1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/pcie_us_if_rc.v

494 lines
19 KiB
Coq
Raw Normal View History

/*
Copyright (c) 2021-2022 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* Xilinx UltraScale PCIe interface adapter (Requester Completion)
*/
module pcie_us_if_rc #
(
// Width of PCIe AXI stream interfaces in bits
parameter AXIS_PCIE_DATA_WIDTH = 256,
// PCIe AXI stream tkeep signal width (words per cycle)
parameter AXIS_PCIE_KEEP_WIDTH = (AXIS_PCIE_DATA_WIDTH/32),
// PCIe AXI stream RC tuser signal width
parameter AXIS_PCIE_RC_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 75 : 161,
// RC interface TLP straddling
parameter RC_STRADDLE = AXIS_PCIE_DATA_WIDTH >= 256,
// TLP data width
parameter TLP_DATA_WIDTH = AXIS_PCIE_DATA_WIDTH,
// TLP strobe width
parameter TLP_STRB_WIDTH = TLP_DATA_WIDTH/32,
// TLP header width
parameter TLP_HDR_WIDTH = 128,
// TLP segment count
parameter TLP_SEG_COUNT = 1
)
(
input wire clk,
input wire rst,
/*
* AXI input (RC)
*/
input wire [AXIS_PCIE_DATA_WIDTH-1:0] s_axis_rc_tdata,
input wire [AXIS_PCIE_KEEP_WIDTH-1:0] s_axis_rc_tkeep,
input wire s_axis_rc_tvalid,
output wire s_axis_rc_tready,
input wire s_axis_rc_tlast,
input wire [AXIS_PCIE_RC_USER_WIDTH-1:0] s_axis_rc_tuser,
/*
* TLP output (completion to DMA)
*/
output wire [TLP_DATA_WIDTH-1:0] rx_cpl_tlp_data,
output wire [TLP_STRB_WIDTH-1:0] rx_cpl_tlp_strb,
output wire [TLP_SEG_COUNT*TLP_HDR_WIDTH-1:0] rx_cpl_tlp_hdr,
output wire [TLP_SEG_COUNT*4-1:0] rx_cpl_tlp_error,
output wire [TLP_SEG_COUNT-1:0] rx_cpl_tlp_valid,
output wire [TLP_SEG_COUNT-1:0] rx_cpl_tlp_sop,
output wire [TLP_SEG_COUNT-1:0] rx_cpl_tlp_eop,
input wire rx_cpl_tlp_ready
);
parameter INT_TLP_SEG_COUNT = (RC_STRADDLE && AXIS_PCIE_DATA_WIDTH >= 256) ? (AXIS_PCIE_DATA_WIDTH == 512 ? 4 : 2) : 1;
parameter INT_TLP_SEG_DATA_WIDTH = TLP_DATA_WIDTH / INT_TLP_SEG_COUNT;
parameter INT_TLP_SEG_STRB_WIDTH = TLP_STRB_WIDTH / INT_TLP_SEG_COUNT;
// bus width assertions
initial begin
if (AXIS_PCIE_DATA_WIDTH != 64 && AXIS_PCIE_DATA_WIDTH != 128 && AXIS_PCIE_DATA_WIDTH != 256 && AXIS_PCIE_DATA_WIDTH != 512) begin
$error("Error: PCIe interface width must be 64, 128, 256, or 512 (instance %m)");
$finish;
end
if (AXIS_PCIE_KEEP_WIDTH * 32 != AXIS_PCIE_DATA_WIDTH) begin
$error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)");
$finish;
end
if (AXIS_PCIE_DATA_WIDTH == 512) begin
if (AXIS_PCIE_RC_USER_WIDTH != 161) begin
$error("Error: PCIe RC tuser width must be 161 (instance %m)");
$finish;
end
end else begin
if (AXIS_PCIE_RC_USER_WIDTH != 75) begin
$error("Error: PCIe RC tuser width must be 75 (instance %m)");
$finish;
end
end
if (TLP_DATA_WIDTH != AXIS_PCIE_DATA_WIDTH) begin
$error("Error: Interface widths must match (instance %m)");
$finish;
end
if (TLP_HDR_WIDTH != 128) begin
$error("Error: TLP segment header width must be 128 (instance %m)");
$finish;
end
end
localparam [2:0]
TLP_FMT_3DW = 3'b000,
TLP_FMT_4DW = 3'b001,
TLP_FMT_3DW_DATA = 3'b010,
TLP_FMT_4DW_DATA = 3'b011,
TLP_FMT_PREFIX = 3'b100;
localparam [2:0]
CPL_STATUS_SC = 3'b000, // successful completion
CPL_STATUS_UR = 3'b001, // unsupported request
CPL_STATUS_CRS = 3'b010, // configuration request retry status
CPL_STATUS_CA = 3'b100; // completer abort
localparam [3:0]
RC_ERROR_NORMAL_TERMINATION = 4'b0000,
RC_ERROR_POISONED = 4'b0001,
RC_ERROR_BAD_STATUS = 4'b0010,
RC_ERROR_INVALID_LENGTH = 4'b0011,
RC_ERROR_MISMATCH = 4'b0100,
RC_ERROR_INVALID_ADDRESS = 4'b0101,
RC_ERROR_INVALID_TAG = 4'b0110,
RC_ERROR_TIMEOUT = 4'b1001,
RC_ERROR_FLR = 4'b1000;
localparam [3:0]
PCIE_ERROR_NONE = 4'd0,
PCIE_ERROR_POISONED = 4'd1,
PCIE_ERROR_BAD_STATUS = 4'd2,
PCIE_ERROR_MISMATCH = 4'd3,
PCIE_ERROR_INVALID_LEN = 4'd4,
PCIE_ERROR_INVALID_ADDR = 4'd5,
PCIE_ERROR_INVALID_TAG = 4'd6,
PCIE_ERROR_FLR = 4'd8,
PCIE_ERROR_TIMEOUT = 4'd15;
reg [TLP_DATA_WIDTH-1:0] rx_cpl_tlp_data_reg = 0, rx_cpl_tlp_data_next;
reg [TLP_STRB_WIDTH-1:0] rx_cpl_tlp_strb_reg = 0, rx_cpl_tlp_strb_next;
reg [INT_TLP_SEG_COUNT*TLP_HDR_WIDTH-1:0] rx_cpl_tlp_hdr_reg = 0, rx_cpl_tlp_hdr_next;
reg [INT_TLP_SEG_COUNT*4-1:0] rx_cpl_tlp_error_reg = 0, rx_cpl_tlp_error_next;
reg [INT_TLP_SEG_COUNT-1:0] rx_cpl_tlp_valid_reg = 0, rx_cpl_tlp_valid_next;
reg [INT_TLP_SEG_COUNT-1:0] rx_cpl_tlp_sop_reg = 0, rx_cpl_tlp_sop_next;
reg [INT_TLP_SEG_COUNT-1:0] rx_cpl_tlp_eop_reg = 0, rx_cpl_tlp_eop_next;
reg tlp_frame_reg = 0, tlp_frame_next;
wire fifo_tlp_ready;
reg tlp_input_frame_reg = 1'b0, tlp_input_frame_next;
reg [TLP_DATA_WIDTH-1:0] rc_data;
reg [TLP_STRB_WIDTH-1:0] rc_strb;
reg [INT_TLP_SEG_COUNT-1:0] rc_valid;
reg [TLP_STRB_WIDTH-1:0] rc_strb_sop;
reg [TLP_STRB_WIDTH-1:0] rc_strb_eop;
reg [INT_TLP_SEG_COUNT-1:0] rc_sop;
reg [INT_TLP_SEG_COUNT-1:0] rc_eop;
reg rc_frame_reg = 1'b0, rc_frame_next;
reg [TLP_DATA_WIDTH-1:0] rc_data_int_reg = 0, rc_data_int_next;
reg [TLP_STRB_WIDTH-1:0] rc_strb_int_reg = 0, rc_strb_int_next;
reg [INT_TLP_SEG_COUNT-1:0] rc_valid_int_reg = 0, rc_valid_int_next;
reg [TLP_STRB_WIDTH-1:0] rc_strb_eop_int_reg = 0, rc_strb_eop_int_next;
reg [INT_TLP_SEG_COUNT-1:0] rc_sop_int_reg = 0, rc_sop_int_next;
reg [INT_TLP_SEG_COUNT-1:0] rc_eop_int_reg = 0, rc_eop_int_next;
wire [TLP_DATA_WIDTH*2-1:0] rc_data_full = {rc_data, rc_data_int_reg};
wire [TLP_STRB_WIDTH*2-1:0] rc_strb_full = {rc_strb, rc_strb_int_reg};
wire [INT_TLP_SEG_COUNT*2-1:0] rc_valid_full = {rc_valid, rc_valid_int_reg};
wire [TLP_STRB_WIDTH*2-1:0] rc_strb_eop_full = {rc_strb_eop, rc_strb_eop_int_reg};
wire [INT_TLP_SEG_COUNT*2-1:0] rc_sop_full = {rc_sop, rc_sop_int_reg};
wire [INT_TLP_SEG_COUNT*2-1:0] rc_eop_full = {rc_eop, rc_eop_int_reg};
reg [INT_TLP_SEG_COUNT*128-1:0] tlp_hdr;
reg [INT_TLP_SEG_COUNT*4-1:0] tlp_error;
assign s_axis_rc_tready = fifo_tlp_ready;
pcie_tlp_fifo #(
.DEPTH((1024/4)*2),
.TLP_DATA_WIDTH(TLP_DATA_WIDTH),
.TLP_STRB_WIDTH(TLP_STRB_WIDTH),
.TLP_HDR_WIDTH(TLP_HDR_WIDTH),
.SEQ_NUM_WIDTH(1),
.IN_TLP_SEG_COUNT(INT_TLP_SEG_COUNT),
.OUT_TLP_SEG_COUNT(TLP_SEG_COUNT)
)
pcie_tlp_fifo_inst (
.clk(clk),
.rst(rst),
/*
* TLP input
*/
.in_tlp_data(rx_cpl_tlp_data_reg),
.in_tlp_strb(rx_cpl_tlp_strb_reg),
.in_tlp_hdr(rx_cpl_tlp_hdr_reg),
.in_tlp_seq(0),
.in_tlp_bar_id(0),
.in_tlp_func_num(0),
.in_tlp_error(rx_cpl_tlp_error_reg),
.in_tlp_valid(rx_cpl_tlp_valid_reg),
.in_tlp_sop(rx_cpl_tlp_sop_reg),
.in_tlp_eop(rx_cpl_tlp_eop_reg),
.in_tlp_ready(fifo_tlp_ready),
/*
* TLP output
*/
.out_tlp_data(rx_cpl_tlp_data),
.out_tlp_strb(rx_cpl_tlp_strb),
.out_tlp_hdr(rx_cpl_tlp_hdr),
.out_tlp_seq(),
.out_tlp_bar_id(),
.out_tlp_func_num(),
.out_tlp_error(rx_cpl_tlp_error),
.out_tlp_valid(rx_cpl_tlp_valid),
.out_tlp_sop(rx_cpl_tlp_sop),
.out_tlp_eop(rx_cpl_tlp_eop),
.out_tlp_ready(rx_cpl_tlp_ready),
/*
* Status
*/
.half_full(),
.watermark()
);
integer seg, lane;
reg valid;
always @* begin
rx_cpl_tlp_data_next = rx_cpl_tlp_data_reg;
rx_cpl_tlp_strb_next = rx_cpl_tlp_strb_reg;
rx_cpl_tlp_hdr_next = rx_cpl_tlp_hdr_reg;
rx_cpl_tlp_error_next = rx_cpl_tlp_error_reg;
rx_cpl_tlp_valid_next = fifo_tlp_ready ? 0 : rx_cpl_tlp_valid_reg;
rx_cpl_tlp_sop_next = rx_cpl_tlp_sop_reg;
rx_cpl_tlp_eop_next = rx_cpl_tlp_eop_reg;
tlp_frame_next = tlp_frame_reg;
rc_frame_next = rc_frame_reg;
rc_data_int_next = rc_data_int_reg;
rc_strb_int_next = rc_strb_int_reg;
rc_valid_int_next = rc_valid_int_reg;
rc_strb_eop_int_next = rc_strb_eop_int_reg;
rc_sop_int_next = rc_sop_int_reg;
rc_eop_int_next = rc_eop_int_reg;
// decode framing
if (RC_STRADDLE && AXIS_PCIE_DATA_WIDTH >= 256) begin
rc_data = s_axis_rc_tdata;
rc_strb = 0;
rc_valid = 0;
rc_strb_sop = 0;
rc_strb_eop = 0;
rc_sop = 0;
rc_eop = 0;
if (AXIS_PCIE_DATA_WIDTH == 256) begin
if (INT_TLP_SEG_COUNT == 1) begin
if (s_axis_rc_tuser[32]) begin
rc_strb_sop[0] = 1'b1;
end
end else begin
if (s_axis_rc_tuser[32]) begin
if (rc_frame_reg) begin
rc_strb_sop[4] = 1'b1;
end else begin
rc_strb_sop[0] = 1'b1;
end
end
if (s_axis_rc_tuser[33]) begin
rc_strb_sop[4] = 1'b1;
end
end
for (seg = 0; seg < INT_TLP_SEG_COUNT; seg = seg + 1) begin
if (s_axis_rc_tuser[34+seg*4]) begin
rc_strb_eop[s_axis_rc_tuser[35+seg*4 +: 3]] = 1'b1;
end
end
end else if (AXIS_PCIE_DATA_WIDTH == 512) begin
for (seg = 0; seg < INT_TLP_SEG_COUNT; seg = seg + 1) begin
if (s_axis_rc_tuser[64+seg]) begin
rc_strb_sop[s_axis_rc_tuser[68+seg*2 +: 2]*4] = 1'b1;
end
if (s_axis_rc_tuser[76+seg]) begin
rc_strb_eop[s_axis_rc_tuser[80+seg*4 +: 4]] = 1'b1;
end
end
end
valid = 1;
for (lane = 0; lane < TLP_STRB_WIDTH; lane = lane + 1) begin
if (rc_strb_sop[lane]) begin
valid = 1;
rc_sop[lane/INT_TLP_SEG_STRB_WIDTH] = 1'b1;
end
if (valid) begin
rc_strb[lane] = 1'b1;
rc_valid[lane/INT_TLP_SEG_STRB_WIDTH] = s_axis_rc_tvalid;
end
if (rc_strb_eop[lane]) begin
valid = 0;
rc_eop[lane/INT_TLP_SEG_STRB_WIDTH] = 1'b1;
end
end
if (s_axis_rc_tready && s_axis_rc_tvalid) begin
rc_frame_next = valid;
end
end else begin
rc_data = s_axis_rc_tdata;
rc_strb = s_axis_rc_tvalid ? s_axis_rc_tkeep : 0;
rc_valid = s_axis_rc_tvalid;
rc_sop = !rc_frame_reg;
rc_eop = s_axis_rc_tlast;
rc_strb_sop = rc_sop;
rc_strb_eop = 0;
for (lane = 0; lane < TLP_STRB_WIDTH; lane = lane + 1) begin
if (rc_strb[lane]) begin
rc_strb_eop = (rc_eop) << lane;
end
end
if (s_axis_rc_tready && s_axis_rc_tvalid) begin
rc_frame_next = !s_axis_rc_tlast;
end
end
for (seg = 0; seg < INT_TLP_SEG_COUNT; seg = seg + 1) begin
// parse header
// DW 0
if (rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+32 +: 11] != 0) begin
tlp_hdr[128*seg+125 +: 3] = TLP_FMT_3DW_DATA; // fmt - 3DW with data
end else begin
tlp_hdr[128*seg+125 +: 3] = TLP_FMT_3DW; // fmt - 3DW without data
end
tlp_hdr[128*seg+120 +: 5] = {4'b0101, rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+29]}; // type - completion
tlp_hdr[128*seg+119] = 1'b0; // T9
tlp_hdr[128*seg+116 +: 3] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+89 +: 3]; // TC
tlp_hdr[128*seg+115] = 1'b0; // T8
tlp_hdr[128*seg+114] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+94]; // attr
tlp_hdr[128*seg+113] = 1'b0; // LN
tlp_hdr[128*seg+112] = 1'b0; // TH
tlp_hdr[128*seg+111] = 1'b0; // TD
tlp_hdr[128*seg+110] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+46]; // EP
tlp_hdr[128*seg+108 +: 2] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+92 +: 2]; // attr
tlp_hdr[128*seg+106 +: 2] = 2'b00; // AT
tlp_hdr[128*seg+96 +: 10] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+32 +: 11]; // length
// DW 1
tlp_hdr[128*seg+80 +: 16] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+72 +: 16]; // completer ID
tlp_hdr[128*seg+77 +: 3] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+43 +: 3]; // completion status
tlp_hdr[128*seg+76] = 1'b0; // BCM
tlp_hdr[128*seg+64 +: 12] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+16 +: 13]; // byte count
// DW 2
tlp_hdr[128*seg+48 +: 16] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+48 +: 16]; // requester ID
tlp_hdr[128*seg+40 +: 8] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+64 +: 8]; // tag
tlp_hdr[128*seg+39] = 1'b0;
tlp_hdr[128*seg+32 +: 7] = rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+0 +: 7]; // lower address
// DW 3
tlp_hdr[128*seg+0 +: 32] = 32'd0;
// error code
case (rc_data_full[INT_TLP_SEG_DATA_WIDTH*seg+12 +: 4])
RC_ERROR_NORMAL_TERMINATION: tlp_error[4*seg +: 4] = PCIE_ERROR_NONE;
RC_ERROR_POISONED: tlp_error[4*seg +: 4] = PCIE_ERROR_POISONED;
RC_ERROR_BAD_STATUS: tlp_error[4*seg +: 4] = PCIE_ERROR_BAD_STATUS;
RC_ERROR_INVALID_LENGTH: tlp_error[4*seg +: 4] = PCIE_ERROR_INVALID_LEN;
RC_ERROR_MISMATCH: tlp_error[4*seg +: 4] = PCIE_ERROR_MISMATCH;
RC_ERROR_INVALID_ADDRESS: tlp_error[4*seg +: 4] = PCIE_ERROR_INVALID_ADDR;
RC_ERROR_INVALID_TAG: tlp_error[4*seg +: 4] = PCIE_ERROR_INVALID_TAG;
RC_ERROR_FLR: tlp_error[4*seg +: 4] = PCIE_ERROR_FLR;
RC_ERROR_TIMEOUT: tlp_error[4*seg +: 4] = PCIE_ERROR_TIMEOUT;
default: tlp_error[4*seg +: 4] = PCIE_ERROR_NONE;
endcase
end
if (fifo_tlp_ready) begin
rx_cpl_tlp_strb_next = 0;
rx_cpl_tlp_valid_next = 0;
rx_cpl_tlp_sop_next = 0;
rx_cpl_tlp_eop_next = 0;
if (TLP_DATA_WIDTH == 64) begin
if (rc_valid_full[0]) begin
rx_cpl_tlp_data_next = rc_data_full >> 32;
rx_cpl_tlp_strb_next = rc_strb_full >> 1;
if (rc_sop_full[0]) begin
tlp_frame_next = 1'b0;
rx_cpl_tlp_hdr_next = tlp_hdr;
rx_cpl_tlp_error_next = tlp_error;
if (rc_eop_full[0]) begin
rc_valid_int_next[0] = 1'b0;
end else if (rc_valid_full[1]) begin
rc_valid_int_next[0] = 1'b0;
end
end else begin
rx_cpl_tlp_sop_next = !tlp_frame_reg;
rx_cpl_tlp_eop_next = 1'b0;
if (rc_eop_full[0]) begin
rx_cpl_tlp_strb_next = rc_strb_full[1];
rx_cpl_tlp_valid_next = 1'b1;
rc_valid_int_next[0] = 1'b0;
rx_cpl_tlp_eop_next = 1'b1;
end else if (rc_valid_full[1]) begin
rx_cpl_tlp_valid_next = 1'b1;
rc_valid_int_next[0] = 1'b0;
tlp_frame_next = 1'b1;
end
end
end
end else begin
for (seg = 0; seg < INT_TLP_SEG_COUNT; seg = seg + 1) begin
if (rc_valid_full[seg]) begin
rx_cpl_tlp_data_next[INT_TLP_SEG_DATA_WIDTH*seg +: INT_TLP_SEG_DATA_WIDTH] = rc_data_full >> (96 + INT_TLP_SEG_DATA_WIDTH*seg);
if (rc_sop_full[seg]) begin
rx_cpl_tlp_hdr_next[TLP_HDR_WIDTH*seg +: TLP_HDR_WIDTH] = tlp_hdr[128*seg +: 128];
rx_cpl_tlp_error_next[4*seg +: 4] = tlp_error[4*seg +: 4];
end
rx_cpl_tlp_sop_next[seg] = rc_sop_full[seg];
if (rc_eop_full[seg]) begin
rx_cpl_tlp_strb_next[INT_TLP_SEG_STRB_WIDTH*seg +: INT_TLP_SEG_STRB_WIDTH] = rc_strb_full[INT_TLP_SEG_STRB_WIDTH*seg +: INT_TLP_SEG_STRB_WIDTH] >> 3;
if (rc_sop_full[seg] || rc_strb_eop_full[INT_TLP_SEG_STRB_WIDTH*seg +: INT_TLP_SEG_STRB_WIDTH] >> 3) begin
rx_cpl_tlp_eop_next[seg] = 1'b1;
rx_cpl_tlp_valid_next[seg] = 1'b1;
end
rc_valid_int_next[seg] = 1'b0;
end else begin
rx_cpl_tlp_strb_next[INT_TLP_SEG_STRB_WIDTH*seg +: INT_TLP_SEG_STRB_WIDTH] = rc_strb_full >> (3 + INT_TLP_SEG_STRB_WIDTH*seg);
if (rc_valid_full[seg+1]) begin
rx_cpl_tlp_eop_next[seg] = (rc_strb_eop_full[INT_TLP_SEG_STRB_WIDTH*(seg+1) +: INT_TLP_SEG_STRB_WIDTH] & 3'h7) != 0;
rx_cpl_tlp_valid_next[seg] = 1'b1;
rc_valid_int_next[seg] = 1'b0;
end
end
end
end
end
end
if (s_axis_rc_tready && s_axis_rc_tvalid) begin
rc_data_int_next = rc_data;
rc_strb_int_next = rc_strb;
rc_valid_int_next = rc_valid;
rc_strb_eop_int_next = rc_strb_eop;
rc_sop_int_next = rc_sop;
rc_eop_int_next = rc_eop;
end
end
always @(posedge clk) begin
rx_cpl_tlp_data_reg <= rx_cpl_tlp_data_next;
rx_cpl_tlp_strb_reg <= rx_cpl_tlp_strb_next;
rx_cpl_tlp_hdr_reg <= rx_cpl_tlp_hdr_next;
rx_cpl_tlp_error_reg <= rx_cpl_tlp_error_next;
rx_cpl_tlp_valid_reg <= rx_cpl_tlp_valid_next;
rx_cpl_tlp_sop_reg <= rx_cpl_tlp_sop_next;
rx_cpl_tlp_eop_reg <= rx_cpl_tlp_eop_next;
tlp_frame_reg <= tlp_frame_next;
rc_frame_reg <= rc_frame_next;
rc_data_int_reg <= rc_data_int_next;
rc_strb_int_reg <= rc_strb_int_next;
rc_valid_int_reg <= rc_valid_int_next;
rc_strb_eop_int_reg <= rc_strb_eop_int_next;
rc_sop_int_reg <= rc_sop_int_next;
rc_eop_int_reg <= rc_eop_int_next;
if (rst) begin
rx_cpl_tlp_valid_reg <= 0;
rc_frame_reg <= 1'b0;
rc_valid_int_reg <= 0;
end
end
endmodule
`resetall