1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00

Add DMA interface mux modules

This commit is contained in:
Alex Forencich 2019-10-12 23:08:21 -07:00
parent fdd7faef4f
commit 75563c65f0
3 changed files with 1376 additions and 0 deletions

324
rtl/dma_if_mux.v Normal file
View File

@ -0,0 +1,324 @@
/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* DMA interface mux
*/
module dma_if_mux #
(
// Number of ports
parameter PORTS = 2,
// RAM segment count
parameter SEG_COUNT = 2,
// RAM segment data width
parameter SEG_DATA_WIDTH = 64,
// RAM segment address width
parameter SEG_ADDR_WIDTH = 8,
// RAM segment byte enable width
parameter SEG_BE_WIDTH = SEG_DATA_WIDTH/8,
// Input RAM segment select width
parameter S_RAM_SEL_WIDTH = 2,
// Output RAM segment select width
// Additional bits required for response routing
parameter M_RAM_SEL_WIDTH = S_RAM_SEL_WIDTH+$clog2(PORTS),
// RAM address width
parameter RAM_ADDR_WIDTH = SEG_ADDR_WIDTH+$clog2(SEG_COUNT)+$clog2(SEG_BE_WIDTH),
// DMA address width
parameter DMA_ADDR_WIDTH = 64,
// Length field width
parameter LEN_WIDTH = 16,
// Input tag field width
parameter S_TAG_WIDTH = 8,
// Output tag field width (towards DMA module)
// Additional bits required for response routing
parameter M_TAG_WIDTH = S_TAG_WIDTH+$clog2(PORTS),
// arbitration type: "PRIORITY" or "ROUND_ROBIN"
parameter ARB_TYPE = "PRIORITY",
// LSB priority: "LOW", "HIGH"
parameter LSB_PRIORITY = "HIGH"
)
(
input wire clk,
input wire rst,
/*
* Read descriptor output (to DMA interface)
*/
output wire [DMA_ADDR_WIDTH-1:0] m_axis_read_desc_dma_addr,
output wire [M_RAM_SEL_WIDTH-1:0] m_axis_read_desc_ram_sel,
output wire [RAM_ADDR_WIDTH-1:0] m_axis_read_desc_ram_addr,
output wire [LEN_WIDTH-1:0] m_axis_read_desc_len,
output wire [M_TAG_WIDTH-1:0] m_axis_read_desc_tag,
output wire m_axis_read_desc_valid,
input wire m_axis_read_desc_ready,
/*
* Read descriptor status input (from DMA interface)
*/
input wire [M_TAG_WIDTH-1:0] s_axis_read_desc_status_tag,
input wire s_axis_read_desc_status_valid,
/*
* Write descriptor output (to DMA interface)
*/
output wire [DMA_ADDR_WIDTH-1:0] m_axis_write_desc_dma_addr,
output wire [M_RAM_SEL_WIDTH-1:0] m_axis_write_desc_ram_sel,
output wire [RAM_ADDR_WIDTH-1:0] m_axis_write_desc_ram_addr,
output wire [LEN_WIDTH-1:0] m_axis_write_desc_len,
output wire [M_TAG_WIDTH-1:0] m_axis_write_desc_tag,
output wire m_axis_write_desc_valid,
input wire m_axis_write_desc_ready,
/*
* Write descriptor status input (from DMA interface)
*/
input wire [M_TAG_WIDTH-1:0] s_axis_write_desc_status_tag,
input wire s_axis_write_desc_status_valid,
/*
* Read descriptor input
*/
input wire [PORTS*DMA_ADDR_WIDTH-1:0] s_axis_read_desc_dma_addr,
input wire [PORTS*S_RAM_SEL_WIDTH-1:0] s_axis_read_desc_ram_sel,
input wire [PORTS*RAM_ADDR_WIDTH-1:0] s_axis_read_desc_ram_addr,
input wire [PORTS*LEN_WIDTH-1:0] s_axis_read_desc_len,
input wire [PORTS*S_TAG_WIDTH-1:0] s_axis_read_desc_tag,
input wire [PORTS-1:0] s_axis_read_desc_valid,
output wire [PORTS-1:0] s_axis_read_desc_ready,
/*
* Read descriptor status output
*/
output wire [PORTS*S_TAG_WIDTH-1:0] m_axis_read_desc_status_tag,
output wire [PORTS-1:0] m_axis_read_desc_status_valid,
/*
* Write descriptor input
*/
input wire [PORTS*DMA_ADDR_WIDTH-1:0] s_axis_write_desc_dma_addr,
input wire [PORTS*S_RAM_SEL_WIDTH-1:0] s_axis_write_desc_ram_sel,
input wire [PORTS*RAM_ADDR_WIDTH-1:0] s_axis_write_desc_ram_addr,
input wire [PORTS*LEN_WIDTH-1:0] s_axis_write_desc_len,
input wire [PORTS*S_TAG_WIDTH-1:0] s_axis_write_desc_tag,
input wire [PORTS-1:0] s_axis_write_desc_valid,
output wire [PORTS-1:0] s_axis_write_desc_ready,
/*
* Write descriptor status output
*/
output wire [PORTS*S_TAG_WIDTH-1:0] m_axis_write_desc_status_tag,
output wire [PORTS-1:0] m_axis_write_desc_status_valid,
/*
* RAM interface (from DMA interface)
*/
input wire [SEG_COUNT*M_RAM_SEL_WIDTH-1:0] if_ram_wr_cmd_sel,
input wire [SEG_COUNT*SEG_BE_WIDTH-1:0] if_ram_wr_cmd_be,
input wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] if_ram_wr_cmd_addr,
input wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] if_ram_wr_cmd_data,
input wire [SEG_COUNT-1:0] if_ram_wr_cmd_valid,
output wire [SEG_COUNT-1:0] if_ram_wr_cmd_ready,
input wire [SEG_COUNT*M_RAM_SEL_WIDTH-1:0] if_ram_rd_cmd_sel,
input wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] if_ram_rd_cmd_addr,
input wire [SEG_COUNT-1:0] if_ram_rd_cmd_valid,
output wire [SEG_COUNT-1:0] if_ram_rd_cmd_ready,
output wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] if_ram_rd_resp_data,
output wire [SEG_COUNT-1:0] if_ram_rd_resp_valid,
input wire [SEG_COUNT-1:0] if_ram_rd_resp_ready,
/*
* RAM interface
*/
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_wr_cmd_sel,
output wire [PORTS*SEG_COUNT*SEG_BE_WIDTH-1:0] ram_wr_cmd_be,
output wire [PORTS*SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_wr_cmd_addr,
output wire [PORTS*SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_wr_cmd_data,
output wire [PORTS*SEG_COUNT-1:0] ram_wr_cmd_valid,
input wire [PORTS*SEG_COUNT-1:0] ram_wr_cmd_ready,
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_rd_cmd_sel,
output wire [PORTS*SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr,
output wire [PORTS*SEG_COUNT-1:0] ram_rd_cmd_valid,
input wire [PORTS*SEG_COUNT-1:0] ram_rd_cmd_ready,
input wire [PORTS*SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_rd_resp_data,
input wire [PORTS*SEG_COUNT-1:0] ram_rd_resp_valid,
output wire [PORTS*SEG_COUNT-1:0] ram_rd_resp_ready
);
dma_if_mux_rd #(
.PORTS(PORTS),
.SEG_COUNT(SEG_COUNT),
.SEG_DATA_WIDTH(SEG_DATA_WIDTH),
.SEG_ADDR_WIDTH(SEG_ADDR_WIDTH),
.SEG_BE_WIDTH(SEG_BE_WIDTH),
.S_RAM_SEL_WIDTH(S_RAM_SEL_WIDTH),
.M_RAM_SEL_WIDTH(M_RAM_SEL_WIDTH),
.RAM_ADDR_WIDTH(RAM_ADDR_WIDTH),
.DMA_ADDR_WIDTH(DMA_ADDR_WIDTH),
.LEN_WIDTH(LEN_WIDTH),
.S_TAG_WIDTH(S_TAG_WIDTH),
.M_TAG_WIDTH(M_TAG_WIDTH),
.ARB_TYPE(ARB_TYPE),
.LSB_PRIORITY(LSB_PRIORITY)
)
dma_if_mux_rd_inst (
.clk(clk),
.rst(rst),
/*
* Descriptor output (to DMA interface)
*/
.m_axis_read_desc_dma_addr(m_axis_read_desc_dma_addr),
.m_axis_read_desc_ram_sel(m_axis_read_desc_ram_sel),
.m_axis_read_desc_ram_addr(m_axis_read_desc_ram_addr),
.m_axis_read_desc_len(m_axis_read_desc_len),
.m_axis_read_desc_tag(m_axis_read_desc_tag),
.m_axis_read_desc_valid(m_axis_read_desc_valid),
.m_axis_read_desc_ready(m_axis_read_desc_ready),
/*
* Descriptor status input (from DMA interface)
*/
.s_axis_read_desc_status_tag(s_axis_read_desc_status_tag),
.s_axis_read_desc_status_valid(s_axis_read_desc_status_valid),
/*
* Descriptor input
*/
.s_axis_read_desc_dma_addr(s_axis_read_desc_dma_addr),
.s_axis_read_desc_ram_sel(s_axis_read_desc_ram_sel),
.s_axis_read_desc_ram_addr(s_axis_read_desc_ram_addr),
.s_axis_read_desc_len(s_axis_read_desc_len),
.s_axis_read_desc_tag(s_axis_read_desc_tag),
.s_axis_read_desc_valid(s_axis_read_desc_valid),
.s_axis_read_desc_ready(s_axis_read_desc_ready),
/*
* Descriptor status output
*/
.m_axis_read_desc_status_tag(m_axis_read_desc_status_tag),
.m_axis_read_desc_status_valid(m_axis_read_desc_status_valid),
/*
* RAM interface (from DMA interface)
*/
.if_ram_wr_cmd_sel(if_ram_wr_cmd_sel),
.if_ram_wr_cmd_be(if_ram_wr_cmd_be),
.if_ram_wr_cmd_addr(if_ram_wr_cmd_addr),
.if_ram_wr_cmd_data(if_ram_wr_cmd_data),
.if_ram_wr_cmd_valid(if_ram_wr_cmd_valid),
.if_ram_wr_cmd_ready(if_ram_wr_cmd_ready),
/*
* RAM interface
*/
.ram_wr_cmd_sel(ram_wr_cmd_sel),
.ram_wr_cmd_be(ram_wr_cmd_be),
.ram_wr_cmd_addr(ram_wr_cmd_addr),
.ram_wr_cmd_data(ram_wr_cmd_data),
.ram_wr_cmd_valid(ram_wr_cmd_valid),
.ram_wr_cmd_ready(ram_wr_cmd_ready)
);
dma_if_mux_wr #(
.PORTS(PORTS),
.SEG_COUNT(SEG_COUNT),
.SEG_DATA_WIDTH(SEG_DATA_WIDTH),
.SEG_ADDR_WIDTH(SEG_ADDR_WIDTH),
.SEG_BE_WIDTH(SEG_BE_WIDTH),
.S_RAM_SEL_WIDTH(S_RAM_SEL_WIDTH),
.M_RAM_SEL_WIDTH(M_RAM_SEL_WIDTH),
.RAM_ADDR_WIDTH(RAM_ADDR_WIDTH),
.DMA_ADDR_WIDTH(DMA_ADDR_WIDTH),
.LEN_WIDTH(LEN_WIDTH),
.S_TAG_WIDTH(S_TAG_WIDTH),
.M_TAG_WIDTH(M_TAG_WIDTH),
.ARB_TYPE(ARB_TYPE),
.LSB_PRIORITY(LSB_PRIORITY)
)
dma_if_mux_wr_inst (
.clk(clk),
.rst(rst),
/*
* Descriptor output (to DMA interface)
*/
.m_axis_write_desc_dma_addr(m_axis_write_desc_dma_addr),
.m_axis_write_desc_ram_sel(m_axis_write_desc_ram_sel),
.m_axis_write_desc_ram_addr(m_axis_write_desc_ram_addr),
.m_axis_write_desc_len(m_axis_write_desc_len),
.m_axis_write_desc_tag(m_axis_write_desc_tag),
.m_axis_write_desc_valid(m_axis_write_desc_valid),
.m_axis_write_desc_ready(m_axis_write_desc_ready),
/*
* Descriptor status input (from DMA interface)
*/
.s_axis_write_desc_status_tag(s_axis_write_desc_status_tag),
.s_axis_write_desc_status_valid(s_axis_write_desc_status_valid),
/*
* Descriptor input
*/
.s_axis_write_desc_dma_addr(s_axis_write_desc_dma_addr),
.s_axis_write_desc_ram_sel(s_axis_write_desc_ram_sel),
.s_axis_write_desc_ram_addr(s_axis_write_desc_ram_addr),
.s_axis_write_desc_len(s_axis_write_desc_len),
.s_axis_write_desc_tag(s_axis_write_desc_tag),
.s_axis_write_desc_valid(s_axis_write_desc_valid),
.s_axis_write_desc_ready(s_axis_write_desc_ready),
/*
* Descriptor status output
*/
.m_axis_write_desc_status_tag(m_axis_write_desc_status_tag),
.m_axis_write_desc_status_valid(m_axis_write_desc_status_valid),
/*
* RAM interface (from DMA interface)
*/
.if_ram_rd_cmd_sel(if_ram_rd_cmd_sel),
.if_ram_rd_cmd_addr(if_ram_rd_cmd_addr),
.if_ram_rd_cmd_valid(if_ram_rd_cmd_valid),
.if_ram_rd_cmd_ready(if_ram_rd_cmd_ready),
.if_ram_rd_resp_data(if_ram_rd_resp_data),
.if_ram_rd_resp_valid(if_ram_rd_resp_valid),
.if_ram_rd_resp_ready(if_ram_rd_resp_ready),
/*
* RAM interface
*/
.ram_rd_cmd_sel(ram_rd_cmd_sel),
.ram_rd_cmd_addr(ram_rd_cmd_addr),
.ram_rd_cmd_valid(ram_rd_cmd_valid),
.ram_rd_cmd_ready(ram_rd_cmd_ready),
.ram_rd_resp_data(ram_rd_resp_data),
.ram_rd_resp_valid(ram_rd_resp_valid),
.ram_rd_resp_ready(ram_rd_resp_ready)
);
endmodule

463
rtl/dma_if_mux_rd.v Normal file
View File

@ -0,0 +1,463 @@
/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* DMA interface mux (read)
*/
module dma_if_mux_rd #
(
// Number of ports
parameter PORTS = 2,
// RAM segment count
parameter SEG_COUNT = 2,
// RAM segment data width
parameter SEG_DATA_WIDTH = 64,
// RAM segment address width
parameter SEG_ADDR_WIDTH = 8,
// RAM segment byte enable width
parameter SEG_BE_WIDTH = SEG_DATA_WIDTH/8,
// Input RAM segment select width
parameter S_RAM_SEL_WIDTH = 2,
// Output RAM segment select width
// Additional bits required for response routing
parameter M_RAM_SEL_WIDTH = S_RAM_SEL_WIDTH+$clog2(PORTS),
// RAM address width
parameter RAM_ADDR_WIDTH = SEG_ADDR_WIDTH+$clog2(SEG_COUNT)+$clog2(SEG_BE_WIDTH),
// DMA address width
parameter DMA_ADDR_WIDTH = 64,
// Length field width
parameter LEN_WIDTH = 16,
// Input tag field width
parameter S_TAG_WIDTH = 8,
// Output tag field width (towards DMA module)
// Additional bits required for response routing
parameter M_TAG_WIDTH = S_TAG_WIDTH+$clog2(PORTS),
// arbitration type: "PRIORITY" or "ROUND_ROBIN"
parameter ARB_TYPE = "PRIORITY",
// LSB priority: "LOW", "HIGH"
parameter LSB_PRIORITY = "HIGH"
)
(
input wire clk,
input wire rst,
/*
* Read descriptor output (to DMA interface)
*/
output wire [DMA_ADDR_WIDTH-1:0] m_axis_read_desc_dma_addr,
output wire [M_RAM_SEL_WIDTH-1:0] m_axis_read_desc_ram_sel,
output wire [RAM_ADDR_WIDTH-1:0] m_axis_read_desc_ram_addr,
output wire [LEN_WIDTH-1:0] m_axis_read_desc_len,
output wire [M_TAG_WIDTH-1:0] m_axis_read_desc_tag,
output wire m_axis_read_desc_valid,
input wire m_axis_read_desc_ready,
/*
* Read descriptor status input (from DMA interface)
*/
input wire [M_TAG_WIDTH-1:0] s_axis_read_desc_status_tag,
input wire s_axis_read_desc_status_valid,
/*
* Read descriptor input
*/
input wire [PORTS*DMA_ADDR_WIDTH-1:0] s_axis_read_desc_dma_addr,
input wire [PORTS*S_RAM_SEL_WIDTH-1:0] s_axis_read_desc_ram_sel,
input wire [PORTS*RAM_ADDR_WIDTH-1:0] s_axis_read_desc_ram_addr,
input wire [PORTS*LEN_WIDTH-1:0] s_axis_read_desc_len,
input wire [PORTS*S_TAG_WIDTH-1:0] s_axis_read_desc_tag,
input wire [PORTS-1:0] s_axis_read_desc_valid,
output wire [PORTS-1:0] s_axis_read_desc_ready,
/*
* Read descriptor status output
*/
output wire [PORTS*S_TAG_WIDTH-1:0] m_axis_read_desc_status_tag,
output wire [PORTS-1:0] m_axis_read_desc_status_valid,
/*
* RAM interface (from DMA interface)
*/
input wire [SEG_COUNT*M_RAM_SEL_WIDTH-1:0] if_ram_wr_cmd_sel,
input wire [SEG_COUNT*SEG_BE_WIDTH-1:0] if_ram_wr_cmd_be,
input wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] if_ram_wr_cmd_addr,
input wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] if_ram_wr_cmd_data,
input wire [SEG_COUNT-1:0] if_ram_wr_cmd_valid,
output wire [SEG_COUNT-1:0] if_ram_wr_cmd_ready,
/*
* RAM interface
*/
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_wr_cmd_sel,
output wire [PORTS*SEG_COUNT*SEG_BE_WIDTH-1:0] ram_wr_cmd_be,
output wire [PORTS*SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_wr_cmd_addr,
output wire [PORTS*SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_wr_cmd_data,
output wire [PORTS*SEG_COUNT-1:0] ram_wr_cmd_valid,
input wire [PORTS*SEG_COUNT-1:0] ram_wr_cmd_ready
);
parameter CL_PORTS = $clog2(PORTS);
parameter S_RAM_SEL_WIDTH_INT = S_RAM_SEL_WIDTH > 0 ? S_RAM_SEL_WIDTH : 1;
// check configuration
initial begin
if (M_TAG_WIDTH < S_TAG_WIDTH+$clog2(PORTS)) begin
$error("Error: M_TAG_WIDTH must be at least $clog2(PORTS) larger than S_TAG_WIDTH (instance %m)");
$finish;
end
if (M_RAM_SEL_WIDTH < S_RAM_SEL_WIDTH+$clog2(PORTS)) begin
$error("Error: M_RAM_SEL_WIDTH must be at least $clog2(PORTS) larger than S_RAM_SEL_WIDTH (instance %m)");
$finish;
end
end
// descriptor mux
wire [PORTS-1:0] request;
wire [PORTS-1:0] acknowledge;
wire [PORTS-1:0] grant;
wire grant_valid;
wire [CL_PORTS-1:0] grant_encoded;
// internal datapath
reg [DMA_ADDR_WIDTH-1:0] m_axis_read_desc_dma_addr_int;
reg [M_RAM_SEL_WIDTH-1:0] m_axis_read_desc_ram_sel_int;
reg [RAM_ADDR_WIDTH-1:0] m_axis_read_desc_ram_addr_int;
reg [LEN_WIDTH-1:0] m_axis_read_desc_len_int;
reg [M_TAG_WIDTH-1:0] m_axis_read_desc_tag_int;
reg m_axis_read_desc_valid_int;
reg m_axis_read_desc_ready_int_reg = 1'b0;
wire m_axis_read_desc_ready_int_early;
assign s_axis_read_desc_ready = (m_axis_read_desc_ready_int_reg && grant_valid) << grant_encoded;
// mux for incoming packet
wire [DMA_ADDR_WIDTH-1:0] current_s_desc_dma_addr = s_axis_read_desc_dma_addr[grant_encoded*DMA_ADDR_WIDTH +: DMA_ADDR_WIDTH];
wire [S_RAM_SEL_WIDTH-1:0] current_s_desc_ram_sel = s_axis_read_desc_ram_sel[grant_encoded*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
wire [RAM_ADDR_WIDTH-1:0] current_s_desc_ram_addr = s_axis_read_desc_ram_addr[grant_encoded*RAM_ADDR_WIDTH +: RAM_ADDR_WIDTH];
wire [LEN_WIDTH-1:0] current_s_desc_len = s_axis_read_desc_len[grant_encoded*LEN_WIDTH +: LEN_WIDTH];
wire [S_TAG_WIDTH-1:0] current_s_desc_tag = s_axis_read_desc_tag[grant_encoded*S_TAG_WIDTH +: S_TAG_WIDTH];
wire current_s_desc_valid = s_axis_read_desc_valid[grant_encoded];
wire current_s_desc_ready = s_axis_read_desc_ready[grant_encoded];
// arbiter instance
arbiter #(
.PORTS(PORTS),
.TYPE(ARB_TYPE),
.BLOCK("ACKNOWLEDGE"),
.LSB_PRIORITY(LSB_PRIORITY)
)
arb_inst (
.clk(clk),
.rst(rst),
.request(request),
.acknowledge(acknowledge),
.grant(grant),
.grant_valid(grant_valid),
.grant_encoded(grant_encoded)
);
assign request = s_axis_read_desc_valid & ~grant;
assign acknowledge = grant & s_axis_read_desc_valid & s_axis_read_desc_ready;
always @* begin
// pass through selected packet data
m_axis_read_desc_dma_addr_int = current_s_desc_dma_addr;
if (S_RAM_SEL_WIDTH > 0) begin
m_axis_read_desc_ram_sel_int = {grant_encoded, current_s_desc_ram_sel};
end else begin
m_axis_read_desc_ram_sel_int = grant_encoded;
end
m_axis_read_desc_ram_addr_int = current_s_desc_ram_addr;
m_axis_read_desc_len_int = current_s_desc_len;
m_axis_read_desc_tag_int = {grant_encoded, current_s_desc_tag};
m_axis_read_desc_valid_int = current_s_desc_valid && m_axis_read_desc_ready_int_reg && grant_valid;
end
// output datapath logic
reg [DMA_ADDR_WIDTH-1:0] m_axis_read_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
reg [M_RAM_SEL_WIDTH-1:0] m_axis_read_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
reg [RAM_ADDR_WIDTH-1:0] m_axis_read_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
reg [LEN_WIDTH-1:0] m_axis_read_desc_len_reg = {LEN_WIDTH{1'b0}};
reg [M_TAG_WIDTH-1:0] m_axis_read_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
reg m_axis_read_desc_valid_reg = 1'b0, m_axis_read_desc_valid_next;
reg [DMA_ADDR_WIDTH-1:0] temp_m_axis_read_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
reg [M_RAM_SEL_WIDTH-1:0] temp_m_axis_read_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
reg [RAM_ADDR_WIDTH-1:0] temp_m_axis_read_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
reg [LEN_WIDTH-1:0] temp_m_axis_read_desc_len_reg = {LEN_WIDTH{1'b0}};
reg [M_TAG_WIDTH-1:0] temp_m_axis_read_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
reg temp_m_axis_read_desc_valid_reg = 1'b0, temp_m_axis_read_desc_valid_next;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_read_desc_dma_addr = m_axis_read_desc_dma_addr_reg;
assign m_axis_read_desc_ram_sel = m_axis_read_desc_ram_sel_reg;
assign m_axis_read_desc_ram_addr = m_axis_read_desc_ram_addr_reg;
assign m_axis_read_desc_len = m_axis_read_desc_len_reg;
assign m_axis_read_desc_tag = m_axis_read_desc_tag_reg;
assign m_axis_read_desc_valid = m_axis_read_desc_valid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_read_desc_ready_int_early = m_axis_read_desc_ready || (!temp_m_axis_read_desc_valid_reg && (!m_axis_read_desc_valid_reg || !m_axis_read_desc_valid_int));
always @* begin
// transfer sink ready state to source
m_axis_read_desc_valid_next = m_axis_read_desc_valid_reg;
temp_m_axis_read_desc_valid_next = temp_m_axis_read_desc_valid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_read_desc_ready_int_reg) begin
// input is ready
if (m_axis_read_desc_ready || !m_axis_read_desc_valid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_read_desc_valid_next = m_axis_read_desc_valid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_read_desc_valid_next = m_axis_read_desc_valid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_read_desc_ready) begin
// input is not ready, but output is ready
m_axis_read_desc_valid_next = temp_m_axis_read_desc_valid_reg;
temp_m_axis_read_desc_valid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_read_desc_valid_reg <= 1'b0;
m_axis_read_desc_ready_int_reg <= 1'b0;
temp_m_axis_read_desc_valid_reg <= 1'b0;
end else begin
m_axis_read_desc_valid_reg <= m_axis_read_desc_valid_next;
m_axis_read_desc_ready_int_reg <= m_axis_read_desc_ready_int_early;
temp_m_axis_read_desc_valid_reg <= temp_m_axis_read_desc_valid_next;
end
// datapath
if (store_axis_int_to_output) begin
m_axis_read_desc_dma_addr_reg <= m_axis_read_desc_dma_addr_int;
m_axis_read_desc_ram_sel_reg <= m_axis_read_desc_ram_sel_int;
m_axis_read_desc_ram_addr_reg <= m_axis_read_desc_ram_addr_int;
m_axis_read_desc_len_reg <= m_axis_read_desc_len_int;
m_axis_read_desc_tag_reg <= m_axis_read_desc_tag_int;
end else if (store_axis_temp_to_output) begin
m_axis_read_desc_dma_addr_reg <= temp_m_axis_read_desc_dma_addr_reg;
m_axis_read_desc_ram_sel_reg <= temp_m_axis_read_desc_ram_sel_reg;
m_axis_read_desc_ram_addr_reg <= temp_m_axis_read_desc_ram_addr_reg;
m_axis_read_desc_len_reg <= temp_m_axis_read_desc_len_reg;
m_axis_read_desc_tag_reg <= temp_m_axis_read_desc_tag_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_read_desc_dma_addr_reg <= m_axis_read_desc_dma_addr_int;
temp_m_axis_read_desc_ram_sel_reg <= m_axis_read_desc_ram_sel_int;
temp_m_axis_read_desc_ram_addr_reg <= m_axis_read_desc_ram_addr_int;
temp_m_axis_read_desc_len_reg <= m_axis_read_desc_len_int;
temp_m_axis_read_desc_tag_reg <= m_axis_read_desc_tag_int;
end
end
// descriptor status demux
reg [S_TAG_WIDTH-1:0] m_axis_read_desc_status_tag_reg = {S_TAG_WIDTH{1'b0}}, m_axis_read_desc_status_tag_next;
reg [PORTS-1:0] m_axis_read_desc_status_valid_reg = {PORTS{1'b0}}, m_axis_read_desc_status_valid_next;
assign m_axis_read_desc_status_tag = {PORTS{m_axis_read_desc_status_tag_reg}};
assign m_axis_read_desc_status_valid = m_axis_read_desc_status_valid_reg;
always @* begin
m_axis_read_desc_status_tag_next = s_axis_read_desc_status_tag;
m_axis_read_desc_status_valid_next = s_axis_read_desc_status_valid << (PORTS > 1 ? s_axis_read_desc_status_tag[S_TAG_WIDTH+CL_PORTS-1:S_TAG_WIDTH] : 0);
end
always @(posedge clk) begin
if (rst) begin
m_axis_read_desc_status_valid_reg <= {PORTS{1'b0}};
end else begin
m_axis_read_desc_status_valid_reg <= m_axis_read_desc_status_valid_next;
end
m_axis_read_desc_status_tag_reg <= m_axis_read_desc_status_tag_next;
end
generate
genvar n, p;
for (n = 0; n < SEG_COUNT; n = n + 1) begin
// RAM write command demux
wire [M_RAM_SEL_WIDTH-1:0] seg_if_ram_wr_cmd_sel = if_ram_wr_cmd_sel[M_RAM_SEL_WIDTH*n +: M_RAM_SEL_WIDTH];
wire [SEG_BE_WIDTH-1:0] seg_if_ram_wr_cmd_be = if_ram_wr_cmd_be[SEG_BE_WIDTH*n +: SEG_BE_WIDTH];
wire [SEG_ADDR_WIDTH-1:0] seg_if_ram_wr_cmd_addr = if_ram_wr_cmd_addr[SEG_ADDR_WIDTH*n +: SEG_ADDR_WIDTH];
wire [SEG_DATA_WIDTH-1:0] seg_if_ram_wr_cmd_data = if_ram_wr_cmd_data[SEG_DATA_WIDTH*n +: SEG_DATA_WIDTH];
wire seg_if_ram_wr_cmd_valid = if_ram_wr_cmd_valid[n];
wire seg_if_ram_wr_cmd_ready;
assign if_ram_wr_cmd_ready[n] = seg_if_ram_wr_cmd_ready;
wire [PORTS*S_RAM_SEL_WIDTH-1:0] seg_ram_wr_cmd_sel;
wire [PORTS*SEG_BE_WIDTH-1:0] seg_ram_wr_cmd_be;
wire [PORTS*SEG_ADDR_WIDTH-1:0] seg_ram_wr_cmd_addr;
wire [PORTS*SEG_DATA_WIDTH-1:0] seg_ram_wr_cmd_data;
wire [PORTS-1:0] seg_ram_wr_cmd_valid;
wire [PORTS-1:0] seg_ram_wr_cmd_ready;
for (p = 0; p < PORTS; p = p + 1) begin
assign ram_wr_cmd_sel[(p*SEG_COUNT+n)*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT] = seg_ram_wr_cmd_sel[p*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
assign ram_wr_cmd_be[(p*SEG_COUNT+n)*SEG_BE_WIDTH +: SEG_BE_WIDTH] = seg_ram_wr_cmd_be[p*SEG_BE_WIDTH +: SEG_BE_WIDTH];
assign ram_wr_cmd_addr[(p*SEG_COUNT+n)*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = seg_ram_wr_cmd_addr[p*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH];
assign ram_wr_cmd_data[(p*SEG_COUNT+n)*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = seg_ram_wr_cmd_data[p*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
assign ram_wr_cmd_valid[p*SEG_COUNT+n] = seg_ram_wr_cmd_valid[p];
assign seg_ram_wr_cmd_ready[p] = ram_wr_cmd_ready[p*SEG_COUNT+n];
end
// internal datapath
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_wr_cmd_sel_int;
reg [SEG_BE_WIDTH-1:0] seg_ram_wr_cmd_be_int;
reg [SEG_ADDR_WIDTH-1:0] seg_ram_wr_cmd_addr_int;
reg [SEG_DATA_WIDTH-1:0] seg_ram_wr_cmd_data_int;
reg [PORTS-1:0] seg_ram_wr_cmd_valid_int;
reg seg_ram_wr_cmd_ready_int_reg = 1'b0;
wire seg_ram_wr_cmd_ready_int_early;
assign seg_if_ram_wr_cmd_ready = seg_ram_wr_cmd_ready_int_reg;
wire [CL_PORTS-1:0] select = PORTS > 1 ? (seg_if_ram_wr_cmd_sel >> (M_RAM_SEL_WIDTH - CL_PORTS)) : 0;
always @* begin
seg_ram_wr_cmd_sel_int = seg_if_ram_wr_cmd_sel;
seg_ram_wr_cmd_be_int = seg_if_ram_wr_cmd_be;
seg_ram_wr_cmd_addr_int = seg_if_ram_wr_cmd_addr;
seg_ram_wr_cmd_data_int = seg_if_ram_wr_cmd_data;
seg_ram_wr_cmd_valid_int = (seg_if_ram_wr_cmd_valid && seg_if_ram_wr_cmd_ready) << select;
end
// output datapath logic
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_wr_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
reg [SEG_BE_WIDTH-1:0] seg_ram_wr_cmd_be_reg = {SEG_BE_WIDTH{1'b0}};
reg [SEG_ADDR_WIDTH-1:0] seg_ram_wr_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
reg [SEG_DATA_WIDTH-1:0] seg_ram_wr_cmd_data_reg = {SEG_DATA_WIDTH{1'b0}};
reg [PORTS-1:0] seg_ram_wr_cmd_valid_reg = {PORTS{1'b0}}, seg_ram_wr_cmd_valid_next;
reg [S_RAM_SEL_WIDTH-1:0] temp_seg_ram_wr_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
reg [SEG_BE_WIDTH-1:0] temp_seg_ram_wr_cmd_be_reg = {SEG_BE_WIDTH{1'b0}};
reg [SEG_ADDR_WIDTH-1:0] temp_seg_ram_wr_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
reg [SEG_DATA_WIDTH-1:0] temp_seg_ram_wr_cmd_data_reg = {SEG_DATA_WIDTH{1'b0}};
reg [PORTS-1:0] temp_seg_ram_wr_cmd_valid_reg = {PORTS{1'b0}}, temp_seg_ram_wr_cmd_valid_next;
// datapath control
reg store_axis_resp_int_to_output;
reg store_axis_resp_int_to_temp;
reg store_axis_resp_temp_to_output;
assign seg_ram_wr_cmd_sel = {PORTS{seg_ram_wr_cmd_sel_reg}};
assign seg_ram_wr_cmd_be = {PORTS{seg_ram_wr_cmd_be_reg}};
assign seg_ram_wr_cmd_addr = {PORTS{seg_ram_wr_cmd_addr_reg}};
assign seg_ram_wr_cmd_data = {PORTS{seg_ram_wr_cmd_data_reg}};
assign seg_ram_wr_cmd_valid = seg_ram_wr_cmd_valid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign seg_ram_wr_cmd_ready_int_early = (seg_ram_wr_cmd_ready & seg_ram_wr_cmd_valid_reg) || (!temp_seg_ram_wr_cmd_valid_reg && (!seg_ram_wr_cmd_valid_reg || !seg_ram_wr_cmd_valid_int));
always @* begin
// transfer sink ready state to source
seg_ram_wr_cmd_valid_next = seg_ram_wr_cmd_valid_reg;
temp_seg_ram_wr_cmd_valid_next = temp_seg_ram_wr_cmd_valid_reg;
store_axis_resp_int_to_output = 1'b0;
store_axis_resp_int_to_temp = 1'b0;
store_axis_resp_temp_to_output = 1'b0;
if (seg_ram_wr_cmd_ready_int_reg) begin
// input is ready
if ((seg_ram_wr_cmd_ready & seg_ram_wr_cmd_valid_reg) || !seg_ram_wr_cmd_valid_reg) begin
// output is ready or currently not valid, transfer data to output
seg_ram_wr_cmd_valid_next = seg_ram_wr_cmd_valid_int;
store_axis_resp_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_seg_ram_wr_cmd_valid_next = seg_ram_wr_cmd_valid_int;
store_axis_resp_int_to_temp = 1'b1;
end
end else if (seg_ram_wr_cmd_ready & seg_ram_wr_cmd_valid_reg) begin
// input is not ready, but output is ready
seg_ram_wr_cmd_valid_next = temp_seg_ram_wr_cmd_valid_reg;
temp_seg_ram_wr_cmd_valid_next = {PORTS{1'b0}};
store_axis_resp_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
seg_ram_wr_cmd_valid_reg <= {PORTS{1'b0}};
seg_ram_wr_cmd_ready_int_reg <= 1'b0;
temp_seg_ram_wr_cmd_valid_reg <= {PORTS{1'b0}};
end else begin
seg_ram_wr_cmd_valid_reg <= seg_ram_wr_cmd_valid_next;
seg_ram_wr_cmd_ready_int_reg <= seg_ram_wr_cmd_ready_int_early;
temp_seg_ram_wr_cmd_valid_reg <= temp_seg_ram_wr_cmd_valid_next;
end
// datapath
if (store_axis_resp_int_to_output) begin
seg_ram_wr_cmd_sel_reg <= seg_ram_wr_cmd_sel_int;
seg_ram_wr_cmd_be_reg <= seg_ram_wr_cmd_be_int;
seg_ram_wr_cmd_addr_reg <= seg_ram_wr_cmd_addr_int;
seg_ram_wr_cmd_data_reg <= seg_ram_wr_cmd_data_int;
end else if (store_axis_resp_temp_to_output) begin
seg_ram_wr_cmd_sel_reg <= temp_seg_ram_wr_cmd_sel_reg;
seg_ram_wr_cmd_be_reg <= temp_seg_ram_wr_cmd_be_reg;
seg_ram_wr_cmd_addr_reg <= temp_seg_ram_wr_cmd_addr_reg;
seg_ram_wr_cmd_data_reg <= temp_seg_ram_wr_cmd_data_reg;
end
if (store_axis_resp_int_to_temp) begin
temp_seg_ram_wr_cmd_sel_reg <= seg_ram_wr_cmd_sel_int;
temp_seg_ram_wr_cmd_be_reg <= seg_ram_wr_cmd_be_int;
temp_seg_ram_wr_cmd_addr_reg <= seg_ram_wr_cmd_addr_int;
temp_seg_ram_wr_cmd_data_reg <= seg_ram_wr_cmd_data_int;
end
end
end
endgenerate
endmodule

589
rtl/dma_if_mux_wr.v Normal file
View File

@ -0,0 +1,589 @@
/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* DMA interface mux (write)
*/
module dma_if_mux_wr #
(
// Number of ports
parameter PORTS = 2,
// RAM segment count
parameter SEG_COUNT = 2,
// RAM segment data width
parameter SEG_DATA_WIDTH = 64,
// RAM segment address width
parameter SEG_ADDR_WIDTH = 8,
// RAM segment byte enable width
parameter SEG_BE_WIDTH = SEG_DATA_WIDTH/8,
// Input RAM segment select width
parameter S_RAM_SEL_WIDTH = 2,
// Output RAM segment select width
// Additional bits required for response routing
parameter M_RAM_SEL_WIDTH = S_RAM_SEL_WIDTH+$clog2(PORTS),
// RAM address width
parameter RAM_ADDR_WIDTH = SEG_ADDR_WIDTH+$clog2(SEG_COUNT)+$clog2(SEG_BE_WIDTH),
// DMA address width
parameter DMA_ADDR_WIDTH = 64,
// Length field width
parameter LEN_WIDTH = 16,
// Input tag field width
parameter S_TAG_WIDTH = 8,
// Output tag field width (towards DMA module)
// Additional bits required for response routing
parameter M_TAG_WIDTH = S_TAG_WIDTH+$clog2(PORTS),
// arbitration type: "PRIORITY" or "ROUND_ROBIN"
parameter ARB_TYPE = "PRIORITY",
// LSB priority: "LOW", "HIGH"
parameter LSB_PRIORITY = "HIGH"
)
(
input wire clk,
input wire rst,
/*
* Write descriptor output (to DMA interface)
*/
output wire [DMA_ADDR_WIDTH-1:0] m_axis_write_desc_dma_addr,
output wire [M_RAM_SEL_WIDTH-1:0] m_axis_write_desc_ram_sel,
output wire [RAM_ADDR_WIDTH-1:0] m_axis_write_desc_ram_addr,
output wire [LEN_WIDTH-1:0] m_axis_write_desc_len,
output wire [M_TAG_WIDTH-1:0] m_axis_write_desc_tag,
output wire m_axis_write_desc_valid,
input wire m_axis_write_desc_ready,
/*
* Write descriptor status input (from DMA interface)
*/
input wire [M_TAG_WIDTH-1:0] s_axis_write_desc_status_tag,
input wire s_axis_write_desc_status_valid,
/*
* Write descriptor input
*/
input wire [PORTS*DMA_ADDR_WIDTH-1:0] s_axis_write_desc_dma_addr,
input wire [PORTS*S_RAM_SEL_WIDTH-1:0] s_axis_write_desc_ram_sel,
input wire [PORTS*RAM_ADDR_WIDTH-1:0] s_axis_write_desc_ram_addr,
input wire [PORTS*LEN_WIDTH-1:0] s_axis_write_desc_len,
input wire [PORTS*S_TAG_WIDTH-1:0] s_axis_write_desc_tag,
input wire [PORTS-1:0] s_axis_write_desc_valid,
output wire [PORTS-1:0] s_axis_write_desc_ready,
/*
* Write descriptor status output
*/
output wire [PORTS*S_TAG_WIDTH-1:0] m_axis_write_desc_status_tag,
output wire [PORTS-1:0] m_axis_write_desc_status_valid,
/*
* RAM interface (from DMA interface)
*/
input wire [SEG_COUNT*M_RAM_SEL_WIDTH-1:0] if_ram_rd_cmd_sel,
input wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] if_ram_rd_cmd_addr,
input wire [SEG_COUNT-1:0] if_ram_rd_cmd_valid,
output wire [SEG_COUNT-1:0] if_ram_rd_cmd_ready,
output wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] if_ram_rd_resp_data,
output wire [SEG_COUNT-1:0] if_ram_rd_resp_valid,
input wire [SEG_COUNT-1:0] if_ram_rd_resp_ready,
/*
* RAM interface
*/
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_rd_cmd_sel,
output wire [PORTS*SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr,
output wire [PORTS*SEG_COUNT-1:0] ram_rd_cmd_valid,
input wire [PORTS*SEG_COUNT-1:0] ram_rd_cmd_ready,
input wire [PORTS*SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_rd_resp_data,
input wire [PORTS*SEG_COUNT-1:0] ram_rd_resp_valid,
output wire [PORTS*SEG_COUNT-1:0] ram_rd_resp_ready
);
parameter CL_PORTS = $clog2(PORTS);
parameter S_RAM_SEL_WIDTH_INT = S_RAM_SEL_WIDTH > 0 ? S_RAM_SEL_WIDTH : 1;
parameter FIFO_ADDR_WIDTH = 5;
// check configuration
initial begin
if (M_TAG_WIDTH < S_TAG_WIDTH+$clog2(PORTS)) begin
$error("Error: M_TAG_WIDTH must be at least $clog2(PORTS) larger than S_TAG_WIDTH (instance %m)");
$finish;
end
if (M_RAM_SEL_WIDTH < S_RAM_SEL_WIDTH+$clog2(PORTS)) begin
$error("Error: M_RAM_SEL_WIDTH must be at least $clog2(PORTS) larger than S_RAM_SEL_WIDTH (instance %m)");
$finish;
end
end
// descriptor mux
wire [PORTS-1:0] request;
wire [PORTS-1:0] acknowledge;
wire [PORTS-1:0] grant;
wire grant_valid;
wire [CL_PORTS-1:0] grant_encoded;
// internal datapath
reg [DMA_ADDR_WIDTH-1:0] m_axis_write_desc_dma_addr_int;
reg [M_RAM_SEL_WIDTH-1:0] m_axis_write_desc_ram_sel_int;
reg [RAM_ADDR_WIDTH-1:0] m_axis_write_desc_ram_addr_int;
reg [LEN_WIDTH-1:0] m_axis_write_desc_len_int;
reg [M_TAG_WIDTH-1:0] m_axis_write_desc_tag_int;
reg m_axis_write_desc_valid_int;
reg m_axis_write_desc_ready_int_reg = 1'b0;
wire m_axis_write_desc_ready_int_early;
assign s_axis_write_desc_ready = (m_axis_write_desc_ready_int_reg && grant_valid) << grant_encoded;
// mux for incoming packet
wire [DMA_ADDR_WIDTH-1:0] current_s_desc_dma_addr = s_axis_write_desc_dma_addr[grant_encoded*DMA_ADDR_WIDTH +: DMA_ADDR_WIDTH];
wire [S_RAM_SEL_WIDTH-1:0] current_s_desc_ram_sel = s_axis_write_desc_ram_sel[grant_encoded*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
wire [RAM_ADDR_WIDTH-1:0] current_s_desc_ram_addr = s_axis_write_desc_ram_addr[grant_encoded*RAM_ADDR_WIDTH +: RAM_ADDR_WIDTH];
wire [LEN_WIDTH-1:0] current_s_desc_len = s_axis_write_desc_len[grant_encoded*LEN_WIDTH +: LEN_WIDTH];
wire [S_TAG_WIDTH-1:0] current_s_desc_tag = s_axis_write_desc_tag[grant_encoded*S_TAG_WIDTH +: S_TAG_WIDTH];
wire current_s_desc_valid = s_axis_write_desc_valid[grant_encoded];
wire current_s_desc_ready = s_axis_write_desc_ready[grant_encoded];
// arbiter instance
arbiter #(
.PORTS(PORTS),
.TYPE(ARB_TYPE),
.BLOCK("ACKNOWLEDGE"),
.LSB_PRIORITY(LSB_PRIORITY)
)
arb_inst (
.clk(clk),
.rst(rst),
.request(request),
.acknowledge(acknowledge),
.grant(grant),
.grant_valid(grant_valid),
.grant_encoded(grant_encoded)
);
assign request = s_axis_write_desc_valid & ~grant;
assign acknowledge = grant & s_axis_write_desc_valid & s_axis_write_desc_ready;
always @* begin
// pass through selected packet data
m_axis_write_desc_dma_addr_int = current_s_desc_dma_addr;
if (S_RAM_SEL_WIDTH > 0) begin
m_axis_write_desc_ram_sel_int = {grant_encoded, current_s_desc_ram_sel};
end else begin
m_axis_write_desc_ram_sel_int = grant_encoded;
end
m_axis_write_desc_ram_addr_int = current_s_desc_ram_addr;
m_axis_write_desc_len_int = current_s_desc_len;
m_axis_write_desc_tag_int = {grant_encoded, current_s_desc_tag};
m_axis_write_desc_valid_int = current_s_desc_valid && m_axis_write_desc_ready_int_reg && grant_valid;
end
// output datapath logic
reg [DMA_ADDR_WIDTH-1:0] m_axis_write_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
reg [M_RAM_SEL_WIDTH-1:0] m_axis_write_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
reg [RAM_ADDR_WIDTH-1:0] m_axis_write_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
reg [LEN_WIDTH-1:0] m_axis_write_desc_len_reg = {LEN_WIDTH{1'b0}};
reg [M_TAG_WIDTH-1:0] m_axis_write_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
reg m_axis_write_desc_valid_reg = 1'b0, m_axis_write_desc_valid_next;
reg [DMA_ADDR_WIDTH-1:0] temp_m_axis_write_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
reg [M_RAM_SEL_WIDTH-1:0] temp_m_axis_write_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
reg [RAM_ADDR_WIDTH-1:0] temp_m_axis_write_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
reg [LEN_WIDTH-1:0] temp_m_axis_write_desc_len_reg = {LEN_WIDTH{1'b0}};
reg [M_TAG_WIDTH-1:0] temp_m_axis_write_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
reg temp_m_axis_write_desc_valid_reg = 1'b0, temp_m_axis_write_desc_valid_next;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_write_desc_dma_addr = m_axis_write_desc_dma_addr_reg;
assign m_axis_write_desc_ram_addr = m_axis_write_desc_ram_addr_reg;
assign m_axis_write_desc_ram_sel = m_axis_write_desc_ram_sel_reg;
assign m_axis_write_desc_len = m_axis_write_desc_len_reg;
assign m_axis_write_desc_tag = m_axis_write_desc_tag_reg;
assign m_axis_write_desc_valid = m_axis_write_desc_valid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_write_desc_ready_int_early = m_axis_write_desc_ready || (!temp_m_axis_write_desc_valid_reg && (!m_axis_write_desc_valid_reg || !m_axis_write_desc_valid_int));
always @* begin
// transfer sink ready state to source
m_axis_write_desc_valid_next = m_axis_write_desc_valid_reg;
temp_m_axis_write_desc_valid_next = temp_m_axis_write_desc_valid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_write_desc_ready_int_reg) begin
// input is ready
if (m_axis_write_desc_ready || !m_axis_write_desc_valid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_write_desc_valid_next = m_axis_write_desc_valid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_write_desc_valid_next = m_axis_write_desc_valid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_write_desc_ready) begin
// input is not ready, but output is ready
m_axis_write_desc_valid_next = temp_m_axis_write_desc_valid_reg;
temp_m_axis_write_desc_valid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_write_desc_valid_reg <= 1'b0;
m_axis_write_desc_ready_int_reg <= 1'b0;
temp_m_axis_write_desc_valid_reg <= 1'b0;
end else begin
m_axis_write_desc_valid_reg <= m_axis_write_desc_valid_next;
m_axis_write_desc_ready_int_reg <= m_axis_write_desc_ready_int_early;
temp_m_axis_write_desc_valid_reg <= temp_m_axis_write_desc_valid_next;
end
// datapath
if (store_axis_int_to_output) begin
m_axis_write_desc_dma_addr_reg <= m_axis_write_desc_dma_addr_int;
m_axis_write_desc_ram_sel_reg <= m_axis_write_desc_ram_sel_int;
m_axis_write_desc_ram_addr_reg <= m_axis_write_desc_ram_addr_int;
m_axis_write_desc_len_reg <= m_axis_write_desc_len_int;
m_axis_write_desc_tag_reg <= m_axis_write_desc_tag_int;
end else if (store_axis_temp_to_output) begin
m_axis_write_desc_dma_addr_reg <= temp_m_axis_write_desc_dma_addr_reg;
m_axis_write_desc_ram_sel_reg <= temp_m_axis_write_desc_ram_sel_reg;
m_axis_write_desc_ram_addr_reg <= temp_m_axis_write_desc_ram_addr_reg;
m_axis_write_desc_len_reg <= temp_m_axis_write_desc_len_reg;
m_axis_write_desc_tag_reg <= temp_m_axis_write_desc_tag_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_write_desc_dma_addr_reg <= m_axis_write_desc_dma_addr_int;
temp_m_axis_write_desc_ram_sel_reg <= m_axis_write_desc_ram_sel_int;
temp_m_axis_write_desc_ram_addr_reg <= m_axis_write_desc_ram_addr_int;
temp_m_axis_write_desc_len_reg <= m_axis_write_desc_len_int;
temp_m_axis_write_desc_tag_reg <= m_axis_write_desc_tag_int;
end
end
// descriptor status demux
reg [S_TAG_WIDTH-1:0] m_axis_write_desc_status_tag_reg = {S_TAG_WIDTH{1'b0}}, m_axis_write_desc_status_tag_next;
reg [PORTS-1:0] m_axis_write_desc_status_valid_reg = {PORTS{1'b0}}, m_axis_write_desc_status_valid_next;
assign m_axis_write_desc_status_tag = {PORTS{m_axis_write_desc_status_tag_reg}};
assign m_axis_write_desc_status_valid = m_axis_write_desc_status_valid_reg;
always @* begin
m_axis_write_desc_status_tag_next = s_axis_write_desc_status_tag;
m_axis_write_desc_status_valid_next = s_axis_write_desc_status_valid << (PORTS > 1 ? s_axis_write_desc_status_tag[S_TAG_WIDTH+CL_PORTS-1:S_TAG_WIDTH] : 0);
end
always @(posedge clk) begin
if (rst) begin
m_axis_write_desc_status_valid_reg <= {PORTS{1'b0}};
end else begin
m_axis_write_desc_status_valid_reg <= m_axis_write_desc_status_valid_next;
end
m_axis_write_desc_status_tag_reg <= m_axis_write_desc_status_tag_next;
end
generate
genvar n, p;
for (n = 0; n < SEG_COUNT; n = n + 1) begin
// FIFO to maintain response ordering
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_wr_ptr_reg = 0;
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_rd_ptr_reg = 0;
reg [CL_PORTS-1:0] fifo_sel[(2**FIFO_ADDR_WIDTH)-1:0];
wire fifo_empty = fifo_wr_ptr_reg == fifo_rd_ptr_reg;
wire fifo_full = fifo_wr_ptr_reg == (fifo_rd_ptr_reg ^ (1 << FIFO_ADDR_WIDTH));
integer i;
initial begin
for (i = 0; i < 2**FIFO_ADDR_WIDTH; i = i + 1) begin
fifo_sel[i] = 0;
end
end
// RAM read command demux
wire [M_RAM_SEL_WIDTH-1:0] seg_if_ram_rd_cmd_sel = if_ram_rd_cmd_sel[M_RAM_SEL_WIDTH*n +: M_RAM_SEL_WIDTH];
wire [SEG_ADDR_WIDTH-1:0] seg_if_ram_rd_cmd_addr = if_ram_rd_cmd_addr[SEG_ADDR_WIDTH*n +: SEG_ADDR_WIDTH];
wire seg_if_ram_rd_cmd_valid = if_ram_rd_cmd_valid[n];
wire seg_if_ram_rd_cmd_ready;
assign if_ram_rd_cmd_ready[n] = seg_if_ram_rd_cmd_ready;
wire [PORTS*S_RAM_SEL_WIDTH-1:0] seg_ram_rd_cmd_sel;
wire [PORTS*SEG_ADDR_WIDTH-1:0] seg_ram_rd_cmd_addr;
wire [PORTS-1:0] seg_ram_rd_cmd_valid;
wire [PORTS-1:0] seg_ram_rd_cmd_ready;
for (p = 0; p < PORTS; p = p + 1) begin
assign ram_rd_cmd_sel[(p*SEG_COUNT+n)*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT] = seg_ram_rd_cmd_sel[p*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
assign ram_rd_cmd_addr[(p*SEG_COUNT+n)*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = seg_ram_rd_cmd_addr[p*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH];
assign ram_rd_cmd_valid[p*SEG_COUNT+n] = seg_ram_rd_cmd_valid[p];
assign seg_ram_rd_cmd_ready[p] = ram_rd_cmd_ready[p*SEG_COUNT+n];
end
// internal datapath
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_rd_cmd_sel_int;
reg [SEG_ADDR_WIDTH-1:0] seg_ram_rd_cmd_addr_int;
reg [PORTS-1:0] seg_ram_rd_cmd_valid_int;
reg seg_ram_rd_cmd_ready_int_reg = 1'b0;
wire seg_ram_rd_cmd_ready_int_early;
assign seg_if_ram_rd_cmd_ready = seg_ram_rd_cmd_ready_int_reg && !fifo_full;
wire [CL_PORTS-1:0] select = PORTS > 1 ? (seg_if_ram_rd_cmd_sel >> (M_RAM_SEL_WIDTH - CL_PORTS)) : 0;
always @* begin
seg_ram_rd_cmd_sel_int = seg_if_ram_rd_cmd_sel;
seg_ram_rd_cmd_addr_int = seg_if_ram_rd_cmd_addr;
seg_ram_rd_cmd_valid_int = (seg_if_ram_rd_cmd_valid && seg_if_ram_rd_cmd_ready) << select;
end
always @(posedge clk) begin
if (seg_if_ram_rd_cmd_valid && seg_if_ram_rd_cmd_ready) begin
fifo_sel[fifo_wr_ptr_reg[FIFO_ADDR_WIDTH-1:0]] <= select;
fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1;
end
if (rst) begin
fifo_wr_ptr_reg <= 0;
end
end
// output datapath logic
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_rd_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
reg [SEG_ADDR_WIDTH-1:0] seg_ram_rd_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
reg [PORTS-1:0] seg_ram_rd_cmd_valid_reg = {PORTS{1'b0}}, seg_ram_rd_cmd_valid_next;
reg [S_RAM_SEL_WIDTH-1:0] temp_seg_ram_rd_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
reg [SEG_ADDR_WIDTH-1:0] temp_seg_ram_rd_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
reg [PORTS-1:0] temp_seg_ram_rd_cmd_valid_reg = {PORTS{1'b0}}, temp_seg_ram_rd_cmd_valid_next;
// datapath control
reg store_axis_resp_int_to_output;
reg store_axis_resp_int_to_temp;
reg store_axis_resp_temp_to_output;
assign seg_ram_rd_cmd_sel = {PORTS{seg_ram_rd_cmd_sel_reg}};
assign seg_ram_rd_cmd_addr = {PORTS{seg_ram_rd_cmd_addr_reg}};
assign seg_ram_rd_cmd_valid = seg_ram_rd_cmd_valid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign seg_ram_rd_cmd_ready_int_early = (seg_ram_rd_cmd_ready & seg_ram_rd_cmd_valid_reg) || (!temp_seg_ram_rd_cmd_valid_reg && (!seg_ram_rd_cmd_valid_reg || !seg_ram_rd_cmd_valid_int));
always @* begin
// transfer sink ready state to source
seg_ram_rd_cmd_valid_next = seg_ram_rd_cmd_valid_reg;
temp_seg_ram_rd_cmd_valid_next = temp_seg_ram_rd_cmd_valid_reg;
store_axis_resp_int_to_output = 1'b0;
store_axis_resp_int_to_temp = 1'b0;
store_axis_resp_temp_to_output = 1'b0;
if (seg_ram_rd_cmd_ready_int_reg) begin
// input is ready
if ((seg_ram_rd_cmd_ready & seg_ram_rd_cmd_valid_reg) || !seg_ram_rd_cmd_valid_reg) begin
// output is ready or currently not valid, transfer data to output
seg_ram_rd_cmd_valid_next = seg_ram_rd_cmd_valid_int;
store_axis_resp_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_seg_ram_rd_cmd_valid_next = seg_ram_rd_cmd_valid_int;
store_axis_resp_int_to_temp = 1'b1;
end
end else if (seg_ram_rd_cmd_ready & seg_ram_rd_cmd_valid_reg) begin
// input is not ready, but output is ready
seg_ram_rd_cmd_valid_next = temp_seg_ram_rd_cmd_valid_reg;
temp_seg_ram_rd_cmd_valid_next = {PORTS{1'b0}};
store_axis_resp_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
seg_ram_rd_cmd_valid_reg <= {PORTS{1'b0}};
seg_ram_rd_cmd_ready_int_reg <= 1'b0;
temp_seg_ram_rd_cmd_valid_reg <= {PORTS{1'b0}};
end else begin
seg_ram_rd_cmd_valid_reg <= seg_ram_rd_cmd_valid_next;
seg_ram_rd_cmd_ready_int_reg <= seg_ram_rd_cmd_ready_int_early;
temp_seg_ram_rd_cmd_valid_reg <= temp_seg_ram_rd_cmd_valid_next;
end
// datapath
if (store_axis_resp_int_to_output) begin
seg_ram_rd_cmd_sel_reg <= seg_ram_rd_cmd_sel_int;
seg_ram_rd_cmd_addr_reg <= seg_ram_rd_cmd_addr_int;
end else if (store_axis_resp_temp_to_output) begin
seg_ram_rd_cmd_sel_reg <= temp_seg_ram_rd_cmd_sel_reg;
seg_ram_rd_cmd_addr_reg <= temp_seg_ram_rd_cmd_addr_reg;
end
if (store_axis_resp_int_to_temp) begin
temp_seg_ram_rd_cmd_sel_reg <= seg_ram_rd_cmd_sel_int;
temp_seg_ram_rd_cmd_addr_reg <= seg_ram_rd_cmd_addr_int;
end
end
// RAM read response mux
wire [PORTS*SEG_DATA_WIDTH-1:0] seg_ram_rd_resp_data;
wire [PORTS-1:0] seg_ram_rd_resp_valid;
wire [PORTS-1:0] seg_ram_rd_resp_ready;
for (p = 0; p < PORTS; p = p + 1) begin
assign seg_ram_rd_resp_data[p*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = ram_rd_resp_data[(p*SEG_COUNT+n)*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
assign seg_ram_rd_resp_valid[p] = ram_rd_resp_valid[p*SEG_COUNT+n];
assign ram_rd_resp_ready[p*SEG_COUNT+n] = seg_ram_rd_resp_ready[p];
end
wire [SEG_DATA_WIDTH-1:0] seg_if_ram_rd_resp_data;
wire seg_if_ram_rd_resp_valid;
wire seg_if_ram_rd_resp_ready = if_ram_rd_resp_ready[n];
assign if_ram_rd_resp_data[n*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = seg_if_ram_rd_resp_data_reg;
assign if_ram_rd_resp_valid[n] = seg_if_ram_rd_resp_valid_reg;
// internal datapath
reg [SEG_DATA_WIDTH-1:0] seg_if_ram_rd_resp_data_int;
reg seg_if_ram_rd_resp_valid_int;
reg seg_if_ram_rd_resp_ready_int_reg = 1'b0;
wire seg_if_ram_rd_resp_ready_int_early;
assign seg_ram_rd_resp_ready = (seg_if_ram_rd_resp_ready_int_reg && !fifo_empty) << fifo_sel[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]];
// mux for incoming packet
wire [SEG_DATA_WIDTH-1:0] current_resp_data = seg_ram_rd_resp_data[fifo_sel[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]]*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
wire current_resp_valid = seg_ram_rd_resp_valid[fifo_sel[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]]];
wire current_resp_ready = seg_ram_rd_resp_ready[fifo_sel[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]]];
always @* begin
// pass through selected packet data
seg_if_ram_rd_resp_data_int = current_resp_data;
seg_if_ram_rd_resp_valid_int = current_resp_valid && seg_if_ram_rd_resp_ready_int_reg && !fifo_empty;
end
always @(posedge clk) begin
if (current_resp_valid && seg_if_ram_rd_resp_ready_int_reg && !fifo_empty) begin
fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1;
end
if (rst) begin
fifo_rd_ptr_reg <= 0;
end
end
// output datapath logic
reg [SEG_DATA_WIDTH-1:0] seg_if_ram_rd_resp_data_reg = {SEG_DATA_WIDTH{1'b0}};
reg seg_if_ram_rd_resp_valid_reg = 1'b0, seg_if_ram_rd_resp_valid_next;
reg [SEG_DATA_WIDTH-1:0] temp_seg_if_ram_rd_resp_data_reg = {SEG_DATA_WIDTH{1'b0}};
reg temp_seg_if_ram_rd_resp_valid_reg = 1'b0, temp_seg_if_ram_rd_resp_valid_next;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign seg_if_ram_rd_resp_data = seg_if_ram_rd_resp_data_reg;
assign seg_if_ram_rd_resp_valid = seg_if_ram_rd_resp_valid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign seg_if_ram_rd_resp_ready_int_early = seg_if_ram_rd_resp_ready || (!temp_seg_if_ram_rd_resp_valid_reg && (!seg_if_ram_rd_resp_valid_reg || !seg_if_ram_rd_resp_valid_int));
always @* begin
// transfer sink ready state to source
seg_if_ram_rd_resp_valid_next = seg_if_ram_rd_resp_valid_reg;
temp_seg_if_ram_rd_resp_valid_next = temp_seg_if_ram_rd_resp_valid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (seg_if_ram_rd_resp_ready_int_reg) begin
// input is ready
if (seg_if_ram_rd_resp_ready || !seg_if_ram_rd_resp_valid_reg) begin
// output is ready or currently not valid, transfer data to output
seg_if_ram_rd_resp_valid_next = seg_if_ram_rd_resp_valid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_seg_if_ram_rd_resp_valid_next = seg_if_ram_rd_resp_valid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (seg_if_ram_rd_resp_ready) begin
// input is not ready, but output is ready
seg_if_ram_rd_resp_valid_next = temp_seg_if_ram_rd_resp_valid_reg;
temp_seg_if_ram_rd_resp_valid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
seg_if_ram_rd_resp_valid_reg <= 1'b0;
seg_if_ram_rd_resp_ready_int_reg <= 1'b0;
temp_seg_if_ram_rd_resp_valid_reg <= 1'b0;
end else begin
seg_if_ram_rd_resp_valid_reg <= seg_if_ram_rd_resp_valid_next;
seg_if_ram_rd_resp_ready_int_reg <= seg_if_ram_rd_resp_ready_int_early;
temp_seg_if_ram_rd_resp_valid_reg <= temp_seg_if_ram_rd_resp_valid_next;
end
// datapath
if (store_axis_int_to_output) begin
seg_if_ram_rd_resp_data_reg <= seg_if_ram_rd_resp_data_int;
end else if (store_axis_temp_to_output) begin
seg_if_ram_rd_resp_data_reg <= temp_seg_if_ram_rd_resp_data_reg;
end
if (store_axis_int_to_temp) begin
temp_seg_if_ram_rd_resp_data_reg <= seg_if_ram_rd_resp_data_int;
end
end
end
endgenerate
endmodule