1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-30 08:32:52 +08:00

Update axis_arb_mux

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich 2022-05-15 17:57:02 -07:00
parent 0b815522b0
commit 4b261150d2

View File

@ -40,11 +40,13 @@ module axis_arb_mux #
// Propagate tkeep signal // Propagate tkeep signal
parameter KEEP_ENABLE = (DATA_WIDTH>8), parameter KEEP_ENABLE = (DATA_WIDTH>8),
// tkeep signal width (words per cycle) // tkeep signal width (words per cycle)
parameter KEEP_WIDTH = (DATA_WIDTH/8), parameter KEEP_WIDTH = ((DATA_WIDTH+7)/8),
// Propagate tid signal // Propagate tid signal
parameter ID_ENABLE = 0, parameter ID_ENABLE = 0,
// tid signal width // input tid signal width
parameter ID_WIDTH = 8, parameter S_ID_WIDTH = 8,
// output tid signal width
parameter M_ID_WIDTH = S_ID_WIDTH+$clog2(S_COUNT),
// Propagate tdest signal // Propagate tdest signal
parameter DEST_ENABLE = 0, parameter DEST_ENABLE = 0,
// tdest signal width // tdest signal width
@ -53,6 +55,10 @@ module axis_arb_mux #
parameter USER_ENABLE = 1, parameter USER_ENABLE = 1,
// tuser signal width // tuser signal width
parameter USER_WIDTH = 1, parameter USER_WIDTH = 1,
// Propagate tlast signal
parameter LAST_ENABLE = 1,
// Update tid with routing information
parameter UPDATE_TID = 0,
// select round robin arbitration // select round robin arbitration
parameter ARB_TYPE_ROUND_ROBIN = 0, parameter ARB_TYPE_ROUND_ROBIN = 0,
// LSB priority selection // LSB priority selection
@ -65,58 +71,84 @@ module axis_arb_mux #
/* /*
* AXI Stream inputs * AXI Stream inputs
*/ */
input wire [S_COUNT*DATA_WIDTH-1:0] s_axis_tdata, input wire [S_COUNT*DATA_WIDTH-1:0] s_axis_tdata,
input wire [S_COUNT*KEEP_WIDTH-1:0] s_axis_tkeep, input wire [S_COUNT*KEEP_WIDTH-1:0] s_axis_tkeep,
input wire [S_COUNT-1:0] s_axis_tvalid, input wire [S_COUNT-1:0] s_axis_tvalid,
output wire [S_COUNT-1:0] s_axis_tready, output wire [S_COUNT-1:0] s_axis_tready,
input wire [S_COUNT-1:0] s_axis_tlast, input wire [S_COUNT-1:0] s_axis_tlast,
input wire [S_COUNT*ID_WIDTH-1:0] s_axis_tid, input wire [S_COUNT*S_ID_WIDTH-1:0] s_axis_tid,
input wire [S_COUNT*DEST_WIDTH-1:0] s_axis_tdest, input wire [S_COUNT*DEST_WIDTH-1:0] s_axis_tdest,
input wire [S_COUNT*USER_WIDTH-1:0] s_axis_tuser, input wire [S_COUNT*USER_WIDTH-1:0] s_axis_tuser,
/* /*
* AXI Stream output * AXI Stream output
*/ */
output wire [DATA_WIDTH-1:0] m_axis_tdata, output wire [DATA_WIDTH-1:0] m_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_axis_tkeep, output wire [KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid, output wire m_axis_tvalid,
input wire m_axis_tready, input wire m_axis_tready,
output wire m_axis_tlast, output wire m_axis_tlast,
output wire [ID_WIDTH-1:0] m_axis_tid, output wire [M_ID_WIDTH-1:0] m_axis_tid,
output wire [DEST_WIDTH-1:0] m_axis_tdest, output wire [DEST_WIDTH-1:0] m_axis_tdest,
output wire [USER_WIDTH-1:0] m_axis_tuser output wire [USER_WIDTH-1:0] m_axis_tuser
); );
parameter CL_S_COUNT = $clog2(S_COUNT); parameter CL_S_COUNT = $clog2(S_COUNT);
parameter S_ID_WIDTH_INT = S_ID_WIDTH > 0 ? S_ID_WIDTH : 1;
// check configuration
initial begin
if (UPDATE_TID) begin
if (!ID_ENABLE) begin
$error("Error: UPDATE_TID set requires ID_ENABLE set (instance %m)");
$finish;
end
if (M_ID_WIDTH < CL_S_COUNT) begin
$error("Error: M_ID_WIDTH too small for port count (instance %m)");
$finish;
end
end
end
wire [S_COUNT-1:0] request; wire [S_COUNT-1:0] request;
wire [S_COUNT-1:0] acknowledge; wire [S_COUNT-1:0] acknowledge;
wire [S_COUNT-1:0] grant; wire [S_COUNT-1:0] grant;
wire grant_valid; wire grant_valid;
wire [CL_S_COUNT-1:0] grant_encoded; wire [CL_S_COUNT-1:0] grant_encoded;
// input registers to pipeline arbitration delay
reg [S_COUNT*DATA_WIDTH-1:0] s_axis_tdata_reg = 0;
reg [S_COUNT*KEEP_WIDTH-1:0] s_axis_tkeep_reg = 0;
reg [S_COUNT-1:0] s_axis_tvalid_reg = 0;
reg [S_COUNT-1:0] s_axis_tlast_reg = 0;
reg [S_COUNT*S_ID_WIDTH-1:0] s_axis_tid_reg = 0;
reg [S_COUNT*DEST_WIDTH-1:0] s_axis_tdest_reg = 0;
reg [S_COUNT*USER_WIDTH-1:0] s_axis_tuser_reg = 0;
// internal datapath // internal datapath
reg [DATA_WIDTH-1:0] m_axis_tdata_int; reg [DATA_WIDTH-1:0] m_axis_tdata_int;
reg [KEEP_WIDTH-1:0] m_axis_tkeep_int; reg [KEEP_WIDTH-1:0] m_axis_tkeep_int;
reg m_axis_tvalid_int; reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0; reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int; reg m_axis_tlast_int;
reg [ID_WIDTH-1:0] m_axis_tid_int; reg [M_ID_WIDTH-1:0] m_axis_tid_int;
reg [DEST_WIDTH-1:0] m_axis_tdest_int; reg [DEST_WIDTH-1:0] m_axis_tdest_int;
reg [USER_WIDTH-1:0] m_axis_tuser_int; reg [USER_WIDTH-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early; wire m_axis_tready_int_early;
assign s_axis_tready = (m_axis_tready_int_reg && grant_valid) << grant_encoded; assign s_axis_tready = ~s_axis_tvalid_reg | ({S_COUNT{m_axis_tready_int_reg}} & grant);
// mux for incoming packet // mux for incoming packet
wire [DATA_WIDTH-1:0] current_s_tdata = s_axis_tdata[grant_encoded*DATA_WIDTH +: DATA_WIDTH]; wire [DATA_WIDTH-1:0] current_s_tdata = s_axis_tdata_reg[grant_encoded*DATA_WIDTH +: DATA_WIDTH];
wire [KEEP_WIDTH-1:0] current_s_tkeep = s_axis_tkeep[grant_encoded*KEEP_WIDTH +: KEEP_WIDTH]; wire [KEEP_WIDTH-1:0] current_s_tkeep = s_axis_tkeep_reg[grant_encoded*KEEP_WIDTH +: KEEP_WIDTH];
wire current_s_tvalid = s_axis_tvalid[grant_encoded]; wire current_s_tvalid = s_axis_tvalid_reg[grant_encoded];
wire current_s_tready = s_axis_tready[grant_encoded]; wire current_s_tready = s_axis_tready[grant_encoded];
wire current_s_tlast = s_axis_tlast[grant_encoded]; wire current_s_tlast = s_axis_tlast_reg[grant_encoded];
wire [ID_WIDTH-1:0] current_s_tid = s_axis_tid[grant_encoded*ID_WIDTH +: ID_WIDTH]; wire [S_ID_WIDTH-1:0] current_s_tid = s_axis_tid_reg[grant_encoded*S_ID_WIDTH +: S_ID_WIDTH_INT];
wire [DEST_WIDTH-1:0] current_s_tdest = s_axis_tdest[grant_encoded*DEST_WIDTH +: DEST_WIDTH]; wire [DEST_WIDTH-1:0] current_s_tdest = s_axis_tdest_reg[grant_encoded*DEST_WIDTH +: DEST_WIDTH];
wire [USER_WIDTH-1:0] current_s_tuser = s_axis_tuser[grant_encoded*USER_WIDTH +: USER_WIDTH]; wire [USER_WIDTH-1:0] current_s_tuser = s_axis_tuser_reg[grant_encoded*USER_WIDTH +: USER_WIDTH];
// arbiter instance // arbiter instance
arbiter #( arbiter #(
@ -136,8 +168,8 @@ arb_inst (
.grant_encoded(grant_encoded) .grant_encoded(grant_encoded)
); );
assign request = s_axis_tvalid & ~grant; assign request = (s_axis_tvalid_reg & ~grant) | (s_axis_tvalid & grant);
assign acknowledge = grant & s_axis_tvalid & s_axis_tready & s_axis_tlast; assign acknowledge = grant & s_axis_tvalid_reg & {S_COUNT{m_axis_tready_int_reg}} & (LAST_ENABLE ? s_axis_tlast_reg : {S_COUNT{1'b1}});
always @* begin always @* begin
// pass through selected packet data // pass through selected packet data
@ -146,16 +178,40 @@ always @* begin
m_axis_tvalid_int = current_s_tvalid && m_axis_tready_int_reg && grant_valid; m_axis_tvalid_int = current_s_tvalid && m_axis_tready_int_reg && grant_valid;
m_axis_tlast_int = current_s_tlast; m_axis_tlast_int = current_s_tlast;
m_axis_tid_int = current_s_tid; m_axis_tid_int = current_s_tid;
if (UPDATE_TID && S_COUNT > 1) begin
m_axis_tid_int[M_ID_WIDTH-1:M_ID_WIDTH-CL_S_COUNT] = grant_encoded;
end
m_axis_tdest_int = current_s_tdest; m_axis_tdest_int = current_s_tdest;
m_axis_tuser_int = current_s_tuser; m_axis_tuser_int = current_s_tuser;
end end
integer i;
always @(posedge clk) begin
// register inputs
for (i = 0; i < S_COUNT; i = i + 1) begin
if (s_axis_tready[i]) begin
s_axis_tdata_reg[i*DATA_WIDTH +: DATA_WIDTH] <= s_axis_tdata[i*DATA_WIDTH +: DATA_WIDTH];
s_axis_tkeep_reg[i*KEEP_WIDTH +: KEEP_WIDTH] <= s_axis_tkeep[i*KEEP_WIDTH +: KEEP_WIDTH];
s_axis_tvalid_reg[i] <= s_axis_tvalid[i];
s_axis_tlast_reg[i] <= s_axis_tlast[i];
s_axis_tid_reg[i*S_ID_WIDTH +: S_ID_WIDTH_INT] <= s_axis_tid[i*S_ID_WIDTH +: S_ID_WIDTH_INT];
s_axis_tdest_reg[i*DEST_WIDTH +: DEST_WIDTH] <= s_axis_tdest[i*DEST_WIDTH +: DEST_WIDTH];
s_axis_tuser_reg[i*USER_WIDTH +: USER_WIDTH] <= s_axis_tuser[i*USER_WIDTH +: USER_WIDTH];
end
end
if (rst) begin
s_axis_tvalid_reg <= 0;
end
end
// output datapath logic // output datapath logic
reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next; reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0; reg m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}}; reg [M_ID_WIDTH-1:0] m_axis_tid_reg = {M_ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}};
@ -163,7 +219,7 @@ reg [DATA_WIDTH-1:0] temp_m_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] temp_m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] temp_m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next; reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0; reg temp_m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] temp_m_axis_tid_reg = {ID_WIDTH{1'b0}}; reg [M_ID_WIDTH-1:0] temp_m_axis_tid_reg = {M_ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] temp_m_axis_tdest_reg = {DEST_WIDTH{1'b0}}; reg [DEST_WIDTH-1:0] temp_m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] temp_m_axis_tuser_reg = {USER_WIDTH{1'b0}}; reg [USER_WIDTH-1:0] temp_m_axis_tuser_reg = {USER_WIDTH{1'b0}};
@ -175,13 +231,13 @@ reg store_axis_temp_to_output;
assign m_axis_tdata = m_axis_tdata_reg; assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = KEEP_ENABLE ? m_axis_tkeep_reg : {KEEP_WIDTH{1'b1}}; assign m_axis_tkeep = KEEP_ENABLE ? m_axis_tkeep_reg : {KEEP_WIDTH{1'b1}};
assign m_axis_tvalid = m_axis_tvalid_reg; assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg; assign m_axis_tlast = LAST_ENABLE ? m_axis_tlast_reg : 1'b1;
assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}}; assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {M_ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}}; assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}}; assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) // enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int)); assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg);
always @* begin always @* begin
// transfer sink ready state to source // transfer sink ready state to source
@ -212,15 +268,9 @@ always @* begin
end end
always @(posedge clk) begin always @(posedge clk) begin
if (rst) begin m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tvalid_reg <= 1'b0; m_axis_tready_int_reg <= m_axis_tready_int_early;
m_axis_tready_int_reg <= 1'b0; temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
// datapath // datapath
if (store_axis_int_to_output) begin if (store_axis_int_to_output) begin
@ -247,6 +297,12 @@ always @(posedge clk) begin
temp_m_axis_tdest_reg <= m_axis_tdest_int; temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int; temp_m_axis_tuser_reg <= m_axis_tuser_int;
end end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end end
endmodule endmodule