1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/fpga/common/rtl/led_sreg_driver.v

162 lines
4.3 KiB
Coq
Raw Normal View History

2020-09-22 23:11:25 -07:00
/*
Copyright (c) 2020 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
2020-09-22 23:11:25 -07:00
`timescale 1ns / 1ps
`default_nettype none
2020-09-22 23:11:25 -07:00
/*
* LED shift register driver
*/
module led_sreg_driver #(
// number of LEDs
parameter COUNT = 8,
// invert output
parameter INVERT = 0,
// reverse order
parameter REVERSE = 0,
// interleave A and B inputs, otherwise only use A
parameter INTERLEAVE = 0,
2020-09-22 23:11:25 -07:00
// clock prescale
parameter PRESCALE = 31
)
(
input wire clk,
input wire rst,
input wire [COUNT-1:0] led_a,
input wire [COUNT-1:0] led_b,
2020-09-22 23:11:25 -07:00
output wire sreg_d,
output wire sreg_ld,
output wire sreg_clk
);
localparam COUNT_INT = INTERLEAVE ? COUNT*2 : COUNT;
localparam CL_COUNT = $clog2(COUNT_INT+1);
2020-09-22 23:11:25 -07:00
localparam CL_PRESCALE = $clog2(PRESCALE+1);
reg [CL_COUNT-1:0] count_reg = 0;
reg [CL_PRESCALE-1:0] prescale_count_reg = 0;
reg enable_reg = 1'b0;
reg update_reg = 1'b1;
reg cycle_reg = 1'b0;
reg [COUNT_INT-1:0] led_sync_reg_1 = 0;
reg [COUNT_INT-1:0] led_sync_reg_2 = 0;
reg [COUNT_INT-1:0] led_reg = 0;
2020-09-22 23:11:25 -07:00
reg sreg_d_reg = 1'b0;
reg sreg_ld_reg = 1'b0;
reg sreg_clk_reg = 1'b0;
assign sreg_d = INVERT ? !sreg_d_reg : sreg_d_reg;
assign sreg_ld = sreg_ld_reg;
assign sreg_clk = sreg_clk_reg;
integer i;
2020-09-22 23:11:25 -07:00
always @(posedge clk) begin
if (INTERLEAVE) begin
for (i = 0; i < COUNT; i = i + 1) begin
led_sync_reg_1[i*2 +: 2] <= {led_b[i], led_a[i]};
end
end else begin
led_sync_reg_1 <= led_a;
end
2020-09-22 23:11:25 -07:00
led_sync_reg_2 <= led_sync_reg_1;
enable_reg <= 1'b0;
if (prescale_count_reg) begin
prescale_count_reg <= prescale_count_reg - 1;
end else begin
enable_reg <= 1'b1;
prescale_count_reg <= PRESCALE;
end
if (enable_reg) begin
if (cycle_reg) begin
cycle_reg <= 1'b0;
sreg_clk_reg <= 1'b1;
end else if (count_reg) begin
sreg_clk_reg <= 1'b0;
sreg_ld_reg <= 1'b0;
if (count_reg < COUNT_INT) begin
2020-09-22 23:11:25 -07:00
count_reg <= count_reg + 1;
cycle_reg <= 1'b1;
if (REVERSE) begin
sreg_d_reg <= led_reg[COUNT_INT-1-count_reg];
end else begin
sreg_d_reg <= led_reg[count_reg];
end
2020-09-22 23:11:25 -07:00
end else begin
count_reg <= 0;
cycle_reg <= 1'b0;
sreg_d_reg <= 1'b0;
sreg_ld_reg <= 1'b1;
end
end else begin
sreg_clk_reg <= 1'b0;
sreg_ld_reg <= 1'b0;
if (update_reg) begin
update_reg <= 1'b0;
count_reg <= 1;
cycle_reg <= 1'b1;
if (REVERSE) begin
sreg_d_reg <= led_reg[COUNT_INT-1];
end else begin
sreg_d_reg <= led_reg[0];
end
2020-09-22 23:11:25 -07:00
end
end
end
if (led_sync_reg_2 != led_reg) begin
led_reg <= led_sync_reg_2;
update_reg <= 1'b1;
end
if (rst) begin
count_reg <= 0;
prescale_count_reg <= 0;
enable_reg <= 1'b0;
update_reg <= 1'b1;
cycle_reg <= 1'b0;
led_reg <= 0;
sreg_d_reg <= 1'b0;
sreg_ld_reg <= 1'b0;
sreg_clk_reg <= 1'b0;
end
end
endmodule
`resetall