mirror of
https://github.com/corundum/corundum.git
synced 2025-01-16 08:12:53 +08:00
332 lines
13 KiB
Coq
332 lines
13 KiB
Coq
|
/*
|
||
|
|
||
|
Copyright (c) 2019-2021 Alex Forencich
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
The above copyright notice and this permission notice shall be included in
|
||
|
all copies or substantial portions of the Software.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
THE SOFTWARE.
|
||
|
|
||
|
*/
|
||
|
|
||
|
// Language: Verilog 2001
|
||
|
|
||
|
`timescale 1ns / 1ps
|
||
|
|
||
|
/*
|
||
|
* DMA RAM demux (read)
|
||
|
*/
|
||
|
module dma_ram_demux_rd #
|
||
|
(
|
||
|
// Number of ports
|
||
|
parameter PORTS = 2,
|
||
|
// RAM segment count
|
||
|
parameter SEG_COUNT = 2,
|
||
|
// RAM segment data width
|
||
|
parameter SEG_DATA_WIDTH = 64,
|
||
|
// RAM segment address width
|
||
|
parameter SEG_ADDR_WIDTH = 8,
|
||
|
// Input RAM segment select width
|
||
|
parameter S_RAM_SEL_WIDTH = 2,
|
||
|
// Output RAM segment select width
|
||
|
// Additional bits required for response routing
|
||
|
parameter M_RAM_SEL_WIDTH = S_RAM_SEL_WIDTH+$clog2(PORTS)
|
||
|
)
|
||
|
(
|
||
|
input wire clk,
|
||
|
input wire rst,
|
||
|
|
||
|
/*
|
||
|
* RAM interface (from DMA client/interface)
|
||
|
*/
|
||
|
input wire [SEG_COUNT*M_RAM_SEL_WIDTH-1:0] ctrl_rd_cmd_sel,
|
||
|
input wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ctrl_rd_cmd_addr,
|
||
|
input wire [SEG_COUNT-1:0] ctrl_rd_cmd_valid,
|
||
|
output wire [SEG_COUNT-1:0] ctrl_rd_cmd_ready,
|
||
|
output wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] ctrl_rd_resp_data,
|
||
|
output wire [SEG_COUNT-1:0] ctrl_rd_resp_valid,
|
||
|
input wire [SEG_COUNT-1:0] ctrl_rd_resp_ready,
|
||
|
|
||
|
/*
|
||
|
* RAM interface (towards RAM)
|
||
|
*/
|
||
|
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_rd_cmd_sel,
|
||
|
output wire [PORTS*SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr,
|
||
|
output wire [PORTS*SEG_COUNT-1:0] ram_rd_cmd_valid,
|
||
|
input wire [PORTS*SEG_COUNT-1:0] ram_rd_cmd_ready,
|
||
|
input wire [PORTS*SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_rd_resp_data,
|
||
|
input wire [PORTS*SEG_COUNT-1:0] ram_rd_resp_valid,
|
||
|
output wire [PORTS*SEG_COUNT-1:0] ram_rd_resp_ready
|
||
|
);
|
||
|
|
||
|
parameter CL_PORTS = $clog2(PORTS);
|
||
|
|
||
|
parameter S_RAM_SEL_WIDTH_INT = S_RAM_SEL_WIDTH > 0 ? S_RAM_SEL_WIDTH : 1;
|
||
|
|
||
|
parameter FIFO_ADDR_WIDTH = 5;
|
||
|
parameter OUTPUT_FIFO_ADDR_WIDTH = 5;
|
||
|
|
||
|
// check configuration
|
||
|
initial begin
|
||
|
if (M_RAM_SEL_WIDTH < S_RAM_SEL_WIDTH+$clog2(PORTS)) begin
|
||
|
$error("Error: M_RAM_SEL_WIDTH must be at least $clog2(PORTS) larger than S_RAM_SEL_WIDTH (instance %m)");
|
||
|
$finish;
|
||
|
end
|
||
|
end
|
||
|
|
||
|
generate
|
||
|
|
||
|
genvar n, p;
|
||
|
|
||
|
for (n = 0; n < SEG_COUNT; n = n + 1) begin
|
||
|
|
||
|
// FIFO to maintain response ordering
|
||
|
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_wr_ptr_reg = 0;
|
||
|
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_rd_ptr_reg = 0;
|
||
|
reg [CL_PORTS-1:0] fifo_sel[(2**FIFO_ADDR_WIDTH)-1:0];
|
||
|
|
||
|
wire fifo_empty = fifo_wr_ptr_reg == fifo_rd_ptr_reg;
|
||
|
wire fifo_full = fifo_wr_ptr_reg == (fifo_rd_ptr_reg ^ (1 << FIFO_ADDR_WIDTH));
|
||
|
|
||
|
integer i;
|
||
|
|
||
|
initial begin
|
||
|
for (i = 0; i < 2**FIFO_ADDR_WIDTH; i = i + 1) begin
|
||
|
fifo_sel[i] = 0;
|
||
|
end
|
||
|
end
|
||
|
|
||
|
// RAM read command demux
|
||
|
|
||
|
wire [M_RAM_SEL_WIDTH-1:0] seg_ctrl_rd_cmd_sel = ctrl_rd_cmd_sel[M_RAM_SEL_WIDTH*n +: M_RAM_SEL_WIDTH];
|
||
|
wire [SEG_ADDR_WIDTH-1:0] seg_ctrl_rd_cmd_addr = ctrl_rd_cmd_addr[SEG_ADDR_WIDTH*n +: SEG_ADDR_WIDTH];
|
||
|
wire seg_ctrl_rd_cmd_valid = ctrl_rd_cmd_valid[n];
|
||
|
wire seg_ctrl_rd_cmd_ready;
|
||
|
|
||
|
assign ctrl_rd_cmd_ready[n] = seg_ctrl_rd_cmd_ready;
|
||
|
|
||
|
wire [PORTS*S_RAM_SEL_WIDTH-1:0] seg_ram_rd_cmd_sel;
|
||
|
wire [PORTS*SEG_ADDR_WIDTH-1:0] seg_ram_rd_cmd_addr;
|
||
|
wire [PORTS-1:0] seg_ram_rd_cmd_valid;
|
||
|
wire [PORTS-1:0] seg_ram_rd_cmd_ready;
|
||
|
|
||
|
for (p = 0; p < PORTS; p = p + 1) begin
|
||
|
assign ram_rd_cmd_sel[(p*SEG_COUNT+n)*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT] = seg_ram_rd_cmd_sel[p*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
|
||
|
assign ram_rd_cmd_addr[(p*SEG_COUNT+n)*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = seg_ram_rd_cmd_addr[p*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH];
|
||
|
assign ram_rd_cmd_valid[p*SEG_COUNT+n] = seg_ram_rd_cmd_valid[p];
|
||
|
assign seg_ram_rd_cmd_ready[p] = ram_rd_cmd_ready[p*SEG_COUNT+n];
|
||
|
end
|
||
|
|
||
|
// internal datapath
|
||
|
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_rd_cmd_sel_int;
|
||
|
reg [SEG_ADDR_WIDTH-1:0] seg_ram_rd_cmd_addr_int;
|
||
|
reg [PORTS-1:0] seg_ram_rd_cmd_valid_int;
|
||
|
reg seg_ram_rd_cmd_ready_int_reg = 1'b0;
|
||
|
wire seg_ram_rd_cmd_ready_int_early;
|
||
|
|
||
|
assign seg_ctrl_rd_cmd_ready = seg_ram_rd_cmd_ready_int_reg && !fifo_full;
|
||
|
|
||
|
wire [CL_PORTS-1:0] select_cmd = PORTS > 1 ? (seg_ctrl_rd_cmd_sel >> (M_RAM_SEL_WIDTH - CL_PORTS)) : 0;
|
||
|
|
||
|
always @* begin
|
||
|
seg_ram_rd_cmd_sel_int = seg_ctrl_rd_cmd_sel;
|
||
|
seg_ram_rd_cmd_addr_int = seg_ctrl_rd_cmd_addr;
|
||
|
seg_ram_rd_cmd_valid_int = (seg_ctrl_rd_cmd_valid && seg_ctrl_rd_cmd_ready) << select_cmd;
|
||
|
end
|
||
|
|
||
|
always @(posedge clk) begin
|
||
|
if (seg_ctrl_rd_cmd_valid && seg_ctrl_rd_cmd_ready) begin
|
||
|
fifo_sel[fifo_wr_ptr_reg[FIFO_ADDR_WIDTH-1:0]] <= select_cmd;
|
||
|
fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1;
|
||
|
end
|
||
|
|
||
|
if (rst) begin
|
||
|
fifo_wr_ptr_reg <= 0;
|
||
|
end
|
||
|
end
|
||
|
|
||
|
// output datapath logic
|
||
|
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_rd_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
|
||
|
reg [SEG_ADDR_WIDTH-1:0] seg_ram_rd_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
|
||
|
reg [PORTS-1:0] seg_ram_rd_cmd_valid_reg = {PORTS{1'b0}}, seg_ram_rd_cmd_valid_next;
|
||
|
|
||
|
reg [S_RAM_SEL_WIDTH-1:0] temp_seg_ram_rd_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
|
||
|
reg [SEG_ADDR_WIDTH-1:0] temp_seg_ram_rd_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
|
||
|
reg [PORTS-1:0] temp_seg_ram_rd_cmd_valid_reg = {PORTS{1'b0}}, temp_seg_ram_rd_cmd_valid_next;
|
||
|
|
||
|
// datapath control
|
||
|
reg store_axis_resp_int_to_output;
|
||
|
reg store_axis_resp_int_to_temp;
|
||
|
reg store_axis_resp_temp_to_output;
|
||
|
|
||
|
assign seg_ram_rd_cmd_sel = {PORTS{seg_ram_rd_cmd_sel_reg}};
|
||
|
assign seg_ram_rd_cmd_addr = {PORTS{seg_ram_rd_cmd_addr_reg}};
|
||
|
assign seg_ram_rd_cmd_valid = seg_ram_rd_cmd_valid_reg;
|
||
|
|
||
|
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||
|
assign seg_ram_rd_cmd_ready_int_early = (seg_ram_rd_cmd_ready & seg_ram_rd_cmd_valid_reg) || (!temp_seg_ram_rd_cmd_valid_reg && (!seg_ram_rd_cmd_valid_reg || !seg_ram_rd_cmd_valid_int));
|
||
|
|
||
|
always @* begin
|
||
|
// transfer sink ready state to source
|
||
|
seg_ram_rd_cmd_valid_next = seg_ram_rd_cmd_valid_reg;
|
||
|
temp_seg_ram_rd_cmd_valid_next = temp_seg_ram_rd_cmd_valid_reg;
|
||
|
|
||
|
store_axis_resp_int_to_output = 1'b0;
|
||
|
store_axis_resp_int_to_temp = 1'b0;
|
||
|
store_axis_resp_temp_to_output = 1'b0;
|
||
|
|
||
|
if (seg_ram_rd_cmd_ready_int_reg) begin
|
||
|
// input is ready
|
||
|
if ((seg_ram_rd_cmd_ready & seg_ram_rd_cmd_valid_reg) || !seg_ram_rd_cmd_valid_reg) begin
|
||
|
// output is ready or currently not valid, transfer data to output
|
||
|
seg_ram_rd_cmd_valid_next = seg_ram_rd_cmd_valid_int;
|
||
|
store_axis_resp_int_to_output = 1'b1;
|
||
|
end else begin
|
||
|
// output is not ready, store input in temp
|
||
|
temp_seg_ram_rd_cmd_valid_next = seg_ram_rd_cmd_valid_int;
|
||
|
store_axis_resp_int_to_temp = 1'b1;
|
||
|
end
|
||
|
end else if (seg_ram_rd_cmd_ready & seg_ram_rd_cmd_valid_reg) begin
|
||
|
// input is not ready, but output is ready
|
||
|
seg_ram_rd_cmd_valid_next = temp_seg_ram_rd_cmd_valid_reg;
|
||
|
temp_seg_ram_rd_cmd_valid_next = {PORTS{1'b0}};
|
||
|
store_axis_resp_temp_to_output = 1'b1;
|
||
|
end
|
||
|
end
|
||
|
|
||
|
always @(posedge clk) begin
|
||
|
if (rst) begin
|
||
|
seg_ram_rd_cmd_valid_reg <= {PORTS{1'b0}};
|
||
|
seg_ram_rd_cmd_ready_int_reg <= 1'b0;
|
||
|
temp_seg_ram_rd_cmd_valid_reg <= {PORTS{1'b0}};
|
||
|
end else begin
|
||
|
seg_ram_rd_cmd_valid_reg <= seg_ram_rd_cmd_valid_next;
|
||
|
seg_ram_rd_cmd_ready_int_reg <= seg_ram_rd_cmd_ready_int_early;
|
||
|
temp_seg_ram_rd_cmd_valid_reg <= temp_seg_ram_rd_cmd_valid_next;
|
||
|
end
|
||
|
|
||
|
// datapath
|
||
|
if (store_axis_resp_int_to_output) begin
|
||
|
seg_ram_rd_cmd_sel_reg <= seg_ram_rd_cmd_sel_int;
|
||
|
seg_ram_rd_cmd_addr_reg <= seg_ram_rd_cmd_addr_int;
|
||
|
end else if (store_axis_resp_temp_to_output) begin
|
||
|
seg_ram_rd_cmd_sel_reg <= temp_seg_ram_rd_cmd_sel_reg;
|
||
|
seg_ram_rd_cmd_addr_reg <= temp_seg_ram_rd_cmd_addr_reg;
|
||
|
end
|
||
|
|
||
|
if (store_axis_resp_int_to_temp) begin
|
||
|
temp_seg_ram_rd_cmd_sel_reg <= seg_ram_rd_cmd_sel_int;
|
||
|
temp_seg_ram_rd_cmd_addr_reg <= seg_ram_rd_cmd_addr_int;
|
||
|
end
|
||
|
end
|
||
|
|
||
|
// RAM read response mux
|
||
|
|
||
|
wire [PORTS*SEG_DATA_WIDTH-1:0] seg_ram_rd_resp_data;
|
||
|
wire [PORTS-1:0] seg_ram_rd_resp_valid;
|
||
|
wire [PORTS-1:0] seg_ram_rd_resp_ready;
|
||
|
|
||
|
for (p = 0; p < PORTS; p = p + 1) begin
|
||
|
assign seg_ram_rd_resp_data[p*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = ram_rd_resp_data[(p*SEG_COUNT+n)*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
|
||
|
assign seg_ram_rd_resp_valid[p] = ram_rd_resp_valid[p*SEG_COUNT+n];
|
||
|
assign ram_rd_resp_ready[p*SEG_COUNT+n] = seg_ram_rd_resp_ready[p];
|
||
|
end
|
||
|
|
||
|
wire [SEG_DATA_WIDTH-1:0] seg_ctrl_rd_resp_data;
|
||
|
wire seg_ctrl_rd_resp_valid;
|
||
|
wire seg_ctrl_rd_resp_ready = ctrl_rd_resp_ready[n];
|
||
|
|
||
|
assign ctrl_rd_resp_data[n*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = seg_ctrl_rd_resp_data;
|
||
|
assign ctrl_rd_resp_valid[n] = seg_ctrl_rd_resp_valid;
|
||
|
|
||
|
// internal datapath
|
||
|
reg [SEG_DATA_WIDTH-1:0] seg_ctrl_rd_resp_data_int;
|
||
|
reg seg_ctrl_rd_resp_valid_int;
|
||
|
wire seg_ctrl_rd_resp_ready_int;
|
||
|
|
||
|
wire [CL_PORTS-1:0] select_resp = fifo_sel[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]];
|
||
|
|
||
|
assign seg_ram_rd_resp_ready = (seg_ctrl_rd_resp_ready_int && !fifo_empty) << select_resp;
|
||
|
|
||
|
// mux for incoming packet
|
||
|
wire [SEG_DATA_WIDTH-1:0] current_resp_data = seg_ram_rd_resp_data[select_resp*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
|
||
|
wire current_resp_valid = seg_ram_rd_resp_valid[select_resp];
|
||
|
wire current_resp_ready = seg_ram_rd_resp_ready[select_resp];
|
||
|
|
||
|
always @* begin
|
||
|
// pass through selected packet data
|
||
|
seg_ctrl_rd_resp_data_int = current_resp_data;
|
||
|
seg_ctrl_rd_resp_valid_int = current_resp_valid && seg_ctrl_rd_resp_ready_int && !fifo_empty;
|
||
|
end
|
||
|
|
||
|
always @(posedge clk) begin
|
||
|
if (current_resp_valid && seg_ctrl_rd_resp_ready_int && !fifo_empty) begin
|
||
|
fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1;
|
||
|
end
|
||
|
|
||
|
if (rst) begin
|
||
|
fifo_rd_ptr_reg <= 0;
|
||
|
end
|
||
|
end
|
||
|
|
||
|
// output datapath logic
|
||
|
reg [SEG_DATA_WIDTH-1:0] seg_ctrl_rd_resp_data_reg = {SEG_DATA_WIDTH{1'b0}};
|
||
|
reg seg_ctrl_rd_resp_valid_reg = 1'b0;
|
||
|
|
||
|
reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_wr_ptr_reg = 0;
|
||
|
reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_rd_ptr_reg = 0;
|
||
|
reg out_fifo_half_full_reg = 1'b0;
|
||
|
|
||
|
wire out_fifo_full = out_fifo_wr_ptr_reg == (out_fifo_rd_ptr_reg ^ {1'b1, {OUTPUT_FIFO_ADDR_WIDTH{1'b0}}});
|
||
|
wire out_fifo_empty = out_fifo_wr_ptr_reg == out_fifo_rd_ptr_reg;
|
||
|
|
||
|
(* ram_style = "distributed" *)
|
||
|
reg [SEG_DATA_WIDTH-1:0] out_fifo_rd_resp_data[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
|
||
|
|
||
|
assign seg_ctrl_rd_resp_ready_int = !out_fifo_half_full_reg;
|
||
|
|
||
|
assign seg_ctrl_rd_resp_data = seg_ctrl_rd_resp_data_reg;
|
||
|
assign seg_ctrl_rd_resp_valid = seg_ctrl_rd_resp_valid_reg;
|
||
|
|
||
|
always @(posedge clk) begin
|
||
|
seg_ctrl_rd_resp_valid_reg <= seg_ctrl_rd_resp_valid_reg && !seg_ctrl_rd_resp_ready;
|
||
|
|
||
|
out_fifo_half_full_reg <= $unsigned(out_fifo_wr_ptr_reg - out_fifo_rd_ptr_reg) >= 2**(OUTPUT_FIFO_ADDR_WIDTH-1);
|
||
|
|
||
|
if (!out_fifo_full && seg_ctrl_rd_resp_valid_int) begin
|
||
|
out_fifo_rd_resp_data[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= seg_ctrl_rd_resp_data_int;
|
||
|
out_fifo_wr_ptr_reg <= out_fifo_wr_ptr_reg + 1;
|
||
|
end
|
||
|
|
||
|
if (!out_fifo_empty && (!seg_ctrl_rd_resp_valid_reg || seg_ctrl_rd_resp_ready)) begin
|
||
|
seg_ctrl_rd_resp_data_reg <= out_fifo_rd_resp_data[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
|
||
|
seg_ctrl_rd_resp_valid_reg <= 1'b1;
|
||
|
out_fifo_rd_ptr_reg <= out_fifo_rd_ptr_reg + 1;
|
||
|
end
|
||
|
|
||
|
if (rst) begin
|
||
|
out_fifo_wr_ptr_reg <= 0;
|
||
|
out_fifo_rd_ptr_reg <= 0;
|
||
|
seg_ctrl_rd_resp_valid_reg <= 1'b0;
|
||
|
end
|
||
|
end
|
||
|
|
||
|
end
|
||
|
|
||
|
endgenerate
|
||
|
|
||
|
endmodule
|