1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_adapter.v

559 lines
22 KiB
Coq
Raw Normal View History

/*
2018-02-26 12:25:20 -08:00
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream bus width adapter
*/
module axis_adapter #
(
2019-07-24 13:54:21 -07:00
// Width of input AXI stream interface in bits
2018-10-25 10:19:32 -07:00
parameter S_DATA_WIDTH = 8,
2019-07-24 13:54:21 -07:00
// Propagate tkeep signal on input interface
// If disabled, tkeep assumed to be 1'b1
2018-10-25 10:19:32 -07:00
parameter S_KEEP_ENABLE = (S_DATA_WIDTH>8),
2019-07-24 13:54:21 -07:00
// tkeep signal width (words per cycle) on input interface
2018-10-25 10:19:32 -07:00
parameter S_KEEP_WIDTH = (S_DATA_WIDTH/8),
2019-07-24 13:54:21 -07:00
// Width of output AXI stream interface in bits
2018-10-25 10:19:32 -07:00
parameter M_DATA_WIDTH = 8,
2019-07-24 13:54:21 -07:00
// Propagate tkeep signal on output interface
// If disabled, tkeep assumed to be 1'b1
2018-10-25 10:19:32 -07:00
parameter M_KEEP_ENABLE = (M_DATA_WIDTH>8),
2019-07-24 13:54:21 -07:00
// tkeep signal width (words per cycle) on output interface
2018-10-25 10:19:32 -07:00
parameter M_KEEP_WIDTH = (M_DATA_WIDTH/8),
2019-07-24 13:54:21 -07:00
// Propagate tid signal
parameter ID_ENABLE = 0,
2019-07-24 13:54:21 -07:00
// tid signal width
parameter ID_WIDTH = 8,
2019-07-24 13:54:21 -07:00
// Propagate tdest signal
parameter DEST_ENABLE = 0,
2019-07-24 13:54:21 -07:00
// tdest signal width
parameter DEST_WIDTH = 8,
2019-07-24 13:54:21 -07:00
// Propagate tuser signal
parameter USER_ENABLE = 1,
2019-07-24 13:54:21 -07:00
// tuser signal width
parameter USER_WIDTH = 1
)
(
2018-10-25 10:19:32 -07:00
input wire clk,
input wire rst,
/*
* AXI input
*/
2018-10-25 10:19:32 -07:00
input wire [S_DATA_WIDTH-1:0] s_axis_tdata,
input wire [S_KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [ID_WIDTH-1:0] s_axis_tid,
input wire [DEST_WIDTH-1:0] s_axis_tdest,
input wire [USER_WIDTH-1:0] s_axis_tuser,
/*
* AXI output
*/
2018-10-25 10:19:32 -07:00
output wire [M_DATA_WIDTH-1:0] m_axis_tdata,
output wire [M_KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire [ID_WIDTH-1:0] m_axis_tid,
output wire [DEST_WIDTH-1:0] m_axis_tdest,
output wire [USER_WIDTH-1:0] m_axis_tuser
);
// force keep width to 1 when disabled
parameter S_KEEP_WIDTH_INT = S_KEEP_ENABLE ? S_KEEP_WIDTH : 1;
parameter M_KEEP_WIDTH_INT = M_KEEP_ENABLE ? M_KEEP_WIDTH : 1;
2016-06-27 11:27:04 -07:00
// bus word sizes (must be identical)
parameter S_DATA_WORD_SIZE = S_DATA_WIDTH / S_KEEP_WIDTH_INT;
parameter M_DATA_WORD_SIZE = M_DATA_WIDTH / M_KEEP_WIDTH_INT;
// output bus is wider
parameter EXPAND_BUS = M_KEEP_WIDTH_INT > S_KEEP_WIDTH_INT;
// total data and keep widths
parameter DATA_WIDTH = EXPAND_BUS ? M_DATA_WIDTH : S_DATA_WIDTH;
parameter KEEP_WIDTH = EXPAND_BUS ? M_KEEP_WIDTH_INT : S_KEEP_WIDTH_INT;
2018-12-03 12:40:06 -08:00
// required number of segments in wider bus
parameter SEGMENT_COUNT = EXPAND_BUS ? (M_KEEP_WIDTH_INT / S_KEEP_WIDTH_INT) : (S_KEEP_WIDTH_INT / M_KEEP_WIDTH_INT);
parameter SEGMENT_COUNT_WIDTH = SEGMENT_COUNT == 1 ? 1 : $clog2(SEGMENT_COUNT);
// data width and keep width per segment
parameter SEGMENT_DATA_WIDTH = DATA_WIDTH / SEGMENT_COUNT;
parameter SEGMENT_KEEP_WIDTH = KEEP_WIDTH / SEGMENT_COUNT;
// bus width assertions
initial begin
2018-10-25 10:19:32 -07:00
if (S_DATA_WORD_SIZE * S_KEEP_WIDTH_INT != S_DATA_WIDTH) begin
$error("Error: input data width not evenly divisble (instance %m)");
$finish;
end
2018-10-25 10:19:32 -07:00
if (M_DATA_WORD_SIZE * M_KEEP_WIDTH_INT != M_DATA_WIDTH) begin
$error("Error: output data width not evenly divisble (instance %m)");
$finish;
end
2018-10-25 10:19:32 -07:00
if (S_DATA_WORD_SIZE != M_DATA_WORD_SIZE) begin
$error("Error: word size mismatch (instance %m)");
$finish;
end
end
// state register
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_TRANSFER_IN = 3'd1,
STATE_TRANSFER_OUT = 3'd2;
reg [2:0] state_reg = STATE_IDLE, state_next;
2018-12-03 12:40:06 -08:00
reg [SEGMENT_COUNT_WIDTH-1:0] segment_count_reg = 0, segment_count_next;
2018-12-03 12:40:06 -08:00
reg last_segment;
2015-04-19 23:33:34 -07:00
reg [DATA_WIDTH-1:0] temp_tdata_reg = {DATA_WIDTH{1'b0}}, temp_tdata_next;
reg [KEEP_WIDTH-1:0] temp_tkeep_reg = {KEEP_WIDTH{1'b0}}, temp_tkeep_next;
reg temp_tlast_reg = 1'b0, temp_tlast_next;
reg [ID_WIDTH-1:0] temp_tid_reg = {ID_WIDTH{1'b0}}, temp_tid_next;
reg [DEST_WIDTH-1:0] temp_tdest_reg = {DEST_WIDTH{1'b0}}, temp_tdest_next;
reg [USER_WIDTH-1:0] temp_tuser_reg = {USER_WIDTH{1'b0}}, temp_tuser_next;
// internal datapath
2018-10-25 10:19:32 -07:00
reg [M_DATA_WIDTH-1:0] m_axis_tdata_int;
reg [M_KEEP_WIDTH-1:0] m_axis_tkeep_int;
reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg [ID_WIDTH-1:0] m_axis_tid_int;
reg [DEST_WIDTH-1:0] m_axis_tdest_int;
reg [USER_WIDTH-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early;
2018-10-25 10:19:32 -07:00
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
2018-10-25 10:19:32 -07:00
assign s_axis_tready = s_axis_tready_reg;
always @* begin
state_next = STATE_IDLE;
2018-12-03 12:40:06 -08:00
segment_count_next = segment_count_reg;
2018-12-03 12:40:06 -08:00
last_segment = 0;
2018-10-25 10:29:31 -07:00
temp_tdata_next = temp_tdata_reg;
temp_tkeep_next = temp_tkeep_reg;
temp_tlast_next = temp_tlast_reg;
temp_tid_next = temp_tid_reg;
temp_tdest_next = temp_tdest_reg;
temp_tuser_next = temp_tuser_reg;
2018-10-25 10:29:31 -07:00
if (EXPAND_BUS) begin
m_axis_tdata_int = temp_tdata_reg;
m_axis_tkeep_int = temp_tkeep_reg;
m_axis_tlast_int = temp_tlast_reg;
end else begin
m_axis_tdata_int = {M_DATA_WIDTH{1'b0}};
m_axis_tkeep_int = {M_KEEP_WIDTH{1'b0}};
m_axis_tlast_int = 1'b0;
end
2018-10-25 10:19:32 -07:00
m_axis_tvalid_int = 1'b0;
2018-10-25 10:29:31 -07:00
m_axis_tid_int = temp_tid_reg;
m_axis_tdest_int = temp_tdest_reg;
m_axis_tuser_int = temp_tuser_reg;
2018-10-25 10:19:32 -07:00
s_axis_tready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - no data in registers
2018-12-03 12:40:06 -08:00
if (SEGMENT_COUNT == 1) begin
// output and input same width - just act like a register
// accept data next cycle if output register ready next cycle
2018-10-25 10:19:32 -07:00
s_axis_tready_next = m_axis_tready_int_early;
// transfer through
2018-10-25 10:19:32 -07:00
m_axis_tdata_int = s_axis_tdata;
m_axis_tkeep_int = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1;
m_axis_tvalid_int = s_axis_tvalid;
m_axis_tlast_int = s_axis_tlast;
m_axis_tid_int = s_axis_tid;
m_axis_tdest_int = s_axis_tdest;
m_axis_tuser_int = s_axis_tuser;
state_next = STATE_IDLE;
end else if (EXPAND_BUS) begin
// output bus is wider
// accept new data
2018-10-25 10:19:32 -07:00
s_axis_tready_next = 1'b1;
2018-10-25 10:19:32 -07:00
if (s_axis_tready && s_axis_tvalid) begin
// word transfer in - store it in data register
// pass complete input word, zero-extended to temp register
2018-10-25 10:19:32 -07:00
temp_tdata_next = s_axis_tdata;
temp_tkeep_next = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1;
temp_tlast_next = s_axis_tlast;
temp_tid_next = s_axis_tid;
temp_tdest_next = s_axis_tdest;
temp_tuser_next = s_axis_tuser;
2018-12-03 12:40:06 -08:00
// first input segment complete
segment_count_next = 1;
2018-10-25 10:19:32 -07:00
if (s_axis_tlast) begin
2018-12-03 12:40:06 -08:00
// got last signal on first segment, so output it
2018-10-25 10:19:32 -07:00
s_axis_tready_next = 1'b0;
state_next = STATE_TRANSFER_OUT;
end else begin
// otherwise, transfer in the rest of the words
2018-10-25 10:19:32 -07:00
s_axis_tready_next = 1'b1;
state_next = STATE_TRANSFER_IN;
end
end else begin
state_next = STATE_IDLE;
end
end else begin
// output bus is narrower
// accept new data
2018-10-25 10:19:32 -07:00
s_axis_tready_next = 1'b1;
2018-10-25 10:19:32 -07:00
if (s_axis_tready && s_axis_tvalid) begin
// word transfer in - store it in data register
2018-12-03 12:40:06 -08:00
segment_count_next = 0;
// is this the last segment?
if (SEGMENT_COUNT == 1) begin
// last segment by counter value
last_segment = 1'b1;
end else if (S_KEEP_ENABLE && s_axis_tkeep[SEGMENT_KEEP_WIDTH-1:0] != {SEGMENT_KEEP_WIDTH{1'b1}}) begin
// last segment by tkeep fall in current segment
last_segment = 1'b1;
end else if (S_KEEP_ENABLE && s_axis_tkeep[(SEGMENT_KEEP_WIDTH*2)-1:SEGMENT_KEEP_WIDTH] == {SEGMENT_KEEP_WIDTH{1'b0}}) begin
// last segment by tkeep fall at end of current segment
last_segment = 1'b1;
2015-04-19 23:33:34 -07:00
end else begin
2018-12-03 12:40:06 -08:00
last_segment = 1'b0;
2015-04-19 23:33:34 -07:00
end
// pass complete input word, zero-extended to temp register
2018-10-25 10:19:32 -07:00
temp_tdata_next = s_axis_tdata;
temp_tkeep_next = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1;
temp_tlast_next = s_axis_tlast;
temp_tid_next = s_axis_tid;
temp_tdest_next = s_axis_tdest;
temp_tuser_next = s_axis_tuser;
// short-circuit and get first word out the door
2018-12-03 12:40:06 -08:00
m_axis_tdata_int = s_axis_tdata[SEGMENT_DATA_WIDTH-1:0];
m_axis_tkeep_int = s_axis_tkeep[SEGMENT_KEEP_WIDTH-1:0];
2018-10-25 10:19:32 -07:00
m_axis_tvalid_int = 1'b1;
2018-12-03 12:40:06 -08:00
m_axis_tlast_int = s_axis_tlast & last_segment;
2018-10-25 10:19:32 -07:00
m_axis_tid_int = s_axis_tid;
m_axis_tdest_int = s_axis_tdest;
m_axis_tuser_int = s_axis_tuser;
if (m_axis_tready_int_reg) begin
// if output register is ready for first word, then move on to the next one
2018-12-03 12:40:06 -08:00
segment_count_next = 1;
end
2018-12-03 12:40:06 -08:00
if (!last_segment || !m_axis_tready_int_reg) begin
2015-04-19 23:33:34 -07:00
// continue outputting words
2018-10-25 10:19:32 -07:00
s_axis_tready_next = 1'b0;
2015-04-19 23:33:34 -07:00
state_next = STATE_TRANSFER_OUT;
end else begin
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_IDLE;
end
end
end
STATE_TRANSFER_IN: begin
// transfer word to temp registers
// only used when output is wider
// accept new data
2018-10-25 10:19:32 -07:00
s_axis_tready_next = 1'b1;
2018-10-25 10:19:32 -07:00
if (s_axis_tready && s_axis_tvalid) begin
// word transfer in - store in data register
2018-12-03 12:40:06 -08:00
temp_tdata_next[segment_count_reg*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH] = s_axis_tdata;
temp_tkeep_next[segment_count_reg*SEGMENT_KEEP_WIDTH +: SEGMENT_KEEP_WIDTH] = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1;
2018-10-25 10:19:32 -07:00
temp_tlast_next = s_axis_tlast;
temp_tid_next = s_axis_tid;
temp_tdest_next = s_axis_tdest;
temp_tuser_next = s_axis_tuser;
2018-12-03 12:40:06 -08:00
segment_count_next = segment_count_reg + 1;
2018-12-03 12:40:06 -08:00
if ((segment_count_reg == SEGMENT_COUNT-1) || s_axis_tlast) begin
// terminated by counter or tlast signal, output complete word
// read input word next cycle if output will be ready
2018-10-25 10:19:32 -07:00
s_axis_tready_next = m_axis_tready_int_early;
state_next = STATE_TRANSFER_OUT;
end else begin
// more words to read
2018-10-25 10:19:32 -07:00
s_axis_tready_next = 1'b1;
state_next = STATE_TRANSFER_IN;
end
end else begin
state_next = STATE_TRANSFER_IN;
end
end
STATE_TRANSFER_OUT: begin
// transfer word to output registers
if (EXPAND_BUS) begin
// output bus is wider
// do not accept new data
2018-10-25 10:19:32 -07:00
s_axis_tready_next = 1'b0;
// single-cycle output of entire stored word (output wider)
2018-10-25 10:19:32 -07:00
m_axis_tdata_int = temp_tdata_reg;
m_axis_tkeep_int = temp_tkeep_reg;
m_axis_tvalid_int = 1'b1;
m_axis_tlast_int = temp_tlast_reg;
m_axis_tid_int = temp_tid_reg;
m_axis_tdest_int = temp_tdest_reg;
m_axis_tuser_int = temp_tuser_reg;
if (m_axis_tready_int_reg) begin
// word transfer out
2018-10-25 10:19:32 -07:00
if (s_axis_tready && s_axis_tvalid) begin
// word transfer in
// pass complete input word, zero-extended to temp register
2018-10-25 10:19:32 -07:00
temp_tdata_next = s_axis_tdata;
temp_tkeep_next = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1;
temp_tlast_next = s_axis_tlast;
temp_tid_next = s_axis_tid;
temp_tdest_next = s_axis_tdest;
temp_tuser_next = s_axis_tuser;
2018-12-03 12:40:06 -08:00
// first input segment complete
segment_count_next = 1;
2018-10-25 10:19:32 -07:00
if (s_axis_tlast) begin
2018-12-03 12:40:06 -08:00
// got last signal on first segment, so output it
2018-10-25 10:19:32 -07:00
s_axis_tready_next = 1'b0;
state_next = STATE_TRANSFER_OUT;
end else begin
// otherwise, transfer in the rest of the words
2018-10-25 10:19:32 -07:00
s_axis_tready_next = 1'b1;
state_next = STATE_TRANSFER_IN;
end
end else begin
2018-10-25 10:19:32 -07:00
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_TRANSFER_OUT;
end
end else begin
// output bus is narrower
// do not accept new data
2018-10-25 10:19:32 -07:00
s_axis_tready_next = 1'b0;
2018-12-03 12:40:06 -08:00
// is this the last segment?
if (segment_count_reg == SEGMENT_COUNT-1) begin
// last segment by counter value
last_segment = 1'b1;
end else if (temp_tkeep_reg[segment_count_reg*SEGMENT_KEEP_WIDTH +: SEGMENT_KEEP_WIDTH] != {SEGMENT_KEEP_WIDTH{1'b1}}) begin
// last segment by tkeep fall in current segment
last_segment = 1'b1;
end else if (temp_tkeep_reg[(segment_count_reg+1)*SEGMENT_KEEP_WIDTH +: SEGMENT_KEEP_WIDTH] == {SEGMENT_KEEP_WIDTH{1'b0}}) begin
// last segment by tkeep fall at end of current segment
last_segment = 1'b1;
2015-04-19 23:33:34 -07:00
end else begin
2018-12-03 12:40:06 -08:00
last_segment = 1'b0;
2015-04-19 23:33:34 -07:00
end
// output current part of stored word (output narrower)
2018-12-03 12:40:06 -08:00
m_axis_tdata_int = temp_tdata_reg[segment_count_reg*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH];
m_axis_tkeep_int = temp_tkeep_reg[segment_count_reg*SEGMENT_KEEP_WIDTH +: SEGMENT_KEEP_WIDTH];
2018-10-25 10:19:32 -07:00
m_axis_tvalid_int = 1'b1;
2018-12-03 12:40:06 -08:00
m_axis_tlast_int = temp_tlast_reg && last_segment;
2018-10-25 10:19:32 -07:00
m_axis_tid_int = temp_tid_reg;
m_axis_tdest_int = temp_tdest_reg;
m_axis_tuser_int = temp_tuser_reg;
if (m_axis_tready_int_reg) begin
// word transfer out
2018-12-03 12:40:06 -08:00
segment_count_next = segment_count_reg + 1;
2018-12-03 12:40:06 -08:00
if (last_segment) begin
// terminated by counter or tlast signal
2018-10-25 10:19:32 -07:00
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end else begin
// more words to write
state_next = STATE_TRANSFER_OUT;
end
end else begin
state_next = STATE_TRANSFER_OUT;
end
end
end
endcase
end
2015-10-08 11:26:32 -07:00
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
2018-10-25 10:19:32 -07:00
s_axis_tready_reg <= 1'b0;
end else begin
state_reg <= state_next;
2018-10-25 10:19:32 -07:00
s_axis_tready_reg <= s_axis_tready_next;
end
2018-12-03 12:40:06 -08:00
segment_count_reg <= segment_count_next;
2018-10-25 10:29:31 -07:00
temp_tdata_reg <= temp_tdata_next;
temp_tkeep_reg <= temp_tkeep_next;
temp_tlast_reg <= temp_tlast_next;
temp_tid_reg <= temp_tid_next;
temp_tdest_reg <= temp_tdest_next;
temp_tuser_reg <= temp_tuser_next;
end
// output datapath logic
2018-10-25 10:19:32 -07:00
reg [M_DATA_WIDTH-1:0] m_axis_tdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_KEEP_WIDTH-1:0] m_axis_tkeep_reg = {M_KEEP_WIDTH{1'b0}};
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}};
reg [M_DATA_WIDTH-1:0] temp_m_axis_tdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_KEEP_WIDTH-1:0] temp_m_axis_tkeep_reg = {M_KEEP_WIDTH{1'b0}};
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] temp_m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] temp_m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] temp_m_axis_tuser_reg = {USER_WIDTH{1'b0}};
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
2018-10-25 10:19:32 -07:00
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = M_KEEP_ENABLE ? m_axis_tkeep_reg : {M_KEEP_WIDTH{1'b1}};
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
2018-10-25 10:19:32 -07:00
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
2018-10-25 10:19:32 -07:00
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
2018-10-25 10:19:32 -07:00
if (m_axis_tready_int_reg) begin
// input is ready
2018-10-25 10:19:32 -07:00
if (m_axis_tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
2018-10-25 10:19:32 -07:00
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
2018-10-25 10:19:32 -07:00
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
2018-10-25 10:19:32 -07:00
end else if (m_axis_tready) begin
// input is not ready, but output is ready
2018-10-25 10:19:32 -07:00
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
2014-10-22 15:13:42 -07:00
2015-10-08 11:26:32 -07:00
always @(posedge clk) begin
if (rst) begin
2018-10-25 10:19:32 -07:00
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
2018-10-25 10:19:32 -07:00
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
// datapath
if (store_axis_int_to_output) begin
2018-10-25 10:19:32 -07:00
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tid_reg <= m_axis_tid_int;
m_axis_tdest_reg <= m_axis_tdest_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
2018-10-25 10:19:32 -07:00
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tid_reg <= temp_m_axis_tid_reg;
m_axis_tdest_reg <= temp_m_axis_tdest_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
2018-10-25 10:19:32 -07:00
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tid_reg <= m_axis_tid_int;
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
end
endmodule
`resetall