1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00

Add AXI stream switch module, generator script, and testbench

This commit is contained in:
Alex Forencich 2016-07-25 13:12:10 -07:00
parent 5fe35a79d2
commit 06bfa1944c
8 changed files with 5473 additions and 0 deletions

477
rtl/axis_switch.py Executable file
View File

@ -0,0 +1,477 @@
#!/usr/bin/env python
"""
Generates an AXI Stream switch with the specified number of ports
"""
from __future__ import print_function
import argparse
import math
from jinja2 import Template
def main():
parser = argparse.ArgumentParser(description=__doc__.strip())
parser.add_argument('-p', '--ports', type=int, default=[4], nargs='+', help="number of ports")
parser.add_argument('-n', '--name', type=str, help="module name")
parser.add_argument('-o', '--output', type=str, help="output file name")
args = parser.parse_args()
try:
generate(**args.__dict__)
except IOError as ex:
print(ex)
exit(1)
def generate(ports=4, name=None, output=None):
if type(ports) is int:
m = n = ports
elif len(ports) == 1:
m = n = ports[0]
else:
m, n = ports
if name is None:
name = "axis_switch_{0}x{1}".format(m, n)
if output is None:
output = name + ".v"
print("Opening file '{0}'...".format(output))
output_file = open(output, 'w')
print("Generating {0}x{1} port AXI Stream switch {2}...".format(m, n, name))
cm = int(math.ceil(math.log(m, 2)))
cn = int(math.ceil(math.log(n, 2)))
t = Template(u"""/*
Copyright (c) 2016 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream {{m}}x{{n}} switch
*/
module {{name}} #
(
parameter DATA_WIDTH = 8,
parameter DEST_WIDTH = {{cn}},
{%- for p in range(n) %}
parameter OUT_{{p}}_BASE = {{p}},
parameter OUT_{{p}}_TOP = {{p}},
parameter OUT_{{p}}_CONNECT = {{m}}'b{% for p in range(m) %}1{% endfor %},
{%- endfor %}
// arbitration type: "PRIORITY" or "ROUND_ROBIN"
parameter ARB_TYPE = "ROUND_ROBIN",
// LSB priority: "LOW", "HIGH"
parameter LSB_PRIORITY = "HIGH"
)
(
input wire clk,
input wire rst,
/*
* AXI Stream inputs
*/
{%- for p in range(m) %}
input wire [DATA_WIDTH-1:0] input_{{p}}_axis_tdata,
input wire input_{{p}}_axis_tvalid,
output wire input_{{p}}_axis_tready,
input wire input_{{p}}_axis_tlast,
input wire [DEST_WIDTH-1:0] input_{{p}}_axis_tdest,
input wire input_{{p}}_axis_tuser,
{% endfor %}
/*
* AXI Stream outputs
*/
{%- for p in range(n) %}
output wire [DATA_WIDTH-1:0] output_{{p}}_axis_tdata,
output wire output_{{p}}_axis_tvalid,
input wire output_{{p}}_axis_tready,
output wire output_{{p}}_axis_tlast,
output wire [DEST_WIDTH-1:0] output_{{p}}_axis_tdest,
output wire output_{{p}}_axis_tuser{% if not loop.last %},{% endif %}
{% endfor -%}
);
// check configuration
initial begin
if (2**DEST_WIDTH < {{n}}) begin
$error("Error: DEST_WIDTH too small for port count");
$finish;
end
if ({%- for p in range(n) %}(OUT_{{p}}_BASE & 2**DEST_WIDTH-1) != OUT_{{p}}_BASE || (OUT_{{p}}_TOP & 2**DEST_WIDTH-1) != OUT_{{p}}_TOP{% if not loop.last %} ||
{% endif %}{% endfor -%}) begin
$error("Error: value out of range");
$finish;
end
if ({%- for p in range(n) %}OUT_{{p}}_BASE > OUT_{{p}}_TOP{% if not loop.last %} ||
{% endif %}{% endfor -%}) begin
$error("Error: invalid range");
$finish;
end
if ({%- for p in range(n-1) %}{% set outer_loop = loop %}{%- for q in range(p+1,n) %}(OUT_{{p}}_BASE <= OUT_{{q}}_TOP && OUT_{{q}}_BASE <= OUT_{{p}}_TOP){% if not (loop.last and outer_loop.last) %} ||
{% endif %}{% endfor -%}{% endfor -%}) begin
$error("Error: ranges overlap");
$finish;
end
end
{%- for p in range(m) %}
reg [{{n-1}}:0] input_{{p}}_request_reg = {{n}}'d0, input_{{p}}_request_next;
reg input_{{p}}_request_valid_reg = 1'b0, input_{{p}}_request_valid_next;
reg input_{{p}}_request_error_reg = 1'b0, input_{{p}}_request_error_next;
{%- endfor %}
{% for p in range(n) %}
reg [{{cm-1}}:0] select_{{p}}_reg = {{cm}}'d0, select_{{p}}_next;
{%- endfor %}
{% for p in range(n) %}
reg enable_{{p}}_reg = 1'b0, enable_{{p}}_next;
{%- endfor %}
{% for p in range(m) %}
reg input_{{p}}_axis_tready_reg = 1'b0, input_{{p}}_axis_tready_next;
{%- endfor %}
// internal datapath
{%- for p in range(n) %}
reg [DATA_WIDTH-1:0] output_{{p}}_axis_tdata_int;
reg output_{{p}}_axis_tvalid_int;
reg output_{{p}}_axis_tready_int_reg = 1'b0;
reg output_{{p}}_axis_tlast_int;
reg [DEST_WIDTH-1:0] output_{{p}}_axis_tdest_int;
reg output_{{p}}_axis_tuser_int;
wire output_{{p}}_axis_tready_int_early;
{% endfor %}
{%- for p in range(m) %}
assign input_{{p}}_axis_tready = input_{{p}}_axis_tready_reg;
{%- endfor %}
// mux for start of packet detection
{%- for p in range(n) %}
reg selected_input_{{p}}_axis_tvalid;
always @* begin
case (grant_encoded_{{p}})
{%- for q in range(m) %}
{{cm}}'d{{q}}: selected_input_{{p}}_axis_tvalid = input_{{q}}_axis_tvalid;
{%- endfor %}
default: selected_input_{{p}}_axis_tvalid = 1'b0;
endcase
end
{% endfor %}
// mux for incoming packet
{% for p in range(n) %}
reg [DATA_WIDTH-1:0] current_input_{{p}}_axis_tdata;
reg current_input_{{p}}_axis_tvalid;
reg current_input_{{p}}_axis_tready;
reg current_input_{{p}}_axis_tlast;
reg [DEST_WIDTH-1:0] current_input_{{p}}_axis_tdest;
reg current_input_{{p}}_axis_tuser;
always @* begin
case (select_{{p}}_reg)
{%- for q in range(m) %}
{{cm}}'d{{q}}: begin
current_input_{{p}}_axis_tdata = input_{{q}}_axis_tdata;
current_input_{{p}}_axis_tvalid = input_{{q}}_axis_tvalid;
current_input_{{p}}_axis_tready = input_{{q}}_axis_tready;
current_input_{{p}}_axis_tlast = input_{{q}}_axis_tlast;
current_input_{{p}}_axis_tdest = input_{{q}}_axis_tdest;
current_input_{{p}}_axis_tuser = input_{{q}}_axis_tuser;
end
{%- endfor %}
default: begin
current_input_{{p}}_axis_tdata = {DATA_WIDTH{1'b0}};
current_input_{{p}}_axis_tvalid = 1'b0;
current_input_{{p}}_axis_tready = 1'b0;
current_input_{{p}}_axis_tlast = 1'b0;
current_input_{{p}}_axis_tdest = {DEST_WIDTH{1'b0}};
current_input_{{p}}_axis_tuser = 1'b0;
end
endcase
end
{% endfor %}
// arbiter instances
{% for p in range(n) %}
wire [{{m-1}}:0] request_{{p}};
wire [{{m-1}}:0] acknowledge_{{p}};
wire [{{m-1}}:0] grant_{{p}};
wire grant_valid_{{p}};
wire [{{cm-1}}:0] grant_encoded_{{p}};
{% endfor %}
{%- for p in range(n) %}
arbiter #(
.PORTS({{m}}),
.TYPE(ARB_TYPE),
.BLOCK("ACKNOWLEDGE"),
.LSB_PRIORITY(LSB_PRIORITY)
)
arb_{{p}}_inst (
.clk(clk),
.rst(rst),
.request(request_{{p}}),
.acknowledge(acknowledge_{{p}}),
.grant(grant_{{p}}),
.grant_valid(grant_valid_{{p}}),
.grant_encoded(grant_encoded_{{p}})
);
{% endfor %}
// request generation
{%- for p in range(n) %}
{%- for q in range(m) %}
assign request_{{p}}[{{q}}] = input_{{q}}_request_reg[{{p}}] & ~acknowledge_{{p}}[{{q}}];
{%- endfor %}
{% endfor %}
// acknowledge generation
{%- for p in range(n) %}
{%- for q in range(m) %}
assign acknowledge_{{p}}[{{q}}] = grant_{{p}}[{{q}}] & input_{{q}}_axis_tvalid & input_{{q}}_axis_tready & input_{{q}}_axis_tlast;
{%- endfor %}
{% endfor %}
always @* begin
{%- for p in range(n) %}
select_{{p}}_next = select_{{p}}_reg;
{%- endfor %}
{% for p in range(n) %}
enable_{{p}}_next = enable_{{p}}_reg;
{%- endfor %}
{% for p in range(m) %}
input_{{p}}_request_next = input_{{p}}_request_reg;
input_{{p}}_request_valid_next = input_{{p}}_request_valid_reg;
input_{{p}}_request_error_next = input_{{p}}_request_error_reg;
{% endfor %}
{%- for p in range(m) %}
input_{{p}}_axis_tready_next = 1'b0;
{%- endfor %}
{% for p in range(n) %}
output_{{p}}_axis_tdata_int = {DATA_WIDTH{1'b0}};
output_{{p}}_axis_tvalid_int = 1'b0;
output_{{p}}_axis_tlast_int = 1'b0;
output_{{p}}_axis_tdest_int = {DEST_WIDTH{1'b0}};
output_{{p}}_axis_tuser_int = 1'b0;
{% endfor %}
// input decoding
{% for p in range(m) %}
if (input_{{p}}_request_valid_reg | input_{{p}}_request_error_reg) begin
if (input_{{p}}_axis_tvalid & input_{{p}}_axis_tready & input_{{p}}_axis_tlast) begin
input_{{p}}_request_next = {DEST_WIDTH{1'b0}};
input_{{p}}_request_valid_next = 1'b0;
input_{{p}}_request_error_next = 1'b0;
end
end else if (input_{{p}}_axis_tvalid) begin
{%- for q in range(n) %}
input_{{p}}_request_next[{{q}}] = (input_{{p}}_axis_tdest >= OUT_{{q}}_BASE) & (input_{{p}}_axis_tdest <= OUT_{{q}}_TOP) & OUT_{{q}}_CONNECT[{{p}}];
{%- endfor %}
if (input_{{p}}_request_next) begin
input_{{p}}_request_valid_next = 1'b1;
end else begin
input_{{p}}_request_error_next = 1'b1;
end
end
{% endfor %}
// output control
{% for p in range(n) %}
if (enable_{{p}}_reg) begin
if (current_input_{{p}}_axis_tvalid & current_input_{{p}}_axis_tready) begin
enable_{{p}}_next = ~current_input_{{p}}_axis_tlast;
end
end else if (grant_valid_{{p}} & selected_input_{{p}}_axis_tvalid) begin
enable_{{p}}_next = 1'b1;
select_{{p}}_next = grant_encoded_{{p}};
end
{% endfor %}
// generate ready signal on selected port
{% for p in range(n) %}
if (enable_{{p}}_next) begin
case (select_{{p}}_next)
{%- for q in range(m) %}
{{cm}}'d{{q}}: input_{{q}}_axis_tready_next = output_{{p}}_axis_tready_int_early;
{%- endfor %}
endcase
end
{% endfor %}
{%- for p in range(m) %}
if (input_{{p}}_request_error_next)
input_{{p}}_axis_tready_next = 1'b1;
{%- endfor %}
// pass through selected packet data
{% for p in range(n) %}
output_{{p}}_axis_tdata_int = current_input_{{p}}_axis_tdata;
output_{{p}}_axis_tvalid_int = current_input_{{p}}_axis_tvalid & current_input_{{p}}_axis_tready & enable_{{p}}_reg;
output_{{p}}_axis_tlast_int = current_input_{{p}}_axis_tlast;
output_{{p}}_axis_tdest_int = current_input_{{p}}_axis_tdest;
output_{{p}}_axis_tuser_int = current_input_{{p}}_axis_tuser;
{% endfor -%}
end
always @(posedge clk) begin
if (rst) begin
{%- for p in range(m) %}
input_{{p}}_request_reg <= {{n}}'d0;
input_{{p}}_request_valid_reg <= 1'b0;
input_{{p}}_request_error_reg <= 1'b0;
{%- endfor %}
{%- for p in range(n) %}
select_{{p}}_reg <= 2'd0;
{%- endfor %}
{%- for p in range(n) %}
enable_{{p}}_reg <= 1'b0;
{%- endfor %}
{%- for p in range(m) %}
input_{{p}}_axis_tready_reg <= 1'b0;
{%- endfor %}
end else begin
{%- for p in range(m) %}
input_{{p}}_request_reg <= input_{{p}}_request_next;
input_{{p}}_request_valid_reg <= input_{{p}}_request_valid_next;
input_{{p}}_request_error_reg <= input_{{p}}_request_error_next;
{%- endfor %}
{%- for p in range(n) %}
select_{{p}}_reg <= select_{{p}}_next;
{%- endfor %}
{%- for p in range(n) %}
enable_{{p}}_reg <= enable_{{p}}_next;
{%- endfor %}
{%- for p in range(m) %}
input_{{p}}_axis_tready_reg <= input_{{p}}_axis_tready_next;
{%- endfor %}
end
end
{% for p in range(n) %}
// output {{p}} datapath logic
reg [DATA_WIDTH-1:0] output_{{p}}_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg output_{{p}}_axis_tvalid_reg = 1'b0, output_{{p}}_axis_tvalid_next;
reg output_{{p}}_axis_tlast_reg = 1'b0;
reg [DEST_WIDTH-1:0] output_{{p}}_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg output_{{p}}_axis_tuser_reg = 1'b0;
reg [DATA_WIDTH-1:0] temp_{{p}}_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg temp_{{p}}_axis_tvalid_reg = 1'b0, temp_{{p}}_axis_tvalid_next;
reg temp_{{p}}_axis_tlast_reg = 1'b0;
reg [DEST_WIDTH-1:0] temp_{{p}}_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg temp_{{p}}_axis_tuser_reg = 1'b0;
// datapath control
reg store_{{p}}_axis_int_to_output;
reg store_{{p}}_axis_int_to_temp;
reg store_{{p}}_axis_temp_to_output;
assign output_{{p}}_axis_tdata = output_{{p}}_axis_tdata_reg;
assign output_{{p}}_axis_tvalid = output_{{p}}_axis_tvalid_reg;
assign output_{{p}}_axis_tlast = output_{{p}}_axis_tlast_reg;
assign output_{{p}}_axis_tdest = output_{{p}}_axis_tdest_reg;
assign output_{{p}}_axis_tuser = output_{{p}}_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign output_{{p}}_axis_tready_int_early = output_{{p}}_axis_tready | (~temp_{{p}}_axis_tvalid_reg & (~output_{{p}}_axis_tvalid_reg | ~output_{{p}}_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
output_{{p}}_axis_tvalid_next = output_{{p}}_axis_tvalid_reg;
temp_{{p}}_axis_tvalid_next = temp_{{p}}_axis_tvalid_reg;
store_{{p}}_axis_int_to_output = 1'b0;
store_{{p}}_axis_int_to_temp = 1'b0;
store_{{p}}_axis_temp_to_output = 1'b0;
if (output_{{p}}_axis_tready_int_reg) begin
// input is ready
if (output_{{p}}_axis_tready | ~output_{{p}}_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
output_{{p}}_axis_tvalid_next = output_{{p}}_axis_tvalid_int;
store_{{p}}_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_{{p}}_axis_tvalid_next = output_{{p}}_axis_tvalid_int;
store_{{p}}_axis_int_to_temp = 1'b1;
end
end else if (output_{{p}}_axis_tready) begin
// input is not ready, but output is ready
output_{{p}}_axis_tvalid_next = temp_{{p}}_axis_tvalid_reg;
temp_{{p}}_axis_tvalid_next = 1'b0;
store_{{p}}_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
output_{{p}}_axis_tvalid_reg <= 1'b0;
output_{{p}}_axis_tready_int_reg <= 1'b0;
temp_{{p}}_axis_tvalid_reg <= 1'b0;
end else begin
output_{{p}}_axis_tvalid_reg <= output_{{p}}_axis_tvalid_next;
output_{{p}}_axis_tready_int_reg <= output_{{p}}_axis_tready_int_early;
temp_{{p}}_axis_tvalid_reg <= temp_{{p}}_axis_tvalid_next;
end
// datapath
if (store_{{p}}_axis_int_to_output) begin
output_{{p}}_axis_tdata_reg <= output_{{p}}_axis_tdata_int;
output_{{p}}_axis_tlast_reg <= output_{{p}}_axis_tlast_int;
output_{{p}}_axis_tdest_reg <= output_{{p}}_axis_tdest_int;
output_{{p}}_axis_tuser_reg <= output_{{p}}_axis_tuser_int;
end else if (store_{{p}}_axis_temp_to_output) begin
output_{{p}}_axis_tdata_reg <= temp_{{p}}_axis_tdata_reg;
output_{{p}}_axis_tlast_reg <= temp_{{p}}_axis_tlast_reg;
output_{{p}}_axis_tdest_reg <= temp_{{p}}_axis_tdest_reg;
output_{{p}}_axis_tuser_reg <= temp_{{p}}_axis_tuser_reg;
end
if (store_{{p}}_axis_int_to_temp) begin
temp_{{p}}_axis_tdata_reg <= output_{{p}}_axis_tdata_int;
temp_{{p}}_axis_tlast_reg <= output_{{p}}_axis_tlast_int;
temp_{{p}}_axis_tdest_reg <= output_{{p}}_axis_tdest_int;
temp_{{p}}_axis_tuser_reg <= output_{{p}}_axis_tuser_int;
end
end
{% endfor %}
endmodule
""")
output_file.write(t.render(
m=m,
n=n,
cm=cm,
cn=cn,
name=name
))
print("Done")
if __name__ == "__main__":
main()

1262
rtl/axis_switch_4x4.v Normal file

File diff suppressed because it is too large Load Diff

492
rtl/axis_switch_64.py Executable file
View File

@ -0,0 +1,492 @@
#!/usr/bin/env python
"""
Generates an AXI Stream switch with the specified number of ports
"""
from __future__ import print_function
import argparse
import math
from jinja2 import Template
def main():
parser = argparse.ArgumentParser(description=__doc__.strip())
parser.add_argument('-p', '--ports', type=int, default=[4], nargs='+', help="number of ports")
parser.add_argument('-n', '--name', type=str, help="module name")
parser.add_argument('-o', '--output', type=str, help="output file name")
args = parser.parse_args()
try:
generate(**args.__dict__)
except IOError as ex:
print(ex)
exit(1)
def generate(ports=4, name=None, output=None):
if type(ports) is int:
m = n = ports
elif len(ports) == 1:
m = n = ports[0]
else:
m, n = ports
if name is None:
name = "axis_switch_64_{0}x{1}".format(m, n)
if output is None:
output = name + ".v"
print("Opening file '{0}'...".format(output))
output_file = open(output, 'w')
print("Generating {0}x{1} port AXI Stream switch {2}...".format(m, n, name))
cm = int(math.ceil(math.log(m, 2)))
cn = int(math.ceil(math.log(n, 2)))
t = Template(u"""/*
Copyright (c) 2016 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream {{m}}x{{n}} switch (64 bit datapath)
*/
module {{name}} #
(
parameter DATA_WIDTH = 64,
parameter KEEP_WIDTH = (DATA_WIDTH/8),
parameter DEST_WIDTH = {{cn}},
{%- for p in range(n) %}
parameter OUT_{{p}}_BASE = {{p}},
parameter OUT_{{p}}_TOP = {{p}},
parameter OUT_{{p}}_CONNECT = {{m}}'b{% for p in range(m) %}1{% endfor %},
{%- endfor %}
// arbitration type: "PRIORITY" or "ROUND_ROBIN"
parameter ARB_TYPE = "ROUND_ROBIN",
// LSB priority: "LOW", "HIGH"
parameter LSB_PRIORITY = "HIGH"
)
(
input wire clk,
input wire rst,
/*
* AXI Stream inputs
*/
{%- for p in range(m) %}
input wire [DATA_WIDTH-1:0] input_{{p}}_axis_tdata,
input wire [KEEP_WIDTH-1:0] input_{{p}}_axis_tkeep,
input wire input_{{p}}_axis_tvalid,
output wire input_{{p}}_axis_tready,
input wire input_{{p}}_axis_tlast,
input wire [DEST_WIDTH-1:0] input_{{p}}_axis_tdest,
input wire input_{{p}}_axis_tuser,
{% endfor %}
/*
* AXI Stream outputs
*/
{%- for p in range(n) %}
output wire [DATA_WIDTH-1:0] output_{{p}}_axis_tdata,
output wire [KEEP_WIDTH-1:0] output_{{p}}_axis_tkeep,
output wire output_{{p}}_axis_tvalid,
input wire output_{{p}}_axis_tready,
output wire output_{{p}}_axis_tlast,
output wire [DEST_WIDTH-1:0] output_{{p}}_axis_tdest,
output wire output_{{p}}_axis_tuser{% if not loop.last %},{% endif %}
{% endfor -%}
);
// check configuration
initial begin
if (2**DEST_WIDTH < {{n}}) begin
$error("Error: DEST_WIDTH too small for port count");
$finish;
end
if ({%- for p in range(n) %}(OUT_{{p}}_BASE & 2**DEST_WIDTH-1) != OUT_{{p}}_BASE || (OUT_{{p}}_TOP & 2**DEST_WIDTH-1) != OUT_{{p}}_TOP{% if not loop.last %} ||
{% endif %}{% endfor -%}) begin
$error("Error: value out of range");
$finish;
end
if ({%- for p in range(n) %}OUT_{{p}}_BASE > OUT_{{p}}_TOP{% if not loop.last %} ||
{% endif %}{% endfor -%}) begin
$error("Error: invalid range");
$finish;
end
if ({%- for p in range(n-1) %}{% set outer_loop = loop %}{%- for q in range(p+1,n) %}(OUT_{{p}}_BASE <= OUT_{{q}}_TOP && OUT_{{q}}_BASE <= OUT_{{p}}_TOP){% if not (loop.last and outer_loop.last) %} ||
{% endif %}{% endfor -%}{% endfor -%}) begin
$error("Error: ranges overlap");
$finish;
end
end
{%- for p in range(m) %}
reg [{{n-1}}:0] input_{{p}}_request_reg = {{n}}'d0, input_{{p}}_request_next;
reg input_{{p}}_request_valid_reg = 1'b0, input_{{p}}_request_valid_next;
reg input_{{p}}_request_error_reg = 1'b0, input_{{p}}_request_error_next;
{%- endfor %}
{% for p in range(n) %}
reg [{{cm-1}}:0] select_{{p}}_reg = {{cm}}'d0, select_{{p}}_next;
{%- endfor %}
{% for p in range(n) %}
reg enable_{{p}}_reg = 1'b0, enable_{{p}}_next;
{%- endfor %}
{% for p in range(m) %}
reg input_{{p}}_axis_tready_reg = 1'b0, input_{{p}}_axis_tready_next;
{%- endfor %}
// internal datapath
{%- for p in range(n) %}
reg [DATA_WIDTH-1:0] output_{{p}}_axis_tdata_int;
reg [KEEP_WIDTH-1:0] output_{{p}}_axis_tkeep_int;
reg output_{{p}}_axis_tvalid_int;
reg output_{{p}}_axis_tready_int_reg = 1'b0;
reg output_{{p}}_axis_tlast_int;
reg [DEST_WIDTH-1:0] output_{{p}}_axis_tdest_int;
reg output_{{p}}_axis_tuser_int;
wire output_{{p}}_axis_tready_int_early;
{% endfor %}
{%- for p in range(m) %}
assign input_{{p}}_axis_tready = input_{{p}}_axis_tready_reg;
{%- endfor %}
// mux for start of packet detection
{%- for p in range(n) %}
reg selected_input_{{p}}_axis_tvalid;
always @* begin
case (grant_encoded_{{p}})
{%- for q in range(m) %}
{{cm}}'d{{q}}: selected_input_{{p}}_axis_tvalid = input_{{q}}_axis_tvalid;
{%- endfor %}
default: selected_input_{{p}}_axis_tvalid = 1'b0;
endcase
end
{% endfor %}
// mux for incoming packet
{% for p in range(n) %}
reg [DATA_WIDTH-1:0] current_input_{{p}}_axis_tdata;
reg [KEEP_WIDTH-1:0] current_input_{{p}}_axis_tkeep;
reg current_input_{{p}}_axis_tvalid;
reg current_input_{{p}}_axis_tready;
reg current_input_{{p}}_axis_tlast;
reg [DEST_WIDTH-1:0] current_input_{{p}}_axis_tdest;
reg current_input_{{p}}_axis_tuser;
always @* begin
case (select_{{p}}_reg)
{%- for q in range(m) %}
{{cm}}'d{{q}}: begin
current_input_{{p}}_axis_tdata = input_{{q}}_axis_tdata;
current_input_{{p}}_axis_tkeep = input_{{q}}_axis_tkeep;
current_input_{{p}}_axis_tvalid = input_{{q}}_axis_tvalid;
current_input_{{p}}_axis_tready = input_{{q}}_axis_tready;
current_input_{{p}}_axis_tlast = input_{{q}}_axis_tlast;
current_input_{{p}}_axis_tdest = input_{{q}}_axis_tdest;
current_input_{{p}}_axis_tuser = input_{{q}}_axis_tuser;
end
{%- endfor %}
default: begin
current_input_{{p}}_axis_tdata = {DATA_WIDTH{1'b0}};
current_input_{{p}}_axis_tkeep = {KEEP_WIDTH{1'b0}};
current_input_{{p}}_axis_tvalid = 1'b0;
current_input_{{p}}_axis_tready = 1'b0;
current_input_{{p}}_axis_tlast = 1'b0;
current_input_{{p}}_axis_tdest = {DEST_WIDTH{1'b0}};
current_input_{{p}}_axis_tuser = 1'b0;
end
endcase
end
{% endfor %}
// arbiter instances
{% for p in range(n) %}
wire [{{m-1}}:0] request_{{p}};
wire [{{m-1}}:0] acknowledge_{{p}};
wire [{{m-1}}:0] grant_{{p}};
wire grant_valid_{{p}};
wire [{{cm-1}}:0] grant_encoded_{{p}};
{% endfor %}
{%- for p in range(n) %}
arbiter #(
.PORTS({{m}}),
.TYPE(ARB_TYPE),
.BLOCK("ACKNOWLEDGE"),
.LSB_PRIORITY(LSB_PRIORITY)
)
arb_{{p}}_inst (
.clk(clk),
.rst(rst),
.request(request_{{p}}),
.acknowledge(acknowledge_{{p}}),
.grant(grant_{{p}}),
.grant_valid(grant_valid_{{p}}),
.grant_encoded(grant_encoded_{{p}})
);
{% endfor %}
// request generation
{%- for p in range(n) %}
{%- for q in range(m) %}
assign request_{{p}}[{{q}}] = input_{{q}}_request_reg[{{p}}] & ~acknowledge_{{p}}[{{q}}];
{%- endfor %}
{% endfor %}
// acknowledge generation
{%- for p in range(n) %}
{%- for q in range(m) %}
assign acknowledge_{{p}}[{{q}}] = grant_{{p}}[{{q}}] & input_{{q}}_axis_tvalid & input_{{q}}_axis_tready & input_{{q}}_axis_tlast;
{%- endfor %}
{% endfor %}
always @* begin
{%- for p in range(n) %}
select_{{p}}_next = select_{{p}}_reg;
{%- endfor %}
{% for p in range(n) %}
enable_{{p}}_next = enable_{{p}}_reg;
{%- endfor %}
{% for p in range(m) %}
input_{{p}}_request_next = input_{{p}}_request_reg;
input_{{p}}_request_valid_next = input_{{p}}_request_valid_reg;
input_{{p}}_request_error_next = input_{{p}}_request_error_reg;
{% endfor %}
{%- for p in range(m) %}
input_{{p}}_axis_tready_next = 1'b0;
{%- endfor %}
{% for p in range(n) %}
output_{{p}}_axis_tdata_int = {DATA_WIDTH{1'b0}};
output_{{p}}_axis_tkeep_int = {DATA_WIDTH{1'b0}};
output_{{p}}_axis_tvalid_int = 1'b0;
output_{{p}}_axis_tlast_int = 1'b0;
output_{{p}}_axis_tdest_int = {DEST_WIDTH{1'b0}};
output_{{p}}_axis_tuser_int = 1'b0;
{% endfor %}
// input decoding
{% for p in range(m) %}
if (input_{{p}}_request_valid_reg | input_{{p}}_request_error_reg) begin
if (input_{{p}}_axis_tvalid & input_{{p}}_axis_tready & input_{{p}}_axis_tlast) begin
input_{{p}}_request_next = {DEST_WIDTH{1'b0}};
input_{{p}}_request_valid_next = 1'b0;
input_{{p}}_request_error_next = 1'b0;
end
end else if (input_{{p}}_axis_tvalid) begin
{%- for q in range(n) %}
input_{{p}}_request_next[{{q}}] = (input_{{p}}_axis_tdest >= OUT_{{q}}_BASE) & (input_{{p}}_axis_tdest <= OUT_{{q}}_TOP) & OUT_{{q}}_CONNECT[{{p}}];
{%- endfor %}
if (input_{{p}}_request_next) begin
input_{{p}}_request_valid_next = 1'b1;
end else begin
input_{{p}}_request_error_next = 1'b1;
end
end
{% endfor %}
// output control
{% for p in range(n) %}
if (enable_{{p}}_reg) begin
if (current_input_{{p}}_axis_tvalid & current_input_{{p}}_axis_tready) begin
enable_{{p}}_next = ~current_input_{{p}}_axis_tlast;
end
end else if (grant_valid_{{p}} & selected_input_{{p}}_axis_tvalid) begin
enable_{{p}}_next = 1'b1;
select_{{p}}_next = grant_encoded_{{p}};
end
{% endfor %}
// generate ready signal on selected port
{% for p in range(n) %}
if (enable_{{p}}_next) begin
case (select_{{p}}_next)
{%- for q in range(m) %}
{{cm}}'d{{q}}: input_{{q}}_axis_tready_next = output_{{p}}_axis_tready_int_early;
{%- endfor %}
endcase
end
{% endfor %}
{%- for p in range(m) %}
if (input_{{p}}_request_error_next)
input_{{p}}_axis_tready_next = 1'b1;
{%- endfor %}
// pass through selected packet data
{% for p in range(n) %}
output_{{p}}_axis_tdata_int = current_input_{{p}}_axis_tdata;
output_{{p}}_axis_tkeep_int = current_input_{{p}}_axis_tkeep;
output_{{p}}_axis_tvalid_int = current_input_{{p}}_axis_tvalid & current_input_{{p}}_axis_tready & enable_{{p}}_reg;
output_{{p}}_axis_tlast_int = current_input_{{p}}_axis_tlast;
output_{{p}}_axis_tdest_int = current_input_{{p}}_axis_tdest;
output_{{p}}_axis_tuser_int = current_input_{{p}}_axis_tuser;
{% endfor -%}
end
always @(posedge clk) begin
if (rst) begin
{%- for p in range(m) %}
input_{{p}}_request_reg <= {{n}}'d0;
input_{{p}}_request_valid_reg <= 1'b0;
input_{{p}}_request_error_reg <= 1'b0;
{%- endfor %}
{%- for p in range(n) %}
select_{{p}}_reg <= 2'd0;
{%- endfor %}
{%- for p in range(n) %}
enable_{{p}}_reg <= 1'b0;
{%- endfor %}
{%- for p in range(m) %}
input_{{p}}_axis_tready_reg <= 1'b0;
{%- endfor %}
end else begin
{%- for p in range(m) %}
input_{{p}}_request_reg <= input_{{p}}_request_next;
input_{{p}}_request_valid_reg <= input_{{p}}_request_valid_next;
input_{{p}}_request_error_reg <= input_{{p}}_request_error_next;
{%- endfor %}
{%- for p in range(n) %}
select_{{p}}_reg <= select_{{p}}_next;
{%- endfor %}
{%- for p in range(n) %}
enable_{{p}}_reg <= enable_{{p}}_next;
{%- endfor %}
{%- for p in range(m) %}
input_{{p}}_axis_tready_reg <= input_{{p}}_axis_tready_next;
{%- endfor %}
end
end
{% for p in range(n) %}
// output {{p}} datapath logic
reg [DATA_WIDTH-1:0] output_{{p}}_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] output_{{p}}_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg output_{{p}}_axis_tvalid_reg = 1'b0, output_{{p}}_axis_tvalid_next;
reg output_{{p}}_axis_tlast_reg = 1'b0;
reg [DEST_WIDTH-1:0] output_{{p}}_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg output_{{p}}_axis_tuser_reg = 1'b0;
reg [DATA_WIDTH-1:0] temp_{{p}}_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] temp_{{p}}_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg temp_{{p}}_axis_tvalid_reg = 1'b0, temp_{{p}}_axis_tvalid_next;
reg temp_{{p}}_axis_tlast_reg = 1'b0;
reg [DEST_WIDTH-1:0] temp_{{p}}_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg temp_{{p}}_axis_tuser_reg = 1'b0;
// datapath control
reg store_{{p}}_axis_int_to_output;
reg store_{{p}}_axis_int_to_temp;
reg store_{{p}}_axis_temp_to_output;
assign output_{{p}}_axis_tdata = output_{{p}}_axis_tdata_reg;
assign output_{{p}}_axis_tkeep = output_{{p}}_axis_tkeep_reg;
assign output_{{p}}_axis_tvalid = output_{{p}}_axis_tvalid_reg;
assign output_{{p}}_axis_tlast = output_{{p}}_axis_tlast_reg;
assign output_{{p}}_axis_tdest = output_{{p}}_axis_tdest_reg;
assign output_{{p}}_axis_tuser = output_{{p}}_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign output_{{p}}_axis_tready_int_early = output_{{p}}_axis_tready | (~temp_{{p}}_axis_tvalid_reg & (~output_{{p}}_axis_tvalid_reg | ~output_{{p}}_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
output_{{p}}_axis_tvalid_next = output_{{p}}_axis_tvalid_reg;
temp_{{p}}_axis_tvalid_next = temp_{{p}}_axis_tvalid_reg;
store_{{p}}_axis_int_to_output = 1'b0;
store_{{p}}_axis_int_to_temp = 1'b0;
store_{{p}}_axis_temp_to_output = 1'b0;
if (output_{{p}}_axis_tready_int_reg) begin
// input is ready
if (output_{{p}}_axis_tready | ~output_{{p}}_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
output_{{p}}_axis_tvalid_next = output_{{p}}_axis_tvalid_int;
store_{{p}}_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_{{p}}_axis_tvalid_next = output_{{p}}_axis_tvalid_int;
store_{{p}}_axis_int_to_temp = 1'b1;
end
end else if (output_{{p}}_axis_tready) begin
// input is not ready, but output is ready
output_{{p}}_axis_tvalid_next = temp_{{p}}_axis_tvalid_reg;
temp_{{p}}_axis_tvalid_next = 1'b0;
store_{{p}}_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
output_{{p}}_axis_tvalid_reg <= 1'b0;
output_{{p}}_axis_tready_int_reg <= 1'b0;
temp_{{p}}_axis_tvalid_reg <= 1'b0;
end else begin
output_{{p}}_axis_tvalid_reg <= output_{{p}}_axis_tvalid_next;
output_{{p}}_axis_tready_int_reg <= output_{{p}}_axis_tready_int_early;
temp_{{p}}_axis_tvalid_reg <= temp_{{p}}_axis_tvalid_next;
end
// datapath
if (store_{{p}}_axis_int_to_output) begin
output_{{p}}_axis_tdata_reg <= output_{{p}}_axis_tdata_int;
output_{{p}}_axis_tkeep_reg <= output_{{p}}_axis_tkeep_int;
output_{{p}}_axis_tlast_reg <= output_{{p}}_axis_tlast_int;
output_{{p}}_axis_tdest_reg <= output_{{p}}_axis_tdest_int;
output_{{p}}_axis_tuser_reg <= output_{{p}}_axis_tuser_int;
end else if (store_{{p}}_axis_temp_to_output) begin
output_{{p}}_axis_tdata_reg <= temp_{{p}}_axis_tdata_reg;
output_{{p}}_axis_tkeep_reg <= temp_{{p}}_axis_tkeep_reg;
output_{{p}}_axis_tlast_reg <= temp_{{p}}_axis_tlast_reg;
output_{{p}}_axis_tdest_reg <= temp_{{p}}_axis_tdest_reg;
output_{{p}}_axis_tuser_reg <= temp_{{p}}_axis_tuser_reg;
end
if (store_{{p}}_axis_int_to_temp) begin
temp_{{p}}_axis_tdata_reg <= output_{{p}}_axis_tdata_int;
temp_{{p}}_axis_tkeep_reg <= output_{{p}}_axis_tkeep_int;
temp_{{p}}_axis_tlast_reg <= output_{{p}}_axis_tlast_int;
temp_{{p}}_axis_tdest_reg <= output_{{p}}_axis_tdest_int;
temp_{{p}}_axis_tuser_reg <= output_{{p}}_axis_tuser_int;
end
end
{% endfor %}
endmodule
""")
output_file.write(t.render(
m=m,
n=n,
cm=cm,
cn=cn,
name=name
))
print("Done")
if __name__ == "__main__":
main()

1331
rtl/axis_switch_64_4x4.v Normal file

File diff suppressed because it is too large Load Diff

682
tb/test_axis_switch_4x4.py Executable file
View File

@ -0,0 +1,682 @@
#!/usr/bin/env python
"""
Copyright (c) 2016 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from myhdl import *
import os
try:
from queue import Queue
except ImportError:
from Queue import Queue
import axis_ep
module = 'axis_switch_4x4'
testbench = 'test_axis_switch_4x4'
srcs = []
srcs.append("../rtl/%s.v" % module)
srcs.append("../rtl/arbiter.v")
srcs.append("../rtl/priority_encoder.v")
srcs.append("%s.v" % testbench)
src = ' '.join(srcs)
build_cmd = "iverilog -o %s.vvp %s" % (testbench, src)
def dut_axis_switch_4x4(clk,
rst,
current_test,
input_0_axis_tdata,
input_0_axis_tvalid,
input_0_axis_tready,
input_0_axis_tlast,
input_0_axis_tdest,
input_0_axis_tuser,
input_1_axis_tdata,
input_1_axis_tvalid,
input_1_axis_tready,
input_1_axis_tlast,
input_1_axis_tdest,
input_1_axis_tuser,
input_2_axis_tdata,
input_2_axis_tvalid,
input_2_axis_tready,
input_2_axis_tlast,
input_2_axis_tdest,
input_2_axis_tuser,
input_3_axis_tdata,
input_3_axis_tvalid,
input_3_axis_tready,
input_3_axis_tlast,
input_3_axis_tdest,
input_3_axis_tuser,
output_0_axis_tdata,
output_0_axis_tvalid,
output_0_axis_tready,
output_0_axis_tlast,
output_0_axis_tdest,
output_0_axis_tuser,
output_1_axis_tdata,
output_1_axis_tvalid,
output_1_axis_tready,
output_1_axis_tlast,
output_1_axis_tdest,
output_1_axis_tuser,
output_2_axis_tdata,
output_2_axis_tvalid,
output_2_axis_tready,
output_2_axis_tlast,
output_2_axis_tdest,
output_2_axis_tuser,
output_3_axis_tdata,
output_3_axis_tvalid,
output_3_axis_tready,
output_3_axis_tlast,
output_3_axis_tdest,
output_3_axis_tuser):
if os.system(build_cmd):
raise Exception("Error running build command")
return Cosimulation("vvp -m myhdl %s.vvp -lxt2" % testbench,
clk=clk,
rst=rst,
current_test=current_test,
input_0_axis_tdata=input_0_axis_tdata,
input_0_axis_tvalid=input_0_axis_tvalid,
input_0_axis_tready=input_0_axis_tready,
input_0_axis_tlast=input_0_axis_tlast,
input_0_axis_tdest=input_0_axis_tdest,
input_0_axis_tuser=input_0_axis_tuser,
input_1_axis_tdata=input_1_axis_tdata,
input_1_axis_tvalid=input_1_axis_tvalid,
input_1_axis_tready=input_1_axis_tready,
input_1_axis_tlast=input_1_axis_tlast,
input_1_axis_tdest=input_1_axis_tdest,
input_1_axis_tuser=input_1_axis_tuser,
input_2_axis_tdata=input_2_axis_tdata,
input_2_axis_tvalid=input_2_axis_tvalid,
input_2_axis_tready=input_2_axis_tready,
input_2_axis_tlast=input_2_axis_tlast,
input_2_axis_tdest=input_2_axis_tdest,
input_2_axis_tuser=input_2_axis_tuser,
input_3_axis_tdata=input_3_axis_tdata,
input_3_axis_tvalid=input_3_axis_tvalid,
input_3_axis_tready=input_3_axis_tready,
input_3_axis_tlast=input_3_axis_tlast,
input_3_axis_tdest=input_3_axis_tdest,
input_3_axis_tuser=input_3_axis_tuser,
output_0_axis_tdata=output_0_axis_tdata,
output_0_axis_tvalid=output_0_axis_tvalid,
output_0_axis_tready=output_0_axis_tready,
output_0_axis_tlast=output_0_axis_tlast,
output_0_axis_tdest=output_0_axis_tdest,
output_0_axis_tuser=output_0_axis_tuser,
output_1_axis_tdata=output_1_axis_tdata,
output_1_axis_tvalid=output_1_axis_tvalid,
output_1_axis_tready=output_1_axis_tready,
output_1_axis_tlast=output_1_axis_tlast,
output_1_axis_tdest=output_1_axis_tdest,
output_1_axis_tuser=output_1_axis_tuser,
output_2_axis_tdata=output_2_axis_tdata,
output_2_axis_tvalid=output_2_axis_tvalid,
output_2_axis_tready=output_2_axis_tready,
output_2_axis_tlast=output_2_axis_tlast,
output_2_axis_tdest=output_2_axis_tdest,
output_2_axis_tuser=output_2_axis_tuser,
output_3_axis_tdata=output_3_axis_tdata,
output_3_axis_tvalid=output_3_axis_tvalid,
output_3_axis_tready=output_3_axis_tready,
output_3_axis_tlast=output_3_axis_tlast,
output_3_axis_tdest=output_3_axis_tdest,
output_3_axis_tuser=output_3_axis_tuser)
def bench():
# Parameters
DATA_WIDTH = 8
DEST_WIDTH = 3
OUT_0_BASE = 0
OUT_0_TOP = 0
OUT_0_CONNECT = 0xf
OUT_1_BASE = 1
OUT_1_TOP = 1
OUT_1_CONNECT = 0xf
OUT_2_BASE = 2
OUT_2_TOP = 2
OUT_2_CONNECT = 0xf
OUT_3_BASE = 3
OUT_3_TOP = 3
OUT_3_CONNECT = 0xf
ARB_TYPE = "ROUND_ROBIN"
LSB_PRIORITY = "HIGH"
# Inputs
clk = Signal(bool(0))
rst = Signal(bool(0))
current_test = Signal(intbv(0)[8:])
input_0_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
input_0_axis_tvalid = Signal(bool(0))
input_0_axis_tlast = Signal(bool(0))
input_0_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
input_0_axis_tuser = Signal(bool(0))
input_1_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
input_1_axis_tvalid = Signal(bool(0))
input_1_axis_tlast = Signal(bool(0))
input_1_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
input_1_axis_tuser = Signal(bool(0))
input_2_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
input_2_axis_tvalid = Signal(bool(0))
input_2_axis_tlast = Signal(bool(0))
input_2_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
input_2_axis_tuser = Signal(bool(0))
input_3_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
input_3_axis_tvalid = Signal(bool(0))
input_3_axis_tlast = Signal(bool(0))
input_3_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
input_3_axis_tuser = Signal(bool(0))
output_0_axis_tready = Signal(bool(0))
output_1_axis_tready = Signal(bool(0))
output_2_axis_tready = Signal(bool(0))
output_3_axis_tready = Signal(bool(0))
# Outputs
input_0_axis_tready = Signal(bool(0))
input_1_axis_tready = Signal(bool(0))
input_2_axis_tready = Signal(bool(0))
input_3_axis_tready = Signal(bool(0))
output_0_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_0_axis_tvalid = Signal(bool(0))
output_0_axis_tlast = Signal(bool(0))
output_0_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_0_axis_tuser = Signal(bool(0))
output_1_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_1_axis_tvalid = Signal(bool(0))
output_1_axis_tlast = Signal(bool(0))
output_1_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_1_axis_tuser = Signal(bool(0))
output_2_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_2_axis_tvalid = Signal(bool(0))
output_2_axis_tlast = Signal(bool(0))
output_2_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_2_axis_tuser = Signal(bool(0))
output_3_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_3_axis_tvalid = Signal(bool(0))
output_3_axis_tlast = Signal(bool(0))
output_3_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_3_axis_tuser = Signal(bool(0))
# sources and sinks
source_0_queue = Queue()
source_0_pause = Signal(bool(0))
source_1_queue = Queue()
source_1_pause = Signal(bool(0))
source_2_queue = Queue()
source_2_pause = Signal(bool(0))
source_3_queue = Queue()
source_3_pause = Signal(bool(0))
sink_0_queue = Queue()
sink_0_pause = Signal(bool(0))
sink_1_queue = Queue()
sink_1_pause = Signal(bool(0))
sink_2_queue = Queue()
sink_2_pause = Signal(bool(0))
sink_3_queue = Queue()
sink_3_pause = Signal(bool(0))
source_0 = axis_ep.AXIStreamSource(clk,
rst,
tdata=input_0_axis_tdata,
tvalid=input_0_axis_tvalid,
tready=input_0_axis_tready,
tlast=input_0_axis_tlast,
tdest=input_0_axis_tdest,
tuser=input_0_axis_tuser,
fifo=source_0_queue,
pause=source_0_pause,
name='source0')
source_1 = axis_ep.AXIStreamSource(clk,
rst,
tdata=input_1_axis_tdata,
tvalid=input_1_axis_tvalid,
tready=input_1_axis_tready,
tlast=input_1_axis_tlast,
tdest=input_1_axis_tdest,
tuser=input_1_axis_tuser,
fifo=source_1_queue,
pause=source_1_pause,
name='source1')
source_2 = axis_ep.AXIStreamSource(clk,
rst,
tdata=input_2_axis_tdata,
tvalid=input_2_axis_tvalid,
tready=input_2_axis_tready,
tlast=input_2_axis_tlast,
tdest=input_2_axis_tdest,
tuser=input_2_axis_tuser,
fifo=source_2_queue,
pause=source_2_pause,
name='source2')
source_3 = axis_ep.AXIStreamSource(clk,
rst,
tdata=input_3_axis_tdata,
tvalid=input_3_axis_tvalid,
tready=input_3_axis_tready,
tlast=input_3_axis_tlast,
tdest=input_3_axis_tdest,
tuser=input_3_axis_tuser,
fifo=source_3_queue,
pause=source_3_pause,
name='source3')
sink_0 = axis_ep.AXIStreamSink(clk,
rst,
tdata=output_0_axis_tdata,
tvalid=output_0_axis_tvalid,
tready=output_0_axis_tready,
tlast=output_0_axis_tlast,
tdest=output_0_axis_tdest,
tuser=output_0_axis_tuser,
fifo=sink_0_queue,
pause=sink_0_pause,
name='sink0')
sink_1 = axis_ep.AXIStreamSink(clk,
rst,
tdata=output_1_axis_tdata,
tvalid=output_1_axis_tvalid,
tready=output_1_axis_tready,
tlast=output_1_axis_tlast,
tdest=output_1_axis_tdest,
tuser=output_1_axis_tuser,
fifo=sink_1_queue,
pause=sink_1_pause,
name='sink1')
sink_2 = axis_ep.AXIStreamSink(clk,
rst,
tdata=output_2_axis_tdata,
tvalid=output_2_axis_tvalid,
tready=output_2_axis_tready,
tlast=output_2_axis_tlast,
tdest=output_2_axis_tdest,
tuser=output_2_axis_tuser,
fifo=sink_2_queue,
pause=sink_2_pause,
name='sink2')
sink_3 = axis_ep.AXIStreamSink(clk,
rst,
tdata=output_3_axis_tdata,
tvalid=output_3_axis_tvalid,
tready=output_3_axis_tready,
tlast=output_3_axis_tlast,
tdest=output_3_axis_tdest,
tuser=output_3_axis_tuser,
fifo=sink_3_queue,
pause=sink_3_pause,
name='sink3')
# DUT
dut = dut_axis_switch_4x4(clk,
rst,
current_test,
input_0_axis_tdata,
input_0_axis_tvalid,
input_0_axis_tready,
input_0_axis_tlast,
input_0_axis_tdest,
input_0_axis_tuser,
input_1_axis_tdata,
input_1_axis_tvalid,
input_1_axis_tready,
input_1_axis_tlast,
input_1_axis_tdest,
input_1_axis_tuser,
input_2_axis_tdata,
input_2_axis_tvalid,
input_2_axis_tready,
input_2_axis_tlast,
input_2_axis_tdest,
input_2_axis_tuser,
input_3_axis_tdata,
input_3_axis_tvalid,
input_3_axis_tready,
input_3_axis_tlast,
input_3_axis_tdest,
input_3_axis_tuser,
output_0_axis_tdata,
output_0_axis_tvalid,
output_0_axis_tready,
output_0_axis_tlast,
output_0_axis_tdest,
output_0_axis_tuser,
output_1_axis_tdata,
output_1_axis_tvalid,
output_1_axis_tready,
output_1_axis_tlast,
output_1_axis_tdest,
output_1_axis_tuser,
output_2_axis_tdata,
output_2_axis_tvalid,
output_2_axis_tready,
output_2_axis_tlast,
output_2_axis_tdest,
output_2_axis_tuser,
output_3_axis_tdata,
output_3_axis_tvalid,
output_3_axis_tready,
output_3_axis_tlast,
output_3_axis_tdest,
output_3_axis_tuser)
@always(delay(4))
def clkgen():
clk.next = not clk
def wait_normal():
while input_0_axis_tvalid or input_1_axis_tvalid or input_2_axis_tvalid or input_3_axis_tvalid:
yield clk.posedge
def wait_pause_source():
while input_0_axis_tvalid or input_1_axis_tvalid or input_2_axis_tvalid or input_3_axis_tvalid:
source_0_pause.next = True
source_1_pause.next = True
source_2_pause.next = True
source_3_pause.next = True
yield clk.posedge
yield clk.posedge
yield clk.posedge
source_0_pause.next = False
source_1_pause.next = False
source_2_pause.next = False
source_3_pause.next = False
yield clk.posedge
def wait_pause_sink():
while input_0_axis_tvalid or input_1_axis_tvalid or input_2_axis_tvalid or input_3_axis_tvalid:
sink_0_pause.next = True
sink_1_pause.next = True
sink_2_pause.next = True
sink_3_pause.next = True
yield clk.posedge
yield clk.posedge
yield clk.posedge
sink_0_pause.next = False
sink_1_pause.next = False
sink_2_pause.next = False
sink_3_pause.next = False
yield clk.posedge
@instance
def check():
yield delay(100)
yield clk.posedge
rst.next = 1
yield clk.posedge
rst.next = 0
yield clk.posedge
yield delay(100)
yield clk.posedge
# testbench stimulus
yield clk.posedge
print("test 1: 0123 -> 0123")
current_test.next = 1
test_frame0 = axis_ep.AXIStreamFrame(b'\x01\x00\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
test_frame1 = axis_ep.AXIStreamFrame(b'\x01\x01\x01\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=1)
test_frame2 = axis_ep.AXIStreamFrame(b'\x01\x02\x02\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=2)
test_frame3 = axis_ep.AXIStreamFrame(b'\x01\x03\x03\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=3)
for wait in wait_normal, wait_pause_source, wait_pause_sink:
source_0_queue.put(test_frame0)
source_1_queue.put(test_frame1)
source_2_queue.put(test_frame2)
source_3_queue.put(test_frame3)
yield clk.posedge
yield clk.posedge
yield wait()
yield clk.posedge
yield clk.posedge
rx_frame0 = None
if not sink_0_queue.empty():
rx_frame0 = sink_0_queue.get()
assert rx_frame0 == test_frame0
rx_frame1 = None
if not sink_1_queue.empty():
rx_frame1 = sink_1_queue.get()
assert rx_frame1 == test_frame1
rx_frame2 = None
if not sink_2_queue.empty():
rx_frame2 = sink_2_queue.get()
assert rx_frame2 == test_frame2
rx_frame3 = None
if not sink_3_queue.empty():
rx_frame3 = sink_3_queue.get()
assert rx_frame3 == test_frame3
yield delay(100)
yield clk.posedge
print("test 2: 0123 -> 3210")
current_test.next = 2
test_frame0 = axis_ep.AXIStreamFrame(b'\x02\x00\x03\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=3)
test_frame1 = axis_ep.AXIStreamFrame(b'\x02\x01\x02\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=2)
test_frame2 = axis_ep.AXIStreamFrame(b'\x02\x02\x01\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=1)
test_frame3 = axis_ep.AXIStreamFrame(b'\x02\x03\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
for wait in wait_normal, wait_pause_source, wait_pause_sink:
source_0_queue.put(test_frame0)
source_1_queue.put(test_frame1)
source_2_queue.put(test_frame2)
source_3_queue.put(test_frame3)
yield clk.posedge
yield clk.posedge
yield wait()
yield clk.posedge
yield clk.posedge
rx_frame0 = None
if not sink_0_queue.empty():
rx_frame0 = sink_0_queue.get()
assert rx_frame0 == test_frame3
rx_frame1 = None
if not sink_1_queue.empty():
rx_frame1 = sink_1_queue.get()
assert rx_frame1 == test_frame2
rx_frame2 = None
if not sink_2_queue.empty():
rx_frame2 = sink_2_queue.get()
assert rx_frame2 == test_frame1
rx_frame3 = None
if not sink_3_queue.empty():
rx_frame3 = sink_3_queue.get()
assert rx_frame3 == test_frame0
yield delay(100)
yield clk.posedge
print("test 3: 0000 -> 0123")
current_test.next = 3
test_frame0 = axis_ep.AXIStreamFrame(b'\x02\x00\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
test_frame1 = axis_ep.AXIStreamFrame(b'\x02\x00\x01\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=1)
test_frame2 = axis_ep.AXIStreamFrame(b'\x02\x00\x02\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=2)
test_frame3 = axis_ep.AXIStreamFrame(b'\x02\x00\x03\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=3)
for wait in wait_normal, wait_pause_source, wait_pause_sink:
source_0_queue.put(test_frame0)
source_0_queue.put(test_frame1)
source_0_queue.put(test_frame2)
source_0_queue.put(test_frame3)
yield clk.posedge
yield clk.posedge
yield wait()
yield clk.posedge
yield clk.posedge
rx_frame0 = None
if not sink_0_queue.empty():
rx_frame0 = sink_0_queue.get()
assert rx_frame0 == test_frame0
rx_frame1 = None
if not sink_1_queue.empty():
rx_frame1 = sink_1_queue.get()
assert rx_frame1 == test_frame1
rx_frame2 = None
if not sink_2_queue.empty():
rx_frame2 = sink_2_queue.get()
assert rx_frame2 == test_frame2
rx_frame3 = None
if not sink_3_queue.empty():
rx_frame3 = sink_3_queue.get()
assert rx_frame3 == test_frame3
yield delay(100)
yield clk.posedge
print("test 4: 0123 -> 0000")
current_test.next = 4
test_frame0 = axis_ep.AXIStreamFrame(b'\x02\x00\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
test_frame1 = axis_ep.AXIStreamFrame(b'\x02\x01\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
test_frame2 = axis_ep.AXIStreamFrame(b'\x02\x02\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
test_frame3 = axis_ep.AXIStreamFrame(b'\x02\x03\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
for wait in wait_normal, wait_pause_source, wait_pause_sink:
source_0_queue.put(test_frame0)
yield clk.posedge
source_1_queue.put(test_frame1)
source_2_queue.put(test_frame2)
source_3_queue.put(test_frame3)
yield clk.posedge
yield wait()
yield clk.posedge
yield clk.posedge
rx_frame0 = None
if not sink_0_queue.empty():
rx_frame0 = sink_0_queue.get()
assert rx_frame0 == test_frame0
rx_frame1 = None
if not sink_0_queue.empty():
rx_frame1 = sink_0_queue.get()
assert rx_frame1 == test_frame1
rx_frame2 = None
if not sink_0_queue.empty():
rx_frame2 = sink_0_queue.get()
assert rx_frame2 == test_frame2
rx_frame3 = None
if not sink_0_queue.empty():
rx_frame3 = sink_0_queue.get()
assert rx_frame3 == test_frame3
yield delay(100)
yield clk.posedge
print("test 1: bad decoding")
current_test.next = 1
test_frame0 = axis_ep.AXIStreamFrame(b'\x01\x00\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
test_frame1 = axis_ep.AXIStreamFrame(b'\x01\x01\x01\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=1)
test_frame2 = axis_ep.AXIStreamFrame(b'\x01\x02\x04\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=4)
test_frame3 = axis_ep.AXIStreamFrame(b'\x01\x03\x05\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=5)
for wait in wait_normal, wait_pause_source, wait_pause_sink:
source_0_queue.put(test_frame0)
source_1_queue.put(test_frame1)
source_2_queue.put(test_frame2)
source_3_queue.put(test_frame3)
yield clk.posedge
yield clk.posedge
yield wait()
yield clk.posedge
yield clk.posedge
rx_frame0 = None
if not sink_0_queue.empty():
rx_frame0 = sink_0_queue.get()
assert rx_frame0 == test_frame0
rx_frame1 = None
if not sink_1_queue.empty():
rx_frame1 = sink_1_queue.get()
assert rx_frame1 == test_frame1
yield delay(100)
raise StopSimulation
return dut, source_0, source_1, source_2, source_3, sink_0, sink_1, sink_2, sink_3, clkgen, check
def test_bench():
sim = Simulation(bench())
sim.run()
if __name__ == '__main__':
print("Running test...")
test_bench()

240
tb/test_axis_switch_4x4.v Normal file
View File

@ -0,0 +1,240 @@
/*
Copyright (c) 2016 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Testbench for axis_switch_4x4
*/
module test_axis_switch_4x4;
// Parameters
parameter DATA_WIDTH = 8;
parameter DEST_WIDTH = 3;
parameter OUT_0_BASE = 0;
parameter OUT_0_TOP = 0;
parameter OUT_0_CONNECT = 4'b1111;
parameter OUT_1_BASE = 1;
parameter OUT_1_TOP = 1;
parameter OUT_1_CONNECT = 4'b1111;
parameter OUT_2_BASE = 2;
parameter OUT_2_TOP = 2;
parameter OUT_2_CONNECT = 4'b1111;
parameter OUT_3_BASE = 3;
parameter OUT_3_TOP = 3;
parameter OUT_3_CONNECT = 4'b1111;
parameter ARB_TYPE = "ROUND_ROBIN";
parameter LSB_PRIORITY = "HIGH";
// Inputs
reg clk = 0;
reg rst = 0;
reg [7:0] current_test = 0;
reg [DATA_WIDTH-1:0] input_0_axis_tdata = 0;
reg input_0_axis_tvalid = 0;
reg input_0_axis_tlast = 0;
reg [DEST_WIDTH-1:0] input_0_axis_tdest = 0;
reg input_0_axis_tuser = 0;
reg [DATA_WIDTH-1:0] input_1_axis_tdata = 0;
reg input_1_axis_tvalid = 0;
reg input_1_axis_tlast = 0;
reg [DEST_WIDTH-1:0] input_1_axis_tdest = 0;
reg input_1_axis_tuser = 0;
reg [DATA_WIDTH-1:0] input_2_axis_tdata = 0;
reg input_2_axis_tvalid = 0;
reg input_2_axis_tlast = 0;
reg [DEST_WIDTH-1:0] input_2_axis_tdest = 0;
reg input_2_axis_tuser = 0;
reg [DATA_WIDTH-1:0] input_3_axis_tdata = 0;
reg input_3_axis_tvalid = 0;
reg input_3_axis_tlast = 0;
reg [DEST_WIDTH-1:0] input_3_axis_tdest = 0;
reg input_3_axis_tuser = 0;
reg output_0_axis_tready = 0;
reg output_1_axis_tready = 0;
reg output_2_axis_tready = 0;
reg output_3_axis_tready = 0;
// Outputs
wire input_0_axis_tready;
wire input_1_axis_tready;
wire input_2_axis_tready;
wire input_3_axis_tready;
wire [DATA_WIDTH-1:0] output_0_axis_tdata;
wire output_0_axis_tvalid;
wire output_0_axis_tlast;
wire [DEST_WIDTH-1:0] output_0_axis_tdest;
wire output_0_axis_tuser;
wire [DATA_WIDTH-1:0] output_1_axis_tdata;
wire output_1_axis_tvalid;
wire output_1_axis_tlast;
wire [DEST_WIDTH-1:0] output_1_axis_tdest;
wire output_1_axis_tuser;
wire [DATA_WIDTH-1:0] output_2_axis_tdata;
wire output_2_axis_tvalid;
wire output_2_axis_tlast;
wire [DEST_WIDTH-1:0] output_2_axis_tdest;
wire output_2_axis_tuser;
wire [DATA_WIDTH-1:0] output_3_axis_tdata;
wire output_3_axis_tvalid;
wire output_3_axis_tlast;
wire [DEST_WIDTH-1:0] output_3_axis_tdest;
wire output_3_axis_tuser;
initial begin
// myhdl integration
$from_myhdl(clk,
rst,
current_test,
input_0_axis_tdata,
input_0_axis_tvalid,
input_0_axis_tlast,
input_0_axis_tdest,
input_0_axis_tuser,
input_1_axis_tdata,
input_1_axis_tvalid,
input_1_axis_tlast,
input_1_axis_tdest,
input_1_axis_tuser,
input_2_axis_tdata,
input_2_axis_tvalid,
input_2_axis_tlast,
input_2_axis_tdest,
input_2_axis_tuser,
input_3_axis_tdata,
input_3_axis_tvalid,
input_3_axis_tlast,
input_3_axis_tdest,
input_3_axis_tuser,
output_0_axis_tready,
output_1_axis_tready,
output_2_axis_tready,
output_3_axis_tready);
$to_myhdl(input_0_axis_tready,
input_1_axis_tready,
input_2_axis_tready,
input_3_axis_tready,
output_0_axis_tdata,
output_0_axis_tvalid,
output_0_axis_tlast,
output_0_axis_tdest,
output_0_axis_tuser,
output_1_axis_tdata,
output_1_axis_tvalid,
output_1_axis_tlast,
output_1_axis_tdest,
output_1_axis_tuser,
output_2_axis_tdata,
output_2_axis_tvalid,
output_2_axis_tlast,
output_2_axis_tdest,
output_2_axis_tuser,
output_3_axis_tdata,
output_3_axis_tvalid,
output_3_axis_tlast,
output_3_axis_tdest,
output_3_axis_tuser);
// dump file
$dumpfile("test_axis_switch_4x4.lxt");
$dumpvars(0, test_axis_switch_4x4);
end
axis_switch_4x4 #(
.DATA_WIDTH(DATA_WIDTH),
.DEST_WIDTH(DEST_WIDTH),
.OUT_0_BASE(OUT_0_BASE),
.OUT_0_TOP(OUT_0_TOP),
.OUT_0_CONNECT(OUT_0_CONNECT),
.OUT_1_BASE(OUT_1_BASE),
.OUT_1_TOP(OUT_1_TOP),
.OUT_1_CONNECT(OUT_1_CONNECT),
.OUT_2_BASE(OUT_2_BASE),
.OUT_2_TOP(OUT_2_TOP),
.OUT_2_CONNECT(OUT_2_CONNECT),
.OUT_3_BASE(OUT_3_BASE),
.OUT_3_TOP(OUT_3_TOP),
.OUT_3_CONNECT(OUT_3_CONNECT),
.ARB_TYPE(ARB_TYPE),
.LSB_PRIORITY(LSB_PRIORITY)
)
UUT (
.clk(clk),
.rst(rst),
// AXI inputs
.input_0_axis_tdata(input_0_axis_tdata),
.input_0_axis_tvalid(input_0_axis_tvalid),
.input_0_axis_tready(input_0_axis_tready),
.input_0_axis_tlast(input_0_axis_tlast),
.input_0_axis_tdest(input_0_axis_tdest),
.input_0_axis_tuser(input_0_axis_tuser),
.input_1_axis_tdata(input_1_axis_tdata),
.input_1_axis_tvalid(input_1_axis_tvalid),
.input_1_axis_tready(input_1_axis_tready),
.input_1_axis_tlast(input_1_axis_tlast),
.input_1_axis_tdest(input_1_axis_tdest),
.input_1_axis_tuser(input_1_axis_tuser),
.input_2_axis_tdata(input_2_axis_tdata),
.input_2_axis_tvalid(input_2_axis_tvalid),
.input_2_axis_tready(input_2_axis_tready),
.input_2_axis_tlast(input_2_axis_tlast),
.input_2_axis_tdest(input_2_axis_tdest),
.input_2_axis_tuser(input_2_axis_tuser),
.input_3_axis_tdata(input_3_axis_tdata),
.input_3_axis_tvalid(input_3_axis_tvalid),
.input_3_axis_tready(input_3_axis_tready),
.input_3_axis_tlast(input_3_axis_tlast),
.input_3_axis_tdest(input_3_axis_tdest),
.input_3_axis_tuser(input_3_axis_tuser),
// AXI outputs
.output_0_axis_tdata(output_0_axis_tdata),
.output_0_axis_tvalid(output_0_axis_tvalid),
.output_0_axis_tready(output_0_axis_tready),
.output_0_axis_tlast(output_0_axis_tlast),
.output_0_axis_tdest(output_0_axis_tdest),
.output_0_axis_tuser(output_0_axis_tuser),
.output_1_axis_tdata(output_1_axis_tdata),
.output_1_axis_tvalid(output_1_axis_tvalid),
.output_1_axis_tready(output_1_axis_tready),
.output_1_axis_tlast(output_1_axis_tlast),
.output_1_axis_tdest(output_1_axis_tdest),
.output_1_axis_tuser(output_1_axis_tuser),
.output_2_axis_tdata(output_2_axis_tdata),
.output_2_axis_tvalid(output_2_axis_tvalid),
.output_2_axis_tready(output_2_axis_tready),
.output_2_axis_tlast(output_2_axis_tlast),
.output_2_axis_tdest(output_2_axis_tdest),
.output_2_axis_tuser(output_2_axis_tuser),
.output_3_axis_tdata(output_3_axis_tdata),
.output_3_axis_tvalid(output_3_axis_tvalid),
.output_3_axis_tready(output_3_axis_tready),
.output_3_axis_tlast(output_3_axis_tlast),
.output_3_axis_tdest(output_3_axis_tdest),
.output_3_axis_tuser(output_3_axis_tuser)
);
endmodule

723
tb/test_axis_switch_64_4x4.py Executable file
View File

@ -0,0 +1,723 @@
#!/usr/bin/env python
"""
Copyright (c) 2016 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from myhdl import *
import os
try:
from queue import Queue
except ImportError:
from Queue import Queue
import axis_ep
module = 'axis_switch_64_4x4'
testbench = 'test_axis_switch_64_4x4'
srcs = []
srcs.append("../rtl/%s.v" % module)
srcs.append("../rtl/arbiter.v")
srcs.append("../rtl/priority_encoder.v")
srcs.append("%s.v" % testbench)
src = ' '.join(srcs)
build_cmd = "iverilog -o %s.vvp %s" % (testbench, src)
def dut_axis_switch_64_4x4(clk,
rst,
current_test,
input_0_axis_tdata,
input_0_axis_tkeep,
input_0_axis_tvalid,
input_0_axis_tready,
input_0_axis_tlast,
input_0_axis_tdest,
input_0_axis_tuser,
input_1_axis_tdata,
input_1_axis_tkeep,
input_1_axis_tvalid,
input_1_axis_tready,
input_1_axis_tlast,
input_1_axis_tdest,
input_1_axis_tuser,
input_2_axis_tdata,
input_2_axis_tkeep,
input_2_axis_tvalid,
input_2_axis_tready,
input_2_axis_tlast,
input_2_axis_tdest,
input_2_axis_tuser,
input_3_axis_tdata,
input_3_axis_tkeep,
input_3_axis_tvalid,
input_3_axis_tready,
input_3_axis_tlast,
input_3_axis_tdest,
input_3_axis_tuser,
output_0_axis_tdata,
output_0_axis_tkeep,
output_0_axis_tvalid,
output_0_axis_tready,
output_0_axis_tlast,
output_0_axis_tdest,
output_0_axis_tuser,
output_1_axis_tdata,
output_1_axis_tkeep,
output_1_axis_tvalid,
output_1_axis_tready,
output_1_axis_tlast,
output_1_axis_tdest,
output_1_axis_tuser,
output_2_axis_tdata,
output_2_axis_tkeep,
output_2_axis_tvalid,
output_2_axis_tready,
output_2_axis_tlast,
output_2_axis_tdest,
output_2_axis_tuser,
output_3_axis_tdata,
output_3_axis_tkeep,
output_3_axis_tvalid,
output_3_axis_tready,
output_3_axis_tlast,
output_3_axis_tdest,
output_3_axis_tuser):
if os.system(build_cmd):
raise Exception("Error running build command")
return Cosimulation("vvp -m myhdl %s.vvp -lxt2" % testbench,
clk=clk,
rst=rst,
current_test=current_test,
input_0_axis_tdata=input_0_axis_tdata,
input_0_axis_tkeep=input_0_axis_tkeep,
input_0_axis_tvalid=input_0_axis_tvalid,
input_0_axis_tready=input_0_axis_tready,
input_0_axis_tlast=input_0_axis_tlast,
input_0_axis_tdest=input_0_axis_tdest,
input_0_axis_tuser=input_0_axis_tuser,
input_1_axis_tdata=input_1_axis_tdata,
input_1_axis_tkeep=input_1_axis_tkeep,
input_1_axis_tvalid=input_1_axis_tvalid,
input_1_axis_tready=input_1_axis_tready,
input_1_axis_tlast=input_1_axis_tlast,
input_1_axis_tdest=input_1_axis_tdest,
input_1_axis_tuser=input_1_axis_tuser,
input_2_axis_tdata=input_2_axis_tdata,
input_2_axis_tkeep=input_2_axis_tkeep,
input_2_axis_tvalid=input_2_axis_tvalid,
input_2_axis_tready=input_2_axis_tready,
input_2_axis_tlast=input_2_axis_tlast,
input_2_axis_tdest=input_2_axis_tdest,
input_2_axis_tuser=input_2_axis_tuser,
input_3_axis_tdata=input_3_axis_tdata,
input_3_axis_tkeep=input_3_axis_tkeep,
input_3_axis_tvalid=input_3_axis_tvalid,
input_3_axis_tready=input_3_axis_tready,
input_3_axis_tlast=input_3_axis_tlast,
input_3_axis_tdest=input_3_axis_tdest,
input_3_axis_tuser=input_3_axis_tuser,
output_0_axis_tdata=output_0_axis_tdata,
output_0_axis_tkeep=output_0_axis_tkeep,
output_0_axis_tvalid=output_0_axis_tvalid,
output_0_axis_tready=output_0_axis_tready,
output_0_axis_tlast=output_0_axis_tlast,
output_0_axis_tdest=output_0_axis_tdest,
output_0_axis_tuser=output_0_axis_tuser,
output_1_axis_tdata=output_1_axis_tdata,
output_1_axis_tkeep=output_1_axis_tkeep,
output_1_axis_tvalid=output_1_axis_tvalid,
output_1_axis_tready=output_1_axis_tready,
output_1_axis_tlast=output_1_axis_tlast,
output_1_axis_tdest=output_1_axis_tdest,
output_1_axis_tuser=output_1_axis_tuser,
output_2_axis_tdata=output_2_axis_tdata,
output_2_axis_tkeep=output_2_axis_tkeep,
output_2_axis_tvalid=output_2_axis_tvalid,
output_2_axis_tready=output_2_axis_tready,
output_2_axis_tlast=output_2_axis_tlast,
output_2_axis_tdest=output_2_axis_tdest,
output_2_axis_tuser=output_2_axis_tuser,
output_3_axis_tdata=output_3_axis_tdata,
output_3_axis_tkeep=output_3_axis_tkeep,
output_3_axis_tvalid=output_3_axis_tvalid,
output_3_axis_tready=output_3_axis_tready,
output_3_axis_tlast=output_3_axis_tlast,
output_3_axis_tdest=output_3_axis_tdest,
output_3_axis_tuser=output_3_axis_tuser)
def bench():
# Parameters
DATA_WIDTH = 64
KEEP_WIDTH = int(DATA_WIDTH/8)
DEST_WIDTH = 3
OUT_0_BASE = 0
OUT_0_TOP = 0
OUT_0_CONNECT = 0xf
OUT_1_BASE = 1
OUT_1_TOP = 1
OUT_1_CONNECT = 0xf
OUT_2_BASE = 2
OUT_2_TOP = 2
OUT_2_CONNECT = 0xf
OUT_3_BASE = 3
OUT_3_TOP = 3
OUT_3_CONNECT = 0xf
ARB_TYPE = "ROUND_ROBIN"
LSB_PRIORITY = "HIGH"
# Inputs
clk = Signal(bool(0))
rst = Signal(bool(0))
current_test = Signal(intbv(0)[8:])
input_0_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
input_0_axis_tkeep = Signal(intbv(0)[KEEP_WIDTH:])
input_0_axis_tvalid = Signal(bool(0))
input_0_axis_tlast = Signal(bool(0))
input_0_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
input_0_axis_tuser = Signal(bool(0))
input_1_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
input_1_axis_tkeep = Signal(intbv(0)[KEEP_WIDTH:])
input_1_axis_tvalid = Signal(bool(0))
input_1_axis_tlast = Signal(bool(0))
input_1_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
input_1_axis_tuser = Signal(bool(0))
input_2_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
input_2_axis_tkeep = Signal(intbv(0)[KEEP_WIDTH:])
input_2_axis_tvalid = Signal(bool(0))
input_2_axis_tlast = Signal(bool(0))
input_2_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
input_2_axis_tuser = Signal(bool(0))
input_3_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
input_3_axis_tkeep = Signal(intbv(0)[KEEP_WIDTH:])
input_3_axis_tvalid = Signal(bool(0))
input_3_axis_tlast = Signal(bool(0))
input_3_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
input_3_axis_tuser = Signal(bool(0))
output_0_axis_tready = Signal(bool(0))
output_1_axis_tready = Signal(bool(0))
output_2_axis_tready = Signal(bool(0))
output_3_axis_tready = Signal(bool(0))
# Outputs
input_0_axis_tready = Signal(bool(0))
input_1_axis_tready = Signal(bool(0))
input_2_axis_tready = Signal(bool(0))
input_3_axis_tready = Signal(bool(0))
output_0_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_0_axis_tkeep = Signal(intbv(0)[KEEP_WIDTH:])
output_0_axis_tvalid = Signal(bool(0))
output_0_axis_tlast = Signal(bool(0))
output_0_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_0_axis_tuser = Signal(bool(0))
output_1_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_1_axis_tkeep = Signal(intbv(0)[KEEP_WIDTH:])
output_1_axis_tvalid = Signal(bool(0))
output_1_axis_tlast = Signal(bool(0))
output_1_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_1_axis_tuser = Signal(bool(0))
output_2_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_2_axis_tkeep = Signal(intbv(0)[KEEP_WIDTH:])
output_2_axis_tvalid = Signal(bool(0))
output_2_axis_tlast = Signal(bool(0))
output_2_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_2_axis_tuser = Signal(bool(0))
output_3_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_3_axis_tkeep = Signal(intbv(0)[KEEP_WIDTH:])
output_3_axis_tvalid = Signal(bool(0))
output_3_axis_tlast = Signal(bool(0))
output_3_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_3_axis_tuser = Signal(bool(0))
# sources and sinks
source_0_queue = Queue()
source_0_pause = Signal(bool(0))
source_1_queue = Queue()
source_1_pause = Signal(bool(0))
source_2_queue = Queue()
source_2_pause = Signal(bool(0))
source_3_queue = Queue()
source_3_pause = Signal(bool(0))
sink_0_queue = Queue()
sink_0_pause = Signal(bool(0))
sink_1_queue = Queue()
sink_1_pause = Signal(bool(0))
sink_2_queue = Queue()
sink_2_pause = Signal(bool(0))
sink_3_queue = Queue()
sink_3_pause = Signal(bool(0))
source_0 = axis_ep.AXIStreamSource(clk,
rst,
tdata=input_0_axis_tdata,
tkeep=input_0_axis_tkeep,
tvalid=input_0_axis_tvalid,
tready=input_0_axis_tready,
tlast=input_0_axis_tlast,
tdest=input_0_axis_tdest,
tuser=input_0_axis_tuser,
fifo=source_0_queue,
pause=source_0_pause,
name='source0')
source_1 = axis_ep.AXIStreamSource(clk,
rst,
tdata=input_1_axis_tdata,
tkeep=input_1_axis_tkeep,
tvalid=input_1_axis_tvalid,
tready=input_1_axis_tready,
tlast=input_1_axis_tlast,
tdest=input_1_axis_tdest,
tuser=input_1_axis_tuser,
fifo=source_1_queue,
pause=source_1_pause,
name='source1')
source_2 = axis_ep.AXIStreamSource(clk,
rst,
tdata=input_2_axis_tdata,
tkeep=input_2_axis_tkeep,
tvalid=input_2_axis_tvalid,
tready=input_2_axis_tready,
tlast=input_2_axis_tlast,
tdest=input_2_axis_tdest,
tuser=input_2_axis_tuser,
fifo=source_2_queue,
pause=source_2_pause,
name='source2')
source_3 = axis_ep.AXIStreamSource(clk,
rst,
tdata=input_3_axis_tdata,
tkeep=input_3_axis_tkeep,
tvalid=input_3_axis_tvalid,
tready=input_3_axis_tready,
tlast=input_3_axis_tlast,
tdest=input_3_axis_tdest,
tuser=input_3_axis_tuser,
fifo=source_3_queue,
pause=source_3_pause,
name='source3')
sink_0 = axis_ep.AXIStreamSink(clk,
rst,
tdata=output_0_axis_tdata,
tkeep=output_0_axis_tkeep,
tvalid=output_0_axis_tvalid,
tready=output_0_axis_tready,
tlast=output_0_axis_tlast,
tdest=output_0_axis_tdest,
tuser=output_0_axis_tuser,
fifo=sink_0_queue,
pause=sink_0_pause,
name='sink0')
sink_1 = axis_ep.AXIStreamSink(clk,
rst,
tdata=output_1_axis_tdata,
tkeep=output_1_axis_tkeep,
tvalid=output_1_axis_tvalid,
tready=output_1_axis_tready,
tlast=output_1_axis_tlast,
tdest=output_1_axis_tdest,
tuser=output_1_axis_tuser,
fifo=sink_1_queue,
pause=sink_1_pause,
name='sink1')
sink_2 = axis_ep.AXIStreamSink(clk,
rst,
tdata=output_2_axis_tdata,
tkeep=output_2_axis_tkeep,
tvalid=output_2_axis_tvalid,
tready=output_2_axis_tready,
tlast=output_2_axis_tlast,
tdest=output_2_axis_tdest,
tuser=output_2_axis_tuser,
fifo=sink_2_queue,
pause=sink_2_pause,
name='sink2')
sink_3 = axis_ep.AXIStreamSink(clk,
rst,
tdata=output_3_axis_tdata,
tkeep=output_3_axis_tkeep,
tvalid=output_3_axis_tvalid,
tready=output_3_axis_tready,
tlast=output_3_axis_tlast,
tdest=output_3_axis_tdest,
tuser=output_3_axis_tuser,
fifo=sink_3_queue,
pause=sink_3_pause,
name='sink3')
# DUT
dut = dut_axis_switch_64_4x4(clk,
rst,
current_test,
input_0_axis_tdata,
input_0_axis_tkeep,
input_0_axis_tvalid,
input_0_axis_tready,
input_0_axis_tlast,
input_0_axis_tdest,
input_0_axis_tuser,
input_1_axis_tdata,
input_1_axis_tkeep,
input_1_axis_tvalid,
input_1_axis_tready,
input_1_axis_tlast,
input_1_axis_tdest,
input_1_axis_tuser,
input_2_axis_tdata,
input_2_axis_tkeep,
input_2_axis_tvalid,
input_2_axis_tready,
input_2_axis_tlast,
input_2_axis_tdest,
input_2_axis_tuser,
input_3_axis_tdata,
input_3_axis_tkeep,
input_3_axis_tvalid,
input_3_axis_tready,
input_3_axis_tlast,
input_3_axis_tdest,
input_3_axis_tuser,
output_0_axis_tdata,
output_0_axis_tkeep,
output_0_axis_tvalid,
output_0_axis_tready,
output_0_axis_tlast,
output_0_axis_tdest,
output_0_axis_tuser,
output_1_axis_tdata,
output_1_axis_tkeep,
output_1_axis_tvalid,
output_1_axis_tready,
output_1_axis_tlast,
output_1_axis_tdest,
output_1_axis_tuser,
output_2_axis_tdata,
output_2_axis_tkeep,
output_2_axis_tvalid,
output_2_axis_tready,
output_2_axis_tlast,
output_2_axis_tdest,
output_2_axis_tuser,
output_3_axis_tdata,
output_3_axis_tkeep,
output_3_axis_tvalid,
output_3_axis_tready,
output_3_axis_tlast,
output_3_axis_tdest,
output_3_axis_tuser)
@always(delay(4))
def clkgen():
clk.next = not clk
def wait_normal():
while input_0_axis_tvalid or input_1_axis_tvalid or input_2_axis_tvalid or input_3_axis_tvalid:
yield clk.posedge
def wait_pause_source():
while input_0_axis_tvalid or input_1_axis_tvalid or input_2_axis_tvalid or input_3_axis_tvalid:
source_0_pause.next = True
source_1_pause.next = True
source_2_pause.next = True
source_3_pause.next = True
yield clk.posedge
yield clk.posedge
yield clk.posedge
source_0_pause.next = False
source_1_pause.next = False
source_2_pause.next = False
source_3_pause.next = False
yield clk.posedge
def wait_pause_sink():
while input_0_axis_tvalid or input_1_axis_tvalid or input_2_axis_tvalid or input_3_axis_tvalid:
sink_0_pause.next = True
sink_1_pause.next = True
sink_2_pause.next = True
sink_3_pause.next = True
yield clk.posedge
yield clk.posedge
yield clk.posedge
sink_0_pause.next = False
sink_1_pause.next = False
sink_2_pause.next = False
sink_3_pause.next = False
yield clk.posedge
@instance
def check():
yield delay(100)
yield clk.posedge
rst.next = 1
yield clk.posedge
rst.next = 0
yield clk.posedge
yield delay(100)
yield clk.posedge
# testbench stimulus
yield clk.posedge
print("test 1: 0123 -> 0123")
current_test.next = 1
test_frame0 = axis_ep.AXIStreamFrame(b'\x01\x00\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
test_frame1 = axis_ep.AXIStreamFrame(b'\x01\x01\x01\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=1)
test_frame2 = axis_ep.AXIStreamFrame(b'\x01\x02\x02\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=2)
test_frame3 = axis_ep.AXIStreamFrame(b'\x01\x03\x03\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=3)
for wait in wait_normal, wait_pause_source, wait_pause_sink:
source_0_queue.put(test_frame0)
source_1_queue.put(test_frame1)
source_2_queue.put(test_frame2)
source_3_queue.put(test_frame3)
yield clk.posedge
yield clk.posedge
yield wait()
yield clk.posedge
yield clk.posedge
rx_frame0 = None
if not sink_0_queue.empty():
rx_frame0 = sink_0_queue.get()
assert rx_frame0 == test_frame0
rx_frame1 = None
if not sink_1_queue.empty():
rx_frame1 = sink_1_queue.get()
assert rx_frame1 == test_frame1
rx_frame2 = None
if not sink_2_queue.empty():
rx_frame2 = sink_2_queue.get()
assert rx_frame2 == test_frame2
rx_frame3 = None
if not sink_3_queue.empty():
rx_frame3 = sink_3_queue.get()
assert rx_frame3 == test_frame3
yield delay(100)
yield clk.posedge
print("test 2: 0123 -> 3210")
current_test.next = 2
test_frame0 = axis_ep.AXIStreamFrame(b'\x02\x00\x03\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=3)
test_frame1 = axis_ep.AXIStreamFrame(b'\x02\x01\x02\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=2)
test_frame2 = axis_ep.AXIStreamFrame(b'\x02\x02\x01\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=1)
test_frame3 = axis_ep.AXIStreamFrame(b'\x02\x03\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
for wait in wait_normal, wait_pause_source, wait_pause_sink:
source_0_queue.put(test_frame0)
source_1_queue.put(test_frame1)
source_2_queue.put(test_frame2)
source_3_queue.put(test_frame3)
yield clk.posedge
yield clk.posedge
yield wait()
yield clk.posedge
yield clk.posedge
rx_frame0 = None
if not sink_0_queue.empty():
rx_frame0 = sink_0_queue.get()
assert rx_frame0 == test_frame3
rx_frame1 = None
if not sink_1_queue.empty():
rx_frame1 = sink_1_queue.get()
assert rx_frame1 == test_frame2
rx_frame2 = None
if not sink_2_queue.empty():
rx_frame2 = sink_2_queue.get()
assert rx_frame2 == test_frame1
rx_frame3 = None
if not sink_3_queue.empty():
rx_frame3 = sink_3_queue.get()
assert rx_frame3 == test_frame0
yield delay(100)
yield clk.posedge
print("test 3: 0000 -> 0123")
current_test.next = 3
test_frame0 = axis_ep.AXIStreamFrame(b'\x02\x00\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
test_frame1 = axis_ep.AXIStreamFrame(b'\x02\x00\x01\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=1)
test_frame2 = axis_ep.AXIStreamFrame(b'\x02\x00\x02\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=2)
test_frame3 = axis_ep.AXIStreamFrame(b'\x02\x00\x03\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=3)
for wait in wait_normal, wait_pause_source, wait_pause_sink:
source_0_queue.put(test_frame0)
source_0_queue.put(test_frame1)
source_0_queue.put(test_frame2)
source_0_queue.put(test_frame3)
yield clk.posedge
yield clk.posedge
yield wait()
yield clk.posedge
yield clk.posedge
rx_frame0 = None
if not sink_0_queue.empty():
rx_frame0 = sink_0_queue.get()
assert rx_frame0 == test_frame0
rx_frame1 = None
if not sink_1_queue.empty():
rx_frame1 = sink_1_queue.get()
assert rx_frame1 == test_frame1
rx_frame2 = None
if not sink_2_queue.empty():
rx_frame2 = sink_2_queue.get()
assert rx_frame2 == test_frame2
rx_frame3 = None
if not sink_3_queue.empty():
rx_frame3 = sink_3_queue.get()
assert rx_frame3 == test_frame3
yield delay(100)
yield clk.posedge
print("test 4: 0123 -> 0000")
current_test.next = 4
test_frame0 = axis_ep.AXIStreamFrame(b'\x02\x00\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
test_frame1 = axis_ep.AXIStreamFrame(b'\x02\x01\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
test_frame2 = axis_ep.AXIStreamFrame(b'\x02\x02\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
test_frame3 = axis_ep.AXIStreamFrame(b'\x02\x03\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
for wait in wait_normal, wait_pause_source, wait_pause_sink:
source_0_queue.put(test_frame0)
yield clk.posedge
source_1_queue.put(test_frame1)
source_2_queue.put(test_frame2)
source_3_queue.put(test_frame3)
yield clk.posedge
yield wait()
yield clk.posedge
yield clk.posedge
rx_frame0 = None
if not sink_0_queue.empty():
rx_frame0 = sink_0_queue.get()
assert rx_frame0 == test_frame0
rx_frame1 = None
if not sink_0_queue.empty():
rx_frame1 = sink_0_queue.get()
assert rx_frame1 == test_frame1
rx_frame2 = None
if not sink_0_queue.empty():
rx_frame2 = sink_0_queue.get()
assert rx_frame2 == test_frame2
rx_frame3 = None
if not sink_0_queue.empty():
rx_frame3 = sink_0_queue.get()
assert rx_frame3 == test_frame3
yield delay(100)
yield clk.posedge
print("test 1: bad decoding")
current_test.next = 1
test_frame0 = axis_ep.AXIStreamFrame(b'\x01\x00\x00\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=0)
test_frame1 = axis_ep.AXIStreamFrame(b'\x01\x01\x01\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=1)
test_frame2 = axis_ep.AXIStreamFrame(b'\x01\x02\x04\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=4)
test_frame3 = axis_ep.AXIStreamFrame(b'\x01\x03\x05\xFF\x01\x02\x03\x04\x05\x06\x07\x08', dest=5)
for wait in wait_normal, wait_pause_source, wait_pause_sink:
source_0_queue.put(test_frame0)
source_1_queue.put(test_frame1)
source_2_queue.put(test_frame2)
source_3_queue.put(test_frame3)
yield clk.posedge
yield clk.posedge
yield wait()
yield clk.posedge
yield clk.posedge
rx_frame0 = None
if not sink_0_queue.empty():
rx_frame0 = sink_0_queue.get()
assert rx_frame0 == test_frame0
rx_frame1 = None
if not sink_1_queue.empty():
rx_frame1 = sink_1_queue.get()
assert rx_frame1 == test_frame1
yield delay(100)
raise StopSimulation
return dut, source_0, source_1, source_2, source_3, sink_0, sink_1, sink_2, sink_3, clkgen, check
def test_bench():
sim = Simulation(bench())
sim.run()
if __name__ == '__main__':
print("Running test...")
test_bench()

View File

@ -0,0 +1,266 @@
/*
Copyright (c) 2016 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Testbench for axis_switch_64_4x4
*/
module test_axis_switch_64_4x4;
// Parameters
parameter DATA_WIDTH = 64;
parameter KEEP_WIDTH = (DATA_WIDTH/8);
parameter DEST_WIDTH = 3;
parameter OUT_0_BASE = 0;
parameter OUT_0_TOP = 0;
parameter OUT_0_CONNECT = 4'b1111;
parameter OUT_1_BASE = 1;
parameter OUT_1_TOP = 1;
parameter OUT_1_CONNECT = 4'b1111;
parameter OUT_2_BASE = 2;
parameter OUT_2_TOP = 2;
parameter OUT_2_CONNECT = 4'b1111;
parameter OUT_3_BASE = 3;
parameter OUT_3_TOP = 3;
parameter OUT_3_CONNECT = 4'b1111;
parameter ARB_TYPE = "ROUND_ROBIN";
parameter LSB_PRIORITY = "HIGH";
// Inputs
reg clk = 0;
reg rst = 0;
reg [7:0] current_test = 0;
reg [DATA_WIDTH-1:0] input_0_axis_tdata = 0;
reg [KEEP_WIDTH-1:0] input_0_axis_tkeep = 0;
reg input_0_axis_tvalid = 0;
reg input_0_axis_tlast = 0;
reg [DEST_WIDTH-1:0] input_0_axis_tdest = 0;
reg input_0_axis_tuser = 0;
reg [DATA_WIDTH-1:0] input_1_axis_tdata = 0;
reg [KEEP_WIDTH-1:0] input_1_axis_tkeep = 0;
reg input_1_axis_tvalid = 0;
reg input_1_axis_tlast = 0;
reg [DEST_WIDTH-1:0] input_1_axis_tdest = 0;
reg input_1_axis_tuser = 0;
reg [DATA_WIDTH-1:0] input_2_axis_tdata = 0;
reg [KEEP_WIDTH-1:0] input_2_axis_tkeep = 0;
reg input_2_axis_tvalid = 0;
reg input_2_axis_tlast = 0;
reg [DEST_WIDTH-1:0] input_2_axis_tdest = 0;
reg input_2_axis_tuser = 0;
reg [DATA_WIDTH-1:0] input_3_axis_tdata = 0;
reg [KEEP_WIDTH-1:0] input_3_axis_tkeep = 0;
reg input_3_axis_tvalid = 0;
reg input_3_axis_tlast = 0;
reg [DEST_WIDTH-1:0] input_3_axis_tdest = 0;
reg input_3_axis_tuser = 0;
reg output_0_axis_tready = 0;
reg output_1_axis_tready = 0;
reg output_2_axis_tready = 0;
reg output_3_axis_tready = 0;
// Outputs
wire input_0_axis_tready;
wire input_1_axis_tready;
wire input_2_axis_tready;
wire input_3_axis_tready;
wire [DATA_WIDTH-1:0] output_0_axis_tdata;
wire [KEEP_WIDTH-1:0] output_0_axis_tkeep;
wire output_0_axis_tvalid;
wire output_0_axis_tlast;
wire [DEST_WIDTH-1:0] output_0_axis_tdest;
wire output_0_axis_tuser;
wire [DATA_WIDTH-1:0] output_1_axis_tdata;
wire [KEEP_WIDTH-1:0] output_1_axis_tkeep;
wire output_1_axis_tvalid;
wire output_1_axis_tlast;
wire [DEST_WIDTH-1:0] output_1_axis_tdest;
wire output_1_axis_tuser;
wire [DATA_WIDTH-1:0] output_2_axis_tdata;
wire [KEEP_WIDTH-1:0] output_2_axis_tkeep;
wire output_2_axis_tvalid;
wire output_2_axis_tlast;
wire [DEST_WIDTH-1:0] output_2_axis_tdest;
wire output_2_axis_tuser;
wire [DATA_WIDTH-1:0] output_3_axis_tdata;
wire [KEEP_WIDTH-1:0] output_3_axis_tkeep;
wire output_3_axis_tvalid;
wire output_3_axis_tlast;
wire [DEST_WIDTH-1:0] output_3_axis_tdest;
wire output_3_axis_tuser;
initial begin
// myhdl integration
$from_myhdl(clk,
rst,
current_test,
input_0_axis_tdata,
input_0_axis_tkeep,
input_0_axis_tvalid,
input_0_axis_tlast,
input_0_axis_tdest,
input_0_axis_tuser,
input_1_axis_tdata,
input_1_axis_tkeep,
input_1_axis_tvalid,
input_1_axis_tlast,
input_1_axis_tdest,
input_1_axis_tuser,
input_2_axis_tdata,
input_2_axis_tkeep,
input_2_axis_tvalid,
input_2_axis_tlast,
input_2_axis_tdest,
input_2_axis_tuser,
input_3_axis_tdata,
input_3_axis_tkeep,
input_3_axis_tvalid,
input_3_axis_tlast,
input_3_axis_tdest,
input_3_axis_tuser,
output_0_axis_tready,
output_1_axis_tready,
output_2_axis_tready,
output_3_axis_tready);
$to_myhdl(input_0_axis_tready,
input_1_axis_tready,
input_2_axis_tready,
input_3_axis_tready,
output_0_axis_tdata,
output_0_axis_tkeep,
output_0_axis_tvalid,
output_0_axis_tlast,
output_0_axis_tdest,
output_0_axis_tuser,
output_1_axis_tdata,
output_1_axis_tkeep,
output_1_axis_tvalid,
output_1_axis_tlast,
output_1_axis_tdest,
output_1_axis_tuser,
output_2_axis_tdata,
output_2_axis_tkeep,
output_2_axis_tvalid,
output_2_axis_tlast,
output_2_axis_tdest,
output_2_axis_tuser,
output_3_axis_tdata,
output_3_axis_tkeep,
output_3_axis_tvalid,
output_3_axis_tlast,
output_3_axis_tdest,
output_3_axis_tuser);
// dump file
$dumpfile("test_axis_switch_64_4x4.lxt");
$dumpvars(0, test_axis_switch_64_4x4);
end
axis_switch_64_4x4 #(
.DATA_WIDTH(DATA_WIDTH),
.KEEP_WIDTH(KEEP_WIDTH),
.DEST_WIDTH(DEST_WIDTH),
.OUT_0_BASE(OUT_0_BASE),
.OUT_0_TOP(OUT_0_TOP),
.OUT_0_CONNECT(OUT_0_CONNECT),
.OUT_1_BASE(OUT_1_BASE),
.OUT_1_TOP(OUT_1_TOP),
.OUT_1_CONNECT(OUT_1_CONNECT),
.OUT_2_BASE(OUT_2_BASE),
.OUT_2_TOP(OUT_2_TOP),
.OUT_2_CONNECT(OUT_2_CONNECT),
.OUT_3_BASE(OUT_3_BASE),
.OUT_3_TOP(OUT_3_TOP),
.OUT_3_CONNECT(OUT_3_CONNECT),
.ARB_TYPE(ARB_TYPE),
.LSB_PRIORITY(LSB_PRIORITY)
)
UUT (
.clk(clk),
.rst(rst),
// AXI inputs
.input_0_axis_tdata(input_0_axis_tdata),
.input_0_axis_tkeep(input_0_axis_tkeep),
.input_0_axis_tvalid(input_0_axis_tvalid),
.input_0_axis_tready(input_0_axis_tready),
.input_0_axis_tlast(input_0_axis_tlast),
.input_0_axis_tdest(input_0_axis_tdest),
.input_0_axis_tuser(input_0_axis_tuser),
.input_1_axis_tdata(input_1_axis_tdata),
.input_1_axis_tkeep(input_1_axis_tkeep),
.input_1_axis_tvalid(input_1_axis_tvalid),
.input_1_axis_tready(input_1_axis_tready),
.input_1_axis_tlast(input_1_axis_tlast),
.input_1_axis_tdest(input_1_axis_tdest),
.input_1_axis_tuser(input_1_axis_tuser),
.input_2_axis_tdata(input_2_axis_tdata),
.input_2_axis_tkeep(input_2_axis_tkeep),
.input_2_axis_tvalid(input_2_axis_tvalid),
.input_2_axis_tready(input_2_axis_tready),
.input_2_axis_tlast(input_2_axis_tlast),
.input_2_axis_tdest(input_2_axis_tdest),
.input_2_axis_tuser(input_2_axis_tuser),
.input_3_axis_tdata(input_3_axis_tdata),
.input_3_axis_tkeep(input_3_axis_tkeep),
.input_3_axis_tvalid(input_3_axis_tvalid),
.input_3_axis_tready(input_3_axis_tready),
.input_3_axis_tlast(input_3_axis_tlast),
.input_3_axis_tdest(input_3_axis_tdest),
.input_3_axis_tuser(input_3_axis_tuser),
// AXI outputs
.output_0_axis_tdata(output_0_axis_tdata),
.output_0_axis_tkeep(output_0_axis_tkeep),
.output_0_axis_tvalid(output_0_axis_tvalid),
.output_0_axis_tready(output_0_axis_tready),
.output_0_axis_tlast(output_0_axis_tlast),
.output_0_axis_tdest(output_0_axis_tdest),
.output_0_axis_tuser(output_0_axis_tuser),
.output_1_axis_tdata(output_1_axis_tdata),
.output_1_axis_tkeep(output_1_axis_tkeep),
.output_1_axis_tvalid(output_1_axis_tvalid),
.output_1_axis_tready(output_1_axis_tready),
.output_1_axis_tlast(output_1_axis_tlast),
.output_1_axis_tdest(output_1_axis_tdest),
.output_1_axis_tuser(output_1_axis_tuser),
.output_2_axis_tdata(output_2_axis_tdata),
.output_2_axis_tkeep(output_2_axis_tkeep),
.output_2_axis_tvalid(output_2_axis_tvalid),
.output_2_axis_tready(output_2_axis_tready),
.output_2_axis_tlast(output_2_axis_tlast),
.output_2_axis_tdest(output_2_axis_tdest),
.output_2_axis_tuser(output_2_axis_tuser),
.output_3_axis_tdata(output_3_axis_tdata),
.output_3_axis_tkeep(output_3_axis_tkeep),
.output_3_axis_tvalid(output_3_axis_tvalid),
.output_3_axis_tready(output_3_axis_tready),
.output_3_axis_tlast(output_3_axis_tlast),
.output_3_axis_tdest(output_3_axis_tdest),
.output_3_axis_tuser(output_3_axis_tuser)
);
endmodule