter M_MAX_BURST_SIZE = 256 << M_BURST_SIZE;
parameter EXPAND = M_STRB_WIDTH > S_STRB_WIDTH;
parameter DATA_WIDTH = EXPAND ? M_DATA_WIDTH : S_DATA_WIDTH;
parameter STRB_WIDTH = EXPAND ? M_STRB_WIDTH : S_STRB_WIDTH;
parameter CYCLE_COUNT = EXPAND ? (M_STRB_WIDTH / S_STRB_WIDTH) : (S_STRB_WIDTH / M_STRB_WIDTH);
parameter CYCLE_COUNT_WIDTH = CYCLE_COUNT == 1 ? 1 : $clog2(CYCLE_COUNT);
parameter CYCLE_COUNT_SHIFT = $clog2(CYCLE_STRB_WIDTH);
parameter CYCLE_DATA_WIDTH = DATA_WIDTH / CYCLE_COUNT;
parameter CYCLE_STRB_WIDTH = STRB_WIDTH / CYCLE_COUNT;
parameter OFFSET_WIDTH = CYCLE_STRB_WIDTH > 1 ? $clog2(CYCLE_STRB_WIDTH) : 1;
parameter ADDR_MASK = {ADDR_WIDTH{1'b1}} << $clog2(CYCLE_STRB_WIDTH);
// bus width assertions
initial begin
if (S_WORD_SIZE * S_STRB_WIDTH != S_DATA_WIDTH) begin
$error("Error: AXI slave interface data width not evenly divisble");
$finish;
end
if (M_WORD_SIZE * M_STRB_WIDTH != M_DATA_WIDTH) begin
$error("Error: AXI master interface data width not evenly divisble");
$finish;
end
if (S_WORD_SIZE != M_WORD_SIZE) begin
$error("Error: word size mismatch");
$finish;
end
if (2**$clog2(S_WORD_WIDTH) != S_WORD_WIDTH) begin
$error("Error: AXI slave interface word width must be even power of two");
$finish;
end
if (2**$clog2(M_WORD_WIDTH) != M_WORD_WIDTH) begin
$error("Error: AXI master interface word width must be even power of two");
$finish;
end
end
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_2 = 2'd2,
STATE_RESP = 2'd3;
reg [1:0] state_reg = STATE_IDLE, state_next;
reg [ID_WIDTH-1:0] id_reg = {ID_WIDTH{1'b0}}, id_next;
reg [ADDR_WIDTH-1:0] addr_reg = {ADDR_WIDTH{1'b0}}, addr_next;
reg [DATA_WIDTH-1:0] data_reg = {DATA_WIDTH{1'b0}}, data_next;
reg [STRB_WIDTH-1:0] strb_reg = {STRB_WIDTH{1'b0}}, strb_next;
reg [WUSER_WIDTH-1:0] wuser_reg = {WUSER_WIDTH{1'b0}}, wuser_next;
reg [7:0] burst_reg = 8'd0, burst_next;
reg [2:0] burst_size_reg = 3'd0, burst_size_next;
reg [7:0] master_burst_reg = 8'd0, master_burst_next;
reg [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
reg burst_active_reg = 1'b0, burst_active_next;
reg s_axi_awready_reg = 1'b0, s_axi_awready_next;
reg s_axi_wready_reg = 1'b0, s_axi_wready_next;
reg [ID_WIDTH-1:0] s_axi_bid_reg = {ID_WIDTH{1'b0}}, s_axi_bid_next;
reg [1:0] s_axi_bresp_reg = 2'd0, s_axi_bresp_next;
reg [BUSER_WIDTH-1:0] s_axi_buser_reg = {BUSER_WIDTH{1'b0}}, s_axi_buser_next;
reg s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
reg [ID_WIDTH-1:0] m_axi_awid_reg = {ID_WIDTH{1'b0}}, m_axi_awid_next;
reg [ADDR_WIDTH-1:0] m_axi_awaddr_reg = {ADDR_WIDTH{1'b0}}, m_axi_awaddr_next;
reg [7:0] m_axi_awlen_reg = 8'd0, m_axi_awlen_next;
reg [2:0] m_axi_awsize_reg = 3'd0, m_axi_awsize_next;
reg [1:0] m_axi_awburst_reg = 2'd0, m_axi_awburst_next;
reg m_axi_awlock_reg = 1'b0, m_axi_awlock_next;
reg [3:0] m_axi_awcache_reg = 4'd0, m_axi_awcache_next;
reg [2:0] m_axi_awprot_reg = 3'd0, m_axi_awprot_next;
reg [3:0] m_axi_awqos_reg = 4'd0, m_axi_awqos_next;
reg [3:0] m_axi_awregion_reg = 4'd0, m_axi_awregion_next;
reg [AWUSER_WIDTH-1:0] m_axi_awuser_reg = {AWUSER_WIDTH{1'b0}}, m_axi_awuser_next;
reg m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
reg m_axi_bready_reg = 1'b0, m_axi_bready_next;
// internal datapath
reg [M_DATA_WIDTH-1:0] m_axi_wdata_int;
reg [M_STRB_WIDTH-1:0] m_axi_wstrb_int;
reg m_axi_wlast_int;
reg [WUSER_WIDTH-1:0] m_axi_wuser_int;
reg m_axi_wvalid_int;
reg m_axi_wready_int_reg = 1'b0;
wire m_axi_wready_int_early;
assign s_axi_awready = s_axi_awready_reg;
assign s_axi_wready = s_axi_wready_reg;
assign s_axi_bid = s_axi_bid_reg;
assign s_axi_bresp = s_axi_bresp_reg;
assign s_axi_buser = BUSER_ENABLE ? s_axi_buser_reg : {BUSER_WIDTH{1'b0}};
assign s_axi_bvalid = s_axi_bvalid_reg;
assign m_axi_awid = FORWARD_ID ? m_axi_awid_reg : {ID_WIDTH{1'b0}};
2018-08-20 19:10:08 -07:00
assign m_axi_awaddr = m_axi_awaddr_reg;
assign m_axi_awlen = m_axi_awlen_reg;
assign m_axi_awsize = m_axi_awsize_reg;
assign m_axi_awburst = m_axi_awburst_reg;
assign m_axi_awlock = m_axi_awlock_reg;
assign m_axi_awcache = m_axi_awcache_reg;
assign m_axi_awprot = m_axi_awprot_reg;
assign m_axi_awqos = m_axi_awqos_reg;
assign m_axi_awregion = m_axi_awregion_reg;
assign m_axi_awuser = AWUSER_ENABLE ? m_axi_awuser_reg : {AWUSER_WIDTH{1'b0}};
assign m_axi_awvalid = m_axi_awvalid_reg;
assign m_axi_bready = m_axi_bready_reg;
integer i;
always @* begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
strb_next = strb_reg;
wuser_next = wuser_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
burst_active_next = burst_active_reg;
s_axi_awready_next = 1'b0;
s_axi_wready_next = 1'b0;
s_axi_bid_next = s_axi_bid_reg;
s_axi_bresp_next = s_axi_bresp_reg;
s_axi_buser_next = s_axi_buser_reg;
s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_bready;
m_axi_awid_next = m_axi_awid_reg;
m_axi_awaddr_next = m_axi_awaddr_reg;
m_axi_awlen_next = m_axi_awlen_reg;
m_axi_awsize_next = m_axi_awsize_reg;
m_axi_awburst_next = m_axi_awburst_reg;
m_axi_awlock_next = m_axi_awlock_reg;
m_axi_awcache_next = m_axi_awcache_reg;
m_axi_awprot_next = m_axi_awprot_reg;
m_axi_awqos_next = m_axi_awqos_reg;
m_axi_awregion_next = m_axi_awregion_reg;
m_axi_awuser_next = m_axi_awuser_reg;
m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_awready;
m_axi_bready_next = 1'b0;
if (CYCLE_COUNT == 1) begin
// master output is same width; direct transfer with no splitting/merging
m_axi_wdata_int = s_axi_wdata;
m_axi_wstrb_int = s_axi_wstrb;
m_axi_wlast_int = s_axi_wlast;
m_axi_wuser_int = s_axi_wuser;
m_axi_wvalid_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axi_awvalid;
if (s_axi_awready && s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_awid;
m_axi_awid_next = s_axi_awid;
m_axi_awaddr_next = s_axi_awaddr;
m_axi_awlen_next = s_axi_awlen;
m_axi_awsize_next = s_axi_awsize;
m_axi_awburst_next = s_axi_awburst;
m_axi_awlock_next = s_axi_awlock;
m_axi_awcache_next = s_axi_awcache;
m_axi_awprot_next = s_axi_awprot;
m_axi_awqos_next = s_axi_awqos;
m_axi_awregion_next = s_axi_awregion;
m_axi_awuser_next = s_axi_awuser;
m_axi_awvalid_next = 1'b1;
s_axi_wready_next = m_axi_wready_int_early;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer write data
s_axi_wready_next = m_axi_wready_int_early;
if (s_axi_wready && s_axi_wvalid) begin
m_axi_wdata_int = s_axi_wdata;
m_axi_wstrb_int = s_axi_wstrb;
m_axi_wlast_int = s_axi_wlast;
m_axi_wuser_int = s_axi_wuser;
m_axi_wvalid_int = 1'b1;
if (s_axi_wlast) begin
// last data word, wait for response
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_bvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axi_bready_next = !s_axi_bvalid;
if (m_axi_bready && m_axi_bvalid) begin
m_axi_bready_next = 1'b0;
s_axi_bid_next = id_reg;
s_axi_bresp_next = m_axi_bresp;
s_axi_buser_next = m_axi_buser;
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axi_awvalid;
state_next = STATE_IDLE;
end else begin
state_next = STATE_RESP;
end
end
endcase
end else if (EXPAND) begin
// master output is wider; merge writes
m_axi_wdata_int = {(M_WORD_WIDTH/S_WORD_WIDTH){s_axi_wdata}};
m_axi_wstrb_int = s_axi_wstrb;
m_axi_wlast_int = s_axi_wlast;
m_axi_wuser_int = s_axi_wuser;
m_axi_wvalid_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axi_awvalid;
data_next = {DATA_WIDTH{1'b0}};
strb_next = {STRB_WIDTH{1'b0}};
if (s_axi_awready && s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_awid;
m_axi_awid_next = s_axi_awid;
m_axi_awaddr_next = s_axi_awaddr;
addr_next = s_axi_awaddr;
burst_next = s_axi_awlen;
burst_size_next = s_axi_awsize;
if (CONVERT_BURST && s_axi_awcache[1] && (CONVERT_NARROW_BURST || s_axi_awsize == $clog2(S_WORD_WIDTH))) begin
2018-08-20 19:10:08 -07:00
// merge writes
// require CONVERT_BURST and awcache[1] set
master_burst_size_next = $clog2(M_WORD_WIDTH);
if (CONVERT_NARROW_BURST) begin
m_axi_awlen_next = (({{S_ADDR_BIT_OFFSET+1{1'b0}}, s_axi_awlen} << s_axi_awsize) + s_axi_awaddr[M_ADDR_BIT_OFFSET-1:0]) >> $clog2(M_WORD_WIDTH);
end else begin
m_axi_awlen_next = ({1'b0, s_axi_awlen} + s_axi_awaddr[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]) >> $clog2(CYCLE_COUNT);
end
2018-08-20 19:10:08 -07:00
m_axi_awsize_next = $clog2(M_WORD_WIDTH);
state_next = STATE_DATA_2;
end else begin
// output narrow burst
master_burst_size_next = s_axi_awsize;
m_axi_awlen_next = s_axi_awlen;
m_axi_awsize_next = s_axi_awsize;
state_next = STATE_DATA;
end
m_axi_awburst_next = s_axi_awburst;
m_axi_awlock_next = s_axi_awlock;
m_axi_awcache_next = s_axi_awcache;
m_axi_awprot_next = s_axi_awprot;
m_axi_awqos_next = s_axi_awqos;
m_axi_awregion_next = s_axi_awregion;
m_axi_awuser_next = s_axi_awuser;
m_axi_awvalid_next = 1'b1;
s_axi_wready_next = m_axi_wready_int_early;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer write data
s_axi_wready_next = m_axi_wready_int_early;
if (s_axi_wready && s_axi_wvalid) begin
m_axi_wdata_int = {(M_WORD_WIDTH/S_WORD_WIDTH){s_axi_wdata}};
m_axi_wstrb_int = s_axi_wstrb << (addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_STRB_WIDTH);
m_axi_wlast_int = s_axi_wlast;
m_axi_wuser_int = s_axi_wuser;
m_axi_wvalid_int = 1'b1;
addr_next = addr_reg + (1 << burst_size_reg);
if (s_axi_wlast) begin
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_bvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_2: begin
s_axi_wready_next = m_axi_wready_int_early;
if (s_axi_wready && s_axi_wvalid) begin
if (CONVERT_NARROW_BURST) begin
for (i = 0; i < S_WORD_WIDTH; i = i + 1) begin
if (s_axi_wstrb[i]) begin
data_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*CYCLE_DATA_WIDTH+i*M_WORD_SIZE +: M_WORD_SIZE] = s_axi_wdata[i*M_WORD_SIZE +: M_WORD_SIZE];
strb_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*CYCLE_STRB_WIDTH+i] = 1'b1;
end
2018-08-20 19:10:08 -07:00
end
end else begin
data_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*CYCLE_DATA_WIDTH +: CYCLE_DATA_WIDTH] = s_axi_wdata;
strb_next[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]*CYCLE_STRB_WIDTH +: CYCLE_STRB_WIDTH] = s_axi_wstrb;
2018-08-20 19:10:08 -07:00
end
m_axi_wdata_int = data_next;
m_axi_wstrb_int = strb_next;
m_axi_wlast_int = s_axi_wlast;
m_axi_wuser_int = s_axi_wuser;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin
data_next = {DATA_WIDTH{1'b0}};
strb_next = {STRB_WIDTH{1'b0}};
m_axi_wvalid_int = 1'b1;
end
if (burst_reg == 0) begin
m_axi_wvalid_int = 1'b1;
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_bvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA_2;
end
end else begin
state_next = STATE_DATA_2;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axi_bready_next = !s_axi_bvalid;
if (m_axi_bready && m_axi_bvalid) begin
m_axi_bready_next = 1'b0;
s_axi_bid_next = id_reg;
s_axi_bresp_next = m_axi_bresp;
s_axi_buser_next = m_axi_buser;
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axi_awvalid;
state_next = STATE_IDLE;
end else begin
state_next = STATE_RESP;
end
end
endcase
end else begin
// master output is narrower; split writes, and possibly split burst
m_axi_wdata_int = data_reg;
m_axi_wstrb_int = strb_reg;
m_axi_wlast_int = 1'b0;
m_axi_wuser_int = wuser_reg;
m_axi_wvalid_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axi_awvalid;
s_axi_bresp_next = 2'd0;
if (s_axi_awready && s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_awid;
m_axi_awid_next = s_axi_awid;
m_axi_awaddr_next = s_axi_awaddr;
addr_next = s_axi_awaddr;
burst_next = s_axi_awlen;
burst_size_next = s_axi_awsize;
burst_active_next = 1'b1;
if (s_axi_awsize > $clog2(M_WORD_WIDTH)) begin
// need to adjust burst size
if ({s_axi_awlen, {$clog2(S_WORD_WIDTH)-$clog2(M_WORD_WIDTH){1'b1}}} >> ($clog2(S_WORD_WIDTH)-s_axi_awsize) > 255) begin
// limit burst length to max
master_burst_next = 8'd255;
end else begin
master_burst_next = {s_axi_awlen, {$clog2(S_WORD_WIDTH)-$clog2(M_WORD_WIDTH){1'b1}}} >> ($clog2(S_WORD_WIDTH)-s_axi_awsize);
end
master_burst_size_next = $clog2(M_WORD_WIDTH);
m_axi_awlen_next = master_burst_next;
m_axi_awsize_next = master_burst_size_next;
end else begin
// pass through narrow (enough) burst
master_burst_next = s_axi_awlen;
master_burst_size_next = s_axi_awsize;
m_axi_awlen_next = s_axi_awlen;
m_axi_awsize_next = s_axi_awsize;
end
m_axi_awburst_next = s_axi_awburst;
m_axi_awlock_next = s_axi_awlock;
m_axi_awcache_next = s_axi_awcache;
m_axi_awprot_next = s_axi_awprot;
m_axi_awqos_next = s_axi_awqos;
m_axi_awregion_next = s_axi_awregion;
m_axi_awuser_next = s_axi_awuser;
m_axi_awvalid_next = 1'b1;
s_axi_wready_next = m_axi_wready_int_early;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
s_axi_wready_next = m_axi_wready_int_early;
if (s_axi_wready && s_axi_wvalid) begin
data_next = s_axi_wdata;
strb_next = s_axi_wstrb;
wuser_next = s_axi_wuser;
m_axi_wdata_int = s_axi_wdata >> (addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_DATA_WIDTH);
m_axi_wstrb_int = s_axi_wstrb >> (addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_STRB_WIDTH);
m_axi_wlast_int = 1'b0;
m_axi_wuser_int = s_axi_wuser;
m_axi_wvalid_int = 1'b1;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
master_burst_next = master_burst_reg - 1;
addr_next = addr_reg + (1 << master_burst_size_reg);
if (master_burst_reg == 0) begin
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_bvalid;
m_axi_wlast_int = 1'b1;
state_next = STATE_RESP;
end else if (addr_next[burst_size_reg] != addr_reg[burst_size_reg]) begin
state_next = STATE_DATA;
end else begin
s_axi_wready_next = 1'b0;
state_next = STATE_DATA_2;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_2: begin
s_axi_wready_next = 1'b0;
if (m_axi_wready_int_reg) begin
m_axi_wdata_int = data_reg >> (addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_DATA_WIDTH);
m_axi_wstrb_int = strb_reg >> (addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET] * M_STRB_WIDTH);
m_axi_wlast_int = 1'b0;
m_axi_wuser_int = wuser_reg;
m_axi_wvalid_int = 1'b1;
master_burst_next = master_burst_reg - 1;
addr_next = addr_reg + (1 << master_burst_size_reg);
if (master_burst_reg == 0) begin
// burst on master interface finished; transfer response
s_axi_wready_next = 1'b0;
m_axi_bready_next = !s_axi_bvalid;
m_axi_wlast_int = 1'b1;
state_next = STATE_RESP;
end else if (addr_next[burst_size_reg] != addr_reg[burst_size_reg]) begin
state_next = STATE_DATA;
end else begin
s_axi_wready_next = 1'b0;
state_next = STATE_DATA_2;
end
end else begin
state_next = STATE_DATA_2;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axi_bready_next = !s_axi_bvalid;
if (m_axi_bready && m_axi_bvalid) begin
m_axi_bready_next = 1'b0;
if (m_axi_bresp != 0) begin
s_axi_bresp_next = m_axi_bresp;
end
if (burst_active_reg) begin
// burst on slave interface still active; start new burst
m_axi_awaddr_next = addr_reg;
if (burst_size_reg > $clog2(M_WORD_WIDTH)) begin
// need to adjust burst size
if ({burst_reg, {$clog2(S_WORD_WIDTH)-$clog2(M_WORD_WIDTH){1'b1}}} >> ($clog2(S_WORD_WIDTH)-burst_size_reg) > 255) begin
// limit burst length to max
master_burst_next = 8'd255;
end else begin
master_burst_next = {burst_reg, {$clog2(S_WORD_WIDTH)-$clog2(M_WORD_WIDTH){1'b1}}} >> ($clog2(S_WORD_WIDTH)-burst_size_reg);
end
master_burst_size_next = $clog2(M_WORD_WIDTH);
m_axi_awlen_next = master_burst_next;
m_axi_awsize_next = master_burst_size_next;
end else begin
// pass through narrow (enough) burst
master_burst_next = burst_reg;
master_burst_size_next = burst_size_reg;
m_axi_awlen_next = burst_reg;
m_axi_awsize_next = burst_size_reg;
end
m_axi_awlen_next = master_burst_next;
m_axi_awsize_next = master_burst_size_reg;
m_axi_awvalid_next = 1'b1;
state_next = STATE_DATA;
end else begin
// burst on slave interface finished; return to idle
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axi_awvalid;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_RESP;
end
end
endcase
end
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_awready_reg <= 1'b0;
s_axi_wready_reg <= 1'b0;
s_axi_bvalid_reg <= 1'b0;
m_axi_awvalid_reg <= 1'b0;
m_axi_bready_reg <= 1'b0;
end else begin
state_reg <= state_next;
s_axi_awready_reg <= s_axi_awready_next;
s_axi_wready_reg <= s_axi_wready_next;
s_axi_bvalid_reg <= s_axi_bvalid_next;
m_axi_awvalid_reg <= m_axi_awvalid_next;
m_axi_bready_reg <= m_axi_bready_next;
end
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
strb_reg <= strb_next;
wuser_reg <= wuser_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
burst_active_reg <= burst_active_next;
s_axi_bid_reg <= s_axi_bid_next;
s_axi_bresp_reg <= s_axi_bresp_next;
s_axi_buser_reg <= s_axi_buser_next;
m_axi_awid_reg <= m_axi_awid_next;
m_axi_awaddr_reg <= m_axi_awaddr_next;
m_axi_awlen_reg <= m_axi_awlen_next;
m_axi_awsize_reg <= m_axi_awsize_next;
m_axi_awburst_reg <= m_axi_awburst_next;
m_axi_awlock_reg <= m_axi_awlock_next;
m_axi_awcache_reg <= m_axi_awcache_next;
m_axi_awprot_reg <= m_axi_awprot_next;
m_axi_awqos_reg <= m_axi_awqos_next;
m_axi_awregion_reg <= m_axi_awregion_next;
m_axi_awuser_reg <= m_axi_awuser_next;
end
// output datapath logic
reg [M_DATA_WIDTH-1:0] m_axi_wdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_STRB_WIDTH-1:0] m_axi_wstrb_reg = {M_STRB_WIDTH{1'b0}};
reg m_axi_wlast_reg = 1'b0;
reg [WUSER_WIDTH-1:0] m_axi_wuser_reg = 1'b0;
reg m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
reg [M_DATA_WIDTH-1:0] temp_m_axi_wdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_STRB_WIDTH-1:0] temp_m_axi_wstrb_reg = {M_STRB_WIDTH{1'b0}};
reg temp_m_axi_wlast_reg = 1'b0;
reg [WUSER_WIDTH-1:0] temp_m_axi_wuser_reg = 1'b0;
reg temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next;
// datapath control
reg store_axi_w_int_to_output;
reg store_axi_w_int_to_temp;
reg store_axi_w_temp_to_output;
assign m_axi_wdata = m_axi_wdata_reg;
assign m_axi_wstrb = m_axi_wstrb_reg;
assign m_axi_wlast = m_axi_wlast_reg;
assign m_axi_wuser = WUSER_ENABLE ? m_axi_wuser_reg : {WUSER_WIDTH{1'b0}};
assign m_axi_wvalid = m_axi_wvalid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axi_wready_int_early = m_axi_wready | (~temp_m_axi_wvalid_reg & (~m_axi_wvalid_reg | ~m_axi_wvalid_int));
always @* begin
// transfer sink ready state to source
m_axi_wvalid_next = m_axi_wvalid_reg;
temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg;
store_axi_w_int_to_output = 1'b0;
store_axi_w_int_to_temp = 1'b0;
store_axi_w_temp_to_output = 1'b0;
if (m_axi_wready_int_reg) begin
// input is ready
if (m_axi_wready | ~m_axi_wvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_temp = 1'b1;
end
end else if (m_axi_wready) begin
// input is not ready, but output is ready
m_axi_wvalid_next = temp_m_axi_wvalid_reg;
temp_m_axi_wvalid_next = 1'b0;
store_axi_w_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axi_wvalid_reg <= 1'b0;
m_axi_wready_int_reg <= 1'b0;
temp_m_axi_wvalid_reg <= 1'b0;
end else begin
m_axi_wvalid_reg <= m_axi_wvalid_next;
m_axi_wready_int_reg <= m_axi_wready_int_early;
temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next;
end
// datapath
if (store_axi_w_int_to_output) begin
m_axi_wdata_reg <= m_axi_wdata_int;
m_axi_wstrb_reg <= m_axi_wstrb_int;
m_axi_wlast_reg <= m_axi_wlast_int;
m_axi_wuser_reg <= m_axi_wuser_int;
end else if (store_axi_w_temp_to_output) begin
m_axi_wdata_reg <= temp_m_axi_wdata_reg;
m_axi_wstrb_reg <= temp_m_axi_wstrb_reg;
m_axi_wlast_reg <= temp_m_axi_wlast_reg;
m_axi_wuser_reg <= temp_m_axi_wuser_reg;
end
if (store_axi_w_int_to_temp) begin
temp_m_axi_wdata_reg <= m_axi_wdata_int;
temp_m_axi_wstrb_reg <= m_axi_wstrb_int;
temp_m_axi_wlast_reg <= m_axi_wlast_int;
temp_m_axi_wuser_reg <= m_axi_wuser_int;
end
end
endmodule