mirror of
https://github.com/corundum/corundum.git
synced 2025-01-16 08:12:53 +08:00
Add DMA interface mux modules
This commit is contained in:
parent
fdd7faef4f
commit
75563c65f0
324
rtl/dma_if_mux.v
Normal file
324
rtl/dma_if_mux.v
Normal file
@ -0,0 +1,324 @@
|
||||
/*
|
||||
|
||||
Copyright (c) 2019 Alex Forencich
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
|
||||
*/
|
||||
|
||||
// Language: Verilog 2001
|
||||
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
/*
|
||||
* DMA interface mux
|
||||
*/
|
||||
module dma_if_mux #
|
||||
(
|
||||
// Number of ports
|
||||
parameter PORTS = 2,
|
||||
// RAM segment count
|
||||
parameter SEG_COUNT = 2,
|
||||
// RAM segment data width
|
||||
parameter SEG_DATA_WIDTH = 64,
|
||||
// RAM segment address width
|
||||
parameter SEG_ADDR_WIDTH = 8,
|
||||
// RAM segment byte enable width
|
||||
parameter SEG_BE_WIDTH = SEG_DATA_WIDTH/8,
|
||||
// Input RAM segment select width
|
||||
parameter S_RAM_SEL_WIDTH = 2,
|
||||
// Output RAM segment select width
|
||||
// Additional bits required for response routing
|
||||
parameter M_RAM_SEL_WIDTH = S_RAM_SEL_WIDTH+$clog2(PORTS),
|
||||
// RAM address width
|
||||
parameter RAM_ADDR_WIDTH = SEG_ADDR_WIDTH+$clog2(SEG_COUNT)+$clog2(SEG_BE_WIDTH),
|
||||
// DMA address width
|
||||
parameter DMA_ADDR_WIDTH = 64,
|
||||
// Length field width
|
||||
parameter LEN_WIDTH = 16,
|
||||
// Input tag field width
|
||||
parameter S_TAG_WIDTH = 8,
|
||||
// Output tag field width (towards DMA module)
|
||||
// Additional bits required for response routing
|
||||
parameter M_TAG_WIDTH = S_TAG_WIDTH+$clog2(PORTS),
|
||||
// arbitration type: "PRIORITY" or "ROUND_ROBIN"
|
||||
parameter ARB_TYPE = "PRIORITY",
|
||||
// LSB priority: "LOW", "HIGH"
|
||||
parameter LSB_PRIORITY = "HIGH"
|
||||
)
|
||||
(
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
|
||||
/*
|
||||
* Read descriptor output (to DMA interface)
|
||||
*/
|
||||
output wire [DMA_ADDR_WIDTH-1:0] m_axis_read_desc_dma_addr,
|
||||
output wire [M_RAM_SEL_WIDTH-1:0] m_axis_read_desc_ram_sel,
|
||||
output wire [RAM_ADDR_WIDTH-1:0] m_axis_read_desc_ram_addr,
|
||||
output wire [LEN_WIDTH-1:0] m_axis_read_desc_len,
|
||||
output wire [M_TAG_WIDTH-1:0] m_axis_read_desc_tag,
|
||||
output wire m_axis_read_desc_valid,
|
||||
input wire m_axis_read_desc_ready,
|
||||
|
||||
/*
|
||||
* Read descriptor status input (from DMA interface)
|
||||
*/
|
||||
input wire [M_TAG_WIDTH-1:0] s_axis_read_desc_status_tag,
|
||||
input wire s_axis_read_desc_status_valid,
|
||||
|
||||
/*
|
||||
* Write descriptor output (to DMA interface)
|
||||
*/
|
||||
output wire [DMA_ADDR_WIDTH-1:0] m_axis_write_desc_dma_addr,
|
||||
output wire [M_RAM_SEL_WIDTH-1:0] m_axis_write_desc_ram_sel,
|
||||
output wire [RAM_ADDR_WIDTH-1:0] m_axis_write_desc_ram_addr,
|
||||
output wire [LEN_WIDTH-1:0] m_axis_write_desc_len,
|
||||
output wire [M_TAG_WIDTH-1:0] m_axis_write_desc_tag,
|
||||
output wire m_axis_write_desc_valid,
|
||||
input wire m_axis_write_desc_ready,
|
||||
|
||||
/*
|
||||
* Write descriptor status input (from DMA interface)
|
||||
*/
|
||||
input wire [M_TAG_WIDTH-1:0] s_axis_write_desc_status_tag,
|
||||
input wire s_axis_write_desc_status_valid,
|
||||
|
||||
/*
|
||||
* Read descriptor input
|
||||
*/
|
||||
input wire [PORTS*DMA_ADDR_WIDTH-1:0] s_axis_read_desc_dma_addr,
|
||||
input wire [PORTS*S_RAM_SEL_WIDTH-1:0] s_axis_read_desc_ram_sel,
|
||||
input wire [PORTS*RAM_ADDR_WIDTH-1:0] s_axis_read_desc_ram_addr,
|
||||
input wire [PORTS*LEN_WIDTH-1:0] s_axis_read_desc_len,
|
||||
input wire [PORTS*S_TAG_WIDTH-1:0] s_axis_read_desc_tag,
|
||||
input wire [PORTS-1:0] s_axis_read_desc_valid,
|
||||
output wire [PORTS-1:0] s_axis_read_desc_ready,
|
||||
|
||||
/*
|
||||
* Read descriptor status output
|
||||
*/
|
||||
output wire [PORTS*S_TAG_WIDTH-1:0] m_axis_read_desc_status_tag,
|
||||
output wire [PORTS-1:0] m_axis_read_desc_status_valid,
|
||||
|
||||
/*
|
||||
* Write descriptor input
|
||||
*/
|
||||
input wire [PORTS*DMA_ADDR_WIDTH-1:0] s_axis_write_desc_dma_addr,
|
||||
input wire [PORTS*S_RAM_SEL_WIDTH-1:0] s_axis_write_desc_ram_sel,
|
||||
input wire [PORTS*RAM_ADDR_WIDTH-1:0] s_axis_write_desc_ram_addr,
|
||||
input wire [PORTS*LEN_WIDTH-1:0] s_axis_write_desc_len,
|
||||
input wire [PORTS*S_TAG_WIDTH-1:0] s_axis_write_desc_tag,
|
||||
input wire [PORTS-1:0] s_axis_write_desc_valid,
|
||||
output wire [PORTS-1:0] s_axis_write_desc_ready,
|
||||
|
||||
/*
|
||||
* Write descriptor status output
|
||||
*/
|
||||
output wire [PORTS*S_TAG_WIDTH-1:0] m_axis_write_desc_status_tag,
|
||||
output wire [PORTS-1:0] m_axis_write_desc_status_valid,
|
||||
|
||||
/*
|
||||
* RAM interface (from DMA interface)
|
||||
*/
|
||||
input wire [SEG_COUNT*M_RAM_SEL_WIDTH-1:0] if_ram_wr_cmd_sel,
|
||||
input wire [SEG_COUNT*SEG_BE_WIDTH-1:0] if_ram_wr_cmd_be,
|
||||
input wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] if_ram_wr_cmd_addr,
|
||||
input wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] if_ram_wr_cmd_data,
|
||||
input wire [SEG_COUNT-1:0] if_ram_wr_cmd_valid,
|
||||
output wire [SEG_COUNT-1:0] if_ram_wr_cmd_ready,
|
||||
input wire [SEG_COUNT*M_RAM_SEL_WIDTH-1:0] if_ram_rd_cmd_sel,
|
||||
input wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] if_ram_rd_cmd_addr,
|
||||
input wire [SEG_COUNT-1:0] if_ram_rd_cmd_valid,
|
||||
output wire [SEG_COUNT-1:0] if_ram_rd_cmd_ready,
|
||||
output wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] if_ram_rd_resp_data,
|
||||
output wire [SEG_COUNT-1:0] if_ram_rd_resp_valid,
|
||||
input wire [SEG_COUNT-1:0] if_ram_rd_resp_ready,
|
||||
|
||||
/*
|
||||
* RAM interface
|
||||
*/
|
||||
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_wr_cmd_sel,
|
||||
output wire [PORTS*SEG_COUNT*SEG_BE_WIDTH-1:0] ram_wr_cmd_be,
|
||||
output wire [PORTS*SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_wr_cmd_addr,
|
||||
output wire [PORTS*SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_wr_cmd_data,
|
||||
output wire [PORTS*SEG_COUNT-1:0] ram_wr_cmd_valid,
|
||||
input wire [PORTS*SEG_COUNT-1:0] ram_wr_cmd_ready,
|
||||
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_rd_cmd_sel,
|
||||
output wire [PORTS*SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr,
|
||||
output wire [PORTS*SEG_COUNT-1:0] ram_rd_cmd_valid,
|
||||
input wire [PORTS*SEG_COUNT-1:0] ram_rd_cmd_ready,
|
||||
input wire [PORTS*SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_rd_resp_data,
|
||||
input wire [PORTS*SEG_COUNT-1:0] ram_rd_resp_valid,
|
||||
output wire [PORTS*SEG_COUNT-1:0] ram_rd_resp_ready
|
||||
);
|
||||
|
||||
dma_if_mux_rd #(
|
||||
.PORTS(PORTS),
|
||||
.SEG_COUNT(SEG_COUNT),
|
||||
.SEG_DATA_WIDTH(SEG_DATA_WIDTH),
|
||||
.SEG_ADDR_WIDTH(SEG_ADDR_WIDTH),
|
||||
.SEG_BE_WIDTH(SEG_BE_WIDTH),
|
||||
.S_RAM_SEL_WIDTH(S_RAM_SEL_WIDTH),
|
||||
.M_RAM_SEL_WIDTH(M_RAM_SEL_WIDTH),
|
||||
.RAM_ADDR_WIDTH(RAM_ADDR_WIDTH),
|
||||
.DMA_ADDR_WIDTH(DMA_ADDR_WIDTH),
|
||||
.LEN_WIDTH(LEN_WIDTH),
|
||||
.S_TAG_WIDTH(S_TAG_WIDTH),
|
||||
.M_TAG_WIDTH(M_TAG_WIDTH),
|
||||
.ARB_TYPE(ARB_TYPE),
|
||||
.LSB_PRIORITY(LSB_PRIORITY)
|
||||
)
|
||||
dma_if_mux_rd_inst (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
|
||||
/*
|
||||
* Descriptor output (to DMA interface)
|
||||
*/
|
||||
.m_axis_read_desc_dma_addr(m_axis_read_desc_dma_addr),
|
||||
.m_axis_read_desc_ram_sel(m_axis_read_desc_ram_sel),
|
||||
.m_axis_read_desc_ram_addr(m_axis_read_desc_ram_addr),
|
||||
.m_axis_read_desc_len(m_axis_read_desc_len),
|
||||
.m_axis_read_desc_tag(m_axis_read_desc_tag),
|
||||
.m_axis_read_desc_valid(m_axis_read_desc_valid),
|
||||
.m_axis_read_desc_ready(m_axis_read_desc_ready),
|
||||
|
||||
/*
|
||||
* Descriptor status input (from DMA interface)
|
||||
*/
|
||||
.s_axis_read_desc_status_tag(s_axis_read_desc_status_tag),
|
||||
.s_axis_read_desc_status_valid(s_axis_read_desc_status_valid),
|
||||
|
||||
/*
|
||||
* Descriptor input
|
||||
*/
|
||||
.s_axis_read_desc_dma_addr(s_axis_read_desc_dma_addr),
|
||||
.s_axis_read_desc_ram_sel(s_axis_read_desc_ram_sel),
|
||||
.s_axis_read_desc_ram_addr(s_axis_read_desc_ram_addr),
|
||||
.s_axis_read_desc_len(s_axis_read_desc_len),
|
||||
.s_axis_read_desc_tag(s_axis_read_desc_tag),
|
||||
.s_axis_read_desc_valid(s_axis_read_desc_valid),
|
||||
.s_axis_read_desc_ready(s_axis_read_desc_ready),
|
||||
|
||||
/*
|
||||
* Descriptor status output
|
||||
*/
|
||||
.m_axis_read_desc_status_tag(m_axis_read_desc_status_tag),
|
||||
.m_axis_read_desc_status_valid(m_axis_read_desc_status_valid),
|
||||
|
||||
/*
|
||||
* RAM interface (from DMA interface)
|
||||
*/
|
||||
.if_ram_wr_cmd_sel(if_ram_wr_cmd_sel),
|
||||
.if_ram_wr_cmd_be(if_ram_wr_cmd_be),
|
||||
.if_ram_wr_cmd_addr(if_ram_wr_cmd_addr),
|
||||
.if_ram_wr_cmd_data(if_ram_wr_cmd_data),
|
||||
.if_ram_wr_cmd_valid(if_ram_wr_cmd_valid),
|
||||
.if_ram_wr_cmd_ready(if_ram_wr_cmd_ready),
|
||||
|
||||
/*
|
||||
* RAM interface
|
||||
*/
|
||||
.ram_wr_cmd_sel(ram_wr_cmd_sel),
|
||||
.ram_wr_cmd_be(ram_wr_cmd_be),
|
||||
.ram_wr_cmd_addr(ram_wr_cmd_addr),
|
||||
.ram_wr_cmd_data(ram_wr_cmd_data),
|
||||
.ram_wr_cmd_valid(ram_wr_cmd_valid),
|
||||
.ram_wr_cmd_ready(ram_wr_cmd_ready)
|
||||
);
|
||||
|
||||
dma_if_mux_wr #(
|
||||
.PORTS(PORTS),
|
||||
.SEG_COUNT(SEG_COUNT),
|
||||
.SEG_DATA_WIDTH(SEG_DATA_WIDTH),
|
||||
.SEG_ADDR_WIDTH(SEG_ADDR_WIDTH),
|
||||
.SEG_BE_WIDTH(SEG_BE_WIDTH),
|
||||
.S_RAM_SEL_WIDTH(S_RAM_SEL_WIDTH),
|
||||
.M_RAM_SEL_WIDTH(M_RAM_SEL_WIDTH),
|
||||
.RAM_ADDR_WIDTH(RAM_ADDR_WIDTH),
|
||||
.DMA_ADDR_WIDTH(DMA_ADDR_WIDTH),
|
||||
.LEN_WIDTH(LEN_WIDTH),
|
||||
.S_TAG_WIDTH(S_TAG_WIDTH),
|
||||
.M_TAG_WIDTH(M_TAG_WIDTH),
|
||||
.ARB_TYPE(ARB_TYPE),
|
||||
.LSB_PRIORITY(LSB_PRIORITY)
|
||||
)
|
||||
dma_if_mux_wr_inst (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
|
||||
/*
|
||||
* Descriptor output (to DMA interface)
|
||||
*/
|
||||
.m_axis_write_desc_dma_addr(m_axis_write_desc_dma_addr),
|
||||
.m_axis_write_desc_ram_sel(m_axis_write_desc_ram_sel),
|
||||
.m_axis_write_desc_ram_addr(m_axis_write_desc_ram_addr),
|
||||
.m_axis_write_desc_len(m_axis_write_desc_len),
|
||||
.m_axis_write_desc_tag(m_axis_write_desc_tag),
|
||||
.m_axis_write_desc_valid(m_axis_write_desc_valid),
|
||||
.m_axis_write_desc_ready(m_axis_write_desc_ready),
|
||||
|
||||
/*
|
||||
* Descriptor status input (from DMA interface)
|
||||
*/
|
||||
.s_axis_write_desc_status_tag(s_axis_write_desc_status_tag),
|
||||
.s_axis_write_desc_status_valid(s_axis_write_desc_status_valid),
|
||||
|
||||
/*
|
||||
* Descriptor input
|
||||
*/
|
||||
.s_axis_write_desc_dma_addr(s_axis_write_desc_dma_addr),
|
||||
.s_axis_write_desc_ram_sel(s_axis_write_desc_ram_sel),
|
||||
.s_axis_write_desc_ram_addr(s_axis_write_desc_ram_addr),
|
||||
.s_axis_write_desc_len(s_axis_write_desc_len),
|
||||
.s_axis_write_desc_tag(s_axis_write_desc_tag),
|
||||
.s_axis_write_desc_valid(s_axis_write_desc_valid),
|
||||
.s_axis_write_desc_ready(s_axis_write_desc_ready),
|
||||
|
||||
/*
|
||||
* Descriptor status output
|
||||
*/
|
||||
.m_axis_write_desc_status_tag(m_axis_write_desc_status_tag),
|
||||
.m_axis_write_desc_status_valid(m_axis_write_desc_status_valid),
|
||||
|
||||
/*
|
||||
* RAM interface (from DMA interface)
|
||||
*/
|
||||
.if_ram_rd_cmd_sel(if_ram_rd_cmd_sel),
|
||||
.if_ram_rd_cmd_addr(if_ram_rd_cmd_addr),
|
||||
.if_ram_rd_cmd_valid(if_ram_rd_cmd_valid),
|
||||
.if_ram_rd_cmd_ready(if_ram_rd_cmd_ready),
|
||||
.if_ram_rd_resp_data(if_ram_rd_resp_data),
|
||||
.if_ram_rd_resp_valid(if_ram_rd_resp_valid),
|
||||
.if_ram_rd_resp_ready(if_ram_rd_resp_ready),
|
||||
|
||||
/*
|
||||
* RAM interface
|
||||
*/
|
||||
.ram_rd_cmd_sel(ram_rd_cmd_sel),
|
||||
.ram_rd_cmd_addr(ram_rd_cmd_addr),
|
||||
.ram_rd_cmd_valid(ram_rd_cmd_valid),
|
||||
.ram_rd_cmd_ready(ram_rd_cmd_ready),
|
||||
.ram_rd_resp_data(ram_rd_resp_data),
|
||||
.ram_rd_resp_valid(ram_rd_resp_valid),
|
||||
.ram_rd_resp_ready(ram_rd_resp_ready)
|
||||
);
|
||||
|
||||
endmodule
|
463
rtl/dma_if_mux_rd.v
Normal file
463
rtl/dma_if_mux_rd.v
Normal file
@ -0,0 +1,463 @@
|
||||
/*
|
||||
|
||||
Copyright (c) 2019 Alex Forencich
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
|
||||
*/
|
||||
|
||||
// Language: Verilog 2001
|
||||
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
/*
|
||||
* DMA interface mux (read)
|
||||
*/
|
||||
module dma_if_mux_rd #
|
||||
(
|
||||
// Number of ports
|
||||
parameter PORTS = 2,
|
||||
// RAM segment count
|
||||
parameter SEG_COUNT = 2,
|
||||
// RAM segment data width
|
||||
parameter SEG_DATA_WIDTH = 64,
|
||||
// RAM segment address width
|
||||
parameter SEG_ADDR_WIDTH = 8,
|
||||
// RAM segment byte enable width
|
||||
parameter SEG_BE_WIDTH = SEG_DATA_WIDTH/8,
|
||||
// Input RAM segment select width
|
||||
parameter S_RAM_SEL_WIDTH = 2,
|
||||
// Output RAM segment select width
|
||||
// Additional bits required for response routing
|
||||
parameter M_RAM_SEL_WIDTH = S_RAM_SEL_WIDTH+$clog2(PORTS),
|
||||
// RAM address width
|
||||
parameter RAM_ADDR_WIDTH = SEG_ADDR_WIDTH+$clog2(SEG_COUNT)+$clog2(SEG_BE_WIDTH),
|
||||
// DMA address width
|
||||
parameter DMA_ADDR_WIDTH = 64,
|
||||
// Length field width
|
||||
parameter LEN_WIDTH = 16,
|
||||
// Input tag field width
|
||||
parameter S_TAG_WIDTH = 8,
|
||||
// Output tag field width (towards DMA module)
|
||||
// Additional bits required for response routing
|
||||
parameter M_TAG_WIDTH = S_TAG_WIDTH+$clog2(PORTS),
|
||||
// arbitration type: "PRIORITY" or "ROUND_ROBIN"
|
||||
parameter ARB_TYPE = "PRIORITY",
|
||||
// LSB priority: "LOW", "HIGH"
|
||||
parameter LSB_PRIORITY = "HIGH"
|
||||
)
|
||||
(
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
|
||||
/*
|
||||
* Read descriptor output (to DMA interface)
|
||||
*/
|
||||
output wire [DMA_ADDR_WIDTH-1:0] m_axis_read_desc_dma_addr,
|
||||
output wire [M_RAM_SEL_WIDTH-1:0] m_axis_read_desc_ram_sel,
|
||||
output wire [RAM_ADDR_WIDTH-1:0] m_axis_read_desc_ram_addr,
|
||||
output wire [LEN_WIDTH-1:0] m_axis_read_desc_len,
|
||||
output wire [M_TAG_WIDTH-1:0] m_axis_read_desc_tag,
|
||||
output wire m_axis_read_desc_valid,
|
||||
input wire m_axis_read_desc_ready,
|
||||
|
||||
/*
|
||||
* Read descriptor status input (from DMA interface)
|
||||
*/
|
||||
input wire [M_TAG_WIDTH-1:0] s_axis_read_desc_status_tag,
|
||||
input wire s_axis_read_desc_status_valid,
|
||||
|
||||
/*
|
||||
* Read descriptor input
|
||||
*/
|
||||
input wire [PORTS*DMA_ADDR_WIDTH-1:0] s_axis_read_desc_dma_addr,
|
||||
input wire [PORTS*S_RAM_SEL_WIDTH-1:0] s_axis_read_desc_ram_sel,
|
||||
input wire [PORTS*RAM_ADDR_WIDTH-1:0] s_axis_read_desc_ram_addr,
|
||||
input wire [PORTS*LEN_WIDTH-1:0] s_axis_read_desc_len,
|
||||
input wire [PORTS*S_TAG_WIDTH-1:0] s_axis_read_desc_tag,
|
||||
input wire [PORTS-1:0] s_axis_read_desc_valid,
|
||||
output wire [PORTS-1:0] s_axis_read_desc_ready,
|
||||
|
||||
/*
|
||||
* Read descriptor status output
|
||||
*/
|
||||
output wire [PORTS*S_TAG_WIDTH-1:0] m_axis_read_desc_status_tag,
|
||||
output wire [PORTS-1:0] m_axis_read_desc_status_valid,
|
||||
|
||||
/*
|
||||
* RAM interface (from DMA interface)
|
||||
*/
|
||||
input wire [SEG_COUNT*M_RAM_SEL_WIDTH-1:0] if_ram_wr_cmd_sel,
|
||||
input wire [SEG_COUNT*SEG_BE_WIDTH-1:0] if_ram_wr_cmd_be,
|
||||
input wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] if_ram_wr_cmd_addr,
|
||||
input wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] if_ram_wr_cmd_data,
|
||||
input wire [SEG_COUNT-1:0] if_ram_wr_cmd_valid,
|
||||
output wire [SEG_COUNT-1:0] if_ram_wr_cmd_ready,
|
||||
|
||||
/*
|
||||
* RAM interface
|
||||
*/
|
||||
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_wr_cmd_sel,
|
||||
output wire [PORTS*SEG_COUNT*SEG_BE_WIDTH-1:0] ram_wr_cmd_be,
|
||||
output wire [PORTS*SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_wr_cmd_addr,
|
||||
output wire [PORTS*SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_wr_cmd_data,
|
||||
output wire [PORTS*SEG_COUNT-1:0] ram_wr_cmd_valid,
|
||||
input wire [PORTS*SEG_COUNT-1:0] ram_wr_cmd_ready
|
||||
);
|
||||
|
||||
parameter CL_PORTS = $clog2(PORTS);
|
||||
|
||||
parameter S_RAM_SEL_WIDTH_INT = S_RAM_SEL_WIDTH > 0 ? S_RAM_SEL_WIDTH : 1;
|
||||
|
||||
// check configuration
|
||||
initial begin
|
||||
if (M_TAG_WIDTH < S_TAG_WIDTH+$clog2(PORTS)) begin
|
||||
$error("Error: M_TAG_WIDTH must be at least $clog2(PORTS) larger than S_TAG_WIDTH (instance %m)");
|
||||
$finish;
|
||||
end
|
||||
|
||||
if (M_RAM_SEL_WIDTH < S_RAM_SEL_WIDTH+$clog2(PORTS)) begin
|
||||
$error("Error: M_RAM_SEL_WIDTH must be at least $clog2(PORTS) larger than S_RAM_SEL_WIDTH (instance %m)");
|
||||
$finish;
|
||||
end
|
||||
end
|
||||
|
||||
// descriptor mux
|
||||
wire [PORTS-1:0] request;
|
||||
wire [PORTS-1:0] acknowledge;
|
||||
wire [PORTS-1:0] grant;
|
||||
wire grant_valid;
|
||||
wire [CL_PORTS-1:0] grant_encoded;
|
||||
|
||||
// internal datapath
|
||||
reg [DMA_ADDR_WIDTH-1:0] m_axis_read_desc_dma_addr_int;
|
||||
reg [M_RAM_SEL_WIDTH-1:0] m_axis_read_desc_ram_sel_int;
|
||||
reg [RAM_ADDR_WIDTH-1:0] m_axis_read_desc_ram_addr_int;
|
||||
reg [LEN_WIDTH-1:0] m_axis_read_desc_len_int;
|
||||
reg [M_TAG_WIDTH-1:0] m_axis_read_desc_tag_int;
|
||||
reg m_axis_read_desc_valid_int;
|
||||
reg m_axis_read_desc_ready_int_reg = 1'b0;
|
||||
wire m_axis_read_desc_ready_int_early;
|
||||
|
||||
assign s_axis_read_desc_ready = (m_axis_read_desc_ready_int_reg && grant_valid) << grant_encoded;
|
||||
|
||||
// mux for incoming packet
|
||||
wire [DMA_ADDR_WIDTH-1:0] current_s_desc_dma_addr = s_axis_read_desc_dma_addr[grant_encoded*DMA_ADDR_WIDTH +: DMA_ADDR_WIDTH];
|
||||
wire [S_RAM_SEL_WIDTH-1:0] current_s_desc_ram_sel = s_axis_read_desc_ram_sel[grant_encoded*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
|
||||
wire [RAM_ADDR_WIDTH-1:0] current_s_desc_ram_addr = s_axis_read_desc_ram_addr[grant_encoded*RAM_ADDR_WIDTH +: RAM_ADDR_WIDTH];
|
||||
wire [LEN_WIDTH-1:0] current_s_desc_len = s_axis_read_desc_len[grant_encoded*LEN_WIDTH +: LEN_WIDTH];
|
||||
wire [S_TAG_WIDTH-1:0] current_s_desc_tag = s_axis_read_desc_tag[grant_encoded*S_TAG_WIDTH +: S_TAG_WIDTH];
|
||||
wire current_s_desc_valid = s_axis_read_desc_valid[grant_encoded];
|
||||
wire current_s_desc_ready = s_axis_read_desc_ready[grant_encoded];
|
||||
|
||||
// arbiter instance
|
||||
arbiter #(
|
||||
.PORTS(PORTS),
|
||||
.TYPE(ARB_TYPE),
|
||||
.BLOCK("ACKNOWLEDGE"),
|
||||
.LSB_PRIORITY(LSB_PRIORITY)
|
||||
)
|
||||
arb_inst (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
.request(request),
|
||||
.acknowledge(acknowledge),
|
||||
.grant(grant),
|
||||
.grant_valid(grant_valid),
|
||||
.grant_encoded(grant_encoded)
|
||||
);
|
||||
|
||||
assign request = s_axis_read_desc_valid & ~grant;
|
||||
assign acknowledge = grant & s_axis_read_desc_valid & s_axis_read_desc_ready;
|
||||
|
||||
always @* begin
|
||||
// pass through selected packet data
|
||||
m_axis_read_desc_dma_addr_int = current_s_desc_dma_addr;
|
||||
if (S_RAM_SEL_WIDTH > 0) begin
|
||||
m_axis_read_desc_ram_sel_int = {grant_encoded, current_s_desc_ram_sel};
|
||||
end else begin
|
||||
m_axis_read_desc_ram_sel_int = grant_encoded;
|
||||
end
|
||||
m_axis_read_desc_ram_addr_int = current_s_desc_ram_addr;
|
||||
m_axis_read_desc_len_int = current_s_desc_len;
|
||||
m_axis_read_desc_tag_int = {grant_encoded, current_s_desc_tag};
|
||||
m_axis_read_desc_valid_int = current_s_desc_valid && m_axis_read_desc_ready_int_reg && grant_valid;
|
||||
end
|
||||
|
||||
// output datapath logic
|
||||
reg [DMA_ADDR_WIDTH-1:0] m_axis_read_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
|
||||
reg [M_RAM_SEL_WIDTH-1:0] m_axis_read_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
|
||||
reg [RAM_ADDR_WIDTH-1:0] m_axis_read_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
|
||||
reg [LEN_WIDTH-1:0] m_axis_read_desc_len_reg = {LEN_WIDTH{1'b0}};
|
||||
reg [M_TAG_WIDTH-1:0] m_axis_read_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
|
||||
reg m_axis_read_desc_valid_reg = 1'b0, m_axis_read_desc_valid_next;
|
||||
|
||||
reg [DMA_ADDR_WIDTH-1:0] temp_m_axis_read_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
|
||||
reg [M_RAM_SEL_WIDTH-1:0] temp_m_axis_read_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
|
||||
reg [RAM_ADDR_WIDTH-1:0] temp_m_axis_read_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
|
||||
reg [LEN_WIDTH-1:0] temp_m_axis_read_desc_len_reg = {LEN_WIDTH{1'b0}};
|
||||
reg [M_TAG_WIDTH-1:0] temp_m_axis_read_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
|
||||
reg temp_m_axis_read_desc_valid_reg = 1'b0, temp_m_axis_read_desc_valid_next;
|
||||
|
||||
// datapath control
|
||||
reg store_axis_int_to_output;
|
||||
reg store_axis_int_to_temp;
|
||||
reg store_axis_temp_to_output;
|
||||
|
||||
assign m_axis_read_desc_dma_addr = m_axis_read_desc_dma_addr_reg;
|
||||
assign m_axis_read_desc_ram_sel = m_axis_read_desc_ram_sel_reg;
|
||||
assign m_axis_read_desc_ram_addr = m_axis_read_desc_ram_addr_reg;
|
||||
assign m_axis_read_desc_len = m_axis_read_desc_len_reg;
|
||||
assign m_axis_read_desc_tag = m_axis_read_desc_tag_reg;
|
||||
assign m_axis_read_desc_valid = m_axis_read_desc_valid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
assign m_axis_read_desc_ready_int_early = m_axis_read_desc_ready || (!temp_m_axis_read_desc_valid_reg && (!m_axis_read_desc_valid_reg || !m_axis_read_desc_valid_int));
|
||||
|
||||
always @* begin
|
||||
// transfer sink ready state to source
|
||||
m_axis_read_desc_valid_next = m_axis_read_desc_valid_reg;
|
||||
temp_m_axis_read_desc_valid_next = temp_m_axis_read_desc_valid_reg;
|
||||
|
||||
store_axis_int_to_output = 1'b0;
|
||||
store_axis_int_to_temp = 1'b0;
|
||||
store_axis_temp_to_output = 1'b0;
|
||||
|
||||
if (m_axis_read_desc_ready_int_reg) begin
|
||||
// input is ready
|
||||
if (m_axis_read_desc_ready || !m_axis_read_desc_valid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
m_axis_read_desc_valid_next = m_axis_read_desc_valid_int;
|
||||
store_axis_int_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_m_axis_read_desc_valid_next = m_axis_read_desc_valid_int;
|
||||
store_axis_int_to_temp = 1'b1;
|
||||
end
|
||||
end else if (m_axis_read_desc_ready) begin
|
||||
// input is not ready, but output is ready
|
||||
m_axis_read_desc_valid_next = temp_m_axis_read_desc_valid_reg;
|
||||
temp_m_axis_read_desc_valid_next = 1'b0;
|
||||
store_axis_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
m_axis_read_desc_valid_reg <= 1'b0;
|
||||
m_axis_read_desc_ready_int_reg <= 1'b0;
|
||||
temp_m_axis_read_desc_valid_reg <= 1'b0;
|
||||
end else begin
|
||||
m_axis_read_desc_valid_reg <= m_axis_read_desc_valid_next;
|
||||
m_axis_read_desc_ready_int_reg <= m_axis_read_desc_ready_int_early;
|
||||
temp_m_axis_read_desc_valid_reg <= temp_m_axis_read_desc_valid_next;
|
||||
end
|
||||
|
||||
// datapath
|
||||
if (store_axis_int_to_output) begin
|
||||
m_axis_read_desc_dma_addr_reg <= m_axis_read_desc_dma_addr_int;
|
||||
m_axis_read_desc_ram_sel_reg <= m_axis_read_desc_ram_sel_int;
|
||||
m_axis_read_desc_ram_addr_reg <= m_axis_read_desc_ram_addr_int;
|
||||
m_axis_read_desc_len_reg <= m_axis_read_desc_len_int;
|
||||
m_axis_read_desc_tag_reg <= m_axis_read_desc_tag_int;
|
||||
end else if (store_axis_temp_to_output) begin
|
||||
m_axis_read_desc_dma_addr_reg <= temp_m_axis_read_desc_dma_addr_reg;
|
||||
m_axis_read_desc_ram_sel_reg <= temp_m_axis_read_desc_ram_sel_reg;
|
||||
m_axis_read_desc_ram_addr_reg <= temp_m_axis_read_desc_ram_addr_reg;
|
||||
m_axis_read_desc_len_reg <= temp_m_axis_read_desc_len_reg;
|
||||
m_axis_read_desc_tag_reg <= temp_m_axis_read_desc_tag_reg;
|
||||
end
|
||||
|
||||
if (store_axis_int_to_temp) begin
|
||||
temp_m_axis_read_desc_dma_addr_reg <= m_axis_read_desc_dma_addr_int;
|
||||
temp_m_axis_read_desc_ram_sel_reg <= m_axis_read_desc_ram_sel_int;
|
||||
temp_m_axis_read_desc_ram_addr_reg <= m_axis_read_desc_ram_addr_int;
|
||||
temp_m_axis_read_desc_len_reg <= m_axis_read_desc_len_int;
|
||||
temp_m_axis_read_desc_tag_reg <= m_axis_read_desc_tag_int;
|
||||
end
|
||||
end
|
||||
|
||||
// descriptor status demux
|
||||
reg [S_TAG_WIDTH-1:0] m_axis_read_desc_status_tag_reg = {S_TAG_WIDTH{1'b0}}, m_axis_read_desc_status_tag_next;
|
||||
reg [PORTS-1:0] m_axis_read_desc_status_valid_reg = {PORTS{1'b0}}, m_axis_read_desc_status_valid_next;
|
||||
|
||||
assign m_axis_read_desc_status_tag = {PORTS{m_axis_read_desc_status_tag_reg}};
|
||||
assign m_axis_read_desc_status_valid = m_axis_read_desc_status_valid_reg;
|
||||
|
||||
always @* begin
|
||||
m_axis_read_desc_status_tag_next = s_axis_read_desc_status_tag;
|
||||
m_axis_read_desc_status_valid_next = s_axis_read_desc_status_valid << (PORTS > 1 ? s_axis_read_desc_status_tag[S_TAG_WIDTH+CL_PORTS-1:S_TAG_WIDTH] : 0);
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
m_axis_read_desc_status_valid_reg <= {PORTS{1'b0}};
|
||||
end else begin
|
||||
m_axis_read_desc_status_valid_reg <= m_axis_read_desc_status_valid_next;
|
||||
end
|
||||
|
||||
m_axis_read_desc_status_tag_reg <= m_axis_read_desc_status_tag_next;
|
||||
end
|
||||
|
||||
generate
|
||||
|
||||
genvar n, p;
|
||||
|
||||
for (n = 0; n < SEG_COUNT; n = n + 1) begin
|
||||
|
||||
// RAM write command demux
|
||||
|
||||
wire [M_RAM_SEL_WIDTH-1:0] seg_if_ram_wr_cmd_sel = if_ram_wr_cmd_sel[M_RAM_SEL_WIDTH*n +: M_RAM_SEL_WIDTH];
|
||||
wire [SEG_BE_WIDTH-1:0] seg_if_ram_wr_cmd_be = if_ram_wr_cmd_be[SEG_BE_WIDTH*n +: SEG_BE_WIDTH];
|
||||
wire [SEG_ADDR_WIDTH-1:0] seg_if_ram_wr_cmd_addr = if_ram_wr_cmd_addr[SEG_ADDR_WIDTH*n +: SEG_ADDR_WIDTH];
|
||||
wire [SEG_DATA_WIDTH-1:0] seg_if_ram_wr_cmd_data = if_ram_wr_cmd_data[SEG_DATA_WIDTH*n +: SEG_DATA_WIDTH];
|
||||
wire seg_if_ram_wr_cmd_valid = if_ram_wr_cmd_valid[n];
|
||||
wire seg_if_ram_wr_cmd_ready;
|
||||
|
||||
assign if_ram_wr_cmd_ready[n] = seg_if_ram_wr_cmd_ready;
|
||||
|
||||
wire [PORTS*S_RAM_SEL_WIDTH-1:0] seg_ram_wr_cmd_sel;
|
||||
wire [PORTS*SEG_BE_WIDTH-1:0] seg_ram_wr_cmd_be;
|
||||
wire [PORTS*SEG_ADDR_WIDTH-1:0] seg_ram_wr_cmd_addr;
|
||||
wire [PORTS*SEG_DATA_WIDTH-1:0] seg_ram_wr_cmd_data;
|
||||
wire [PORTS-1:0] seg_ram_wr_cmd_valid;
|
||||
wire [PORTS-1:0] seg_ram_wr_cmd_ready;
|
||||
|
||||
for (p = 0; p < PORTS; p = p + 1) begin
|
||||
assign ram_wr_cmd_sel[(p*SEG_COUNT+n)*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT] = seg_ram_wr_cmd_sel[p*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
|
||||
assign ram_wr_cmd_be[(p*SEG_COUNT+n)*SEG_BE_WIDTH +: SEG_BE_WIDTH] = seg_ram_wr_cmd_be[p*SEG_BE_WIDTH +: SEG_BE_WIDTH];
|
||||
assign ram_wr_cmd_addr[(p*SEG_COUNT+n)*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = seg_ram_wr_cmd_addr[p*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH];
|
||||
assign ram_wr_cmd_data[(p*SEG_COUNT+n)*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = seg_ram_wr_cmd_data[p*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
|
||||
assign ram_wr_cmd_valid[p*SEG_COUNT+n] = seg_ram_wr_cmd_valid[p];
|
||||
assign seg_ram_wr_cmd_ready[p] = ram_wr_cmd_ready[p*SEG_COUNT+n];
|
||||
end
|
||||
|
||||
// internal datapath
|
||||
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_wr_cmd_sel_int;
|
||||
reg [SEG_BE_WIDTH-1:0] seg_ram_wr_cmd_be_int;
|
||||
reg [SEG_ADDR_WIDTH-1:0] seg_ram_wr_cmd_addr_int;
|
||||
reg [SEG_DATA_WIDTH-1:0] seg_ram_wr_cmd_data_int;
|
||||
reg [PORTS-1:0] seg_ram_wr_cmd_valid_int;
|
||||
reg seg_ram_wr_cmd_ready_int_reg = 1'b0;
|
||||
wire seg_ram_wr_cmd_ready_int_early;
|
||||
|
||||
assign seg_if_ram_wr_cmd_ready = seg_ram_wr_cmd_ready_int_reg;
|
||||
|
||||
wire [CL_PORTS-1:0] select = PORTS > 1 ? (seg_if_ram_wr_cmd_sel >> (M_RAM_SEL_WIDTH - CL_PORTS)) : 0;
|
||||
|
||||
always @* begin
|
||||
seg_ram_wr_cmd_sel_int = seg_if_ram_wr_cmd_sel;
|
||||
seg_ram_wr_cmd_be_int = seg_if_ram_wr_cmd_be;
|
||||
seg_ram_wr_cmd_addr_int = seg_if_ram_wr_cmd_addr;
|
||||
seg_ram_wr_cmd_data_int = seg_if_ram_wr_cmd_data;
|
||||
seg_ram_wr_cmd_valid_int = (seg_if_ram_wr_cmd_valid && seg_if_ram_wr_cmd_ready) << select;
|
||||
end
|
||||
|
||||
// output datapath logic
|
||||
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_wr_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
|
||||
reg [SEG_BE_WIDTH-1:0] seg_ram_wr_cmd_be_reg = {SEG_BE_WIDTH{1'b0}};
|
||||
reg [SEG_ADDR_WIDTH-1:0] seg_ram_wr_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
|
||||
reg [SEG_DATA_WIDTH-1:0] seg_ram_wr_cmd_data_reg = {SEG_DATA_WIDTH{1'b0}};
|
||||
reg [PORTS-1:0] seg_ram_wr_cmd_valid_reg = {PORTS{1'b0}}, seg_ram_wr_cmd_valid_next;
|
||||
|
||||
reg [S_RAM_SEL_WIDTH-1:0] temp_seg_ram_wr_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
|
||||
reg [SEG_BE_WIDTH-1:0] temp_seg_ram_wr_cmd_be_reg = {SEG_BE_WIDTH{1'b0}};
|
||||
reg [SEG_ADDR_WIDTH-1:0] temp_seg_ram_wr_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
|
||||
reg [SEG_DATA_WIDTH-1:0] temp_seg_ram_wr_cmd_data_reg = {SEG_DATA_WIDTH{1'b0}};
|
||||
reg [PORTS-1:0] temp_seg_ram_wr_cmd_valid_reg = {PORTS{1'b0}}, temp_seg_ram_wr_cmd_valid_next;
|
||||
|
||||
// datapath control
|
||||
reg store_axis_resp_int_to_output;
|
||||
reg store_axis_resp_int_to_temp;
|
||||
reg store_axis_resp_temp_to_output;
|
||||
|
||||
assign seg_ram_wr_cmd_sel = {PORTS{seg_ram_wr_cmd_sel_reg}};
|
||||
assign seg_ram_wr_cmd_be = {PORTS{seg_ram_wr_cmd_be_reg}};
|
||||
assign seg_ram_wr_cmd_addr = {PORTS{seg_ram_wr_cmd_addr_reg}};
|
||||
assign seg_ram_wr_cmd_data = {PORTS{seg_ram_wr_cmd_data_reg}};
|
||||
assign seg_ram_wr_cmd_valid = seg_ram_wr_cmd_valid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
assign seg_ram_wr_cmd_ready_int_early = (seg_ram_wr_cmd_ready & seg_ram_wr_cmd_valid_reg) || (!temp_seg_ram_wr_cmd_valid_reg && (!seg_ram_wr_cmd_valid_reg || !seg_ram_wr_cmd_valid_int));
|
||||
|
||||
always @* begin
|
||||
// transfer sink ready state to source
|
||||
seg_ram_wr_cmd_valid_next = seg_ram_wr_cmd_valid_reg;
|
||||
temp_seg_ram_wr_cmd_valid_next = temp_seg_ram_wr_cmd_valid_reg;
|
||||
|
||||
store_axis_resp_int_to_output = 1'b0;
|
||||
store_axis_resp_int_to_temp = 1'b0;
|
||||
store_axis_resp_temp_to_output = 1'b0;
|
||||
|
||||
if (seg_ram_wr_cmd_ready_int_reg) begin
|
||||
// input is ready
|
||||
if ((seg_ram_wr_cmd_ready & seg_ram_wr_cmd_valid_reg) || !seg_ram_wr_cmd_valid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
seg_ram_wr_cmd_valid_next = seg_ram_wr_cmd_valid_int;
|
||||
store_axis_resp_int_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_seg_ram_wr_cmd_valid_next = seg_ram_wr_cmd_valid_int;
|
||||
store_axis_resp_int_to_temp = 1'b1;
|
||||
end
|
||||
end else if (seg_ram_wr_cmd_ready & seg_ram_wr_cmd_valid_reg) begin
|
||||
// input is not ready, but output is ready
|
||||
seg_ram_wr_cmd_valid_next = temp_seg_ram_wr_cmd_valid_reg;
|
||||
temp_seg_ram_wr_cmd_valid_next = {PORTS{1'b0}};
|
||||
store_axis_resp_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
seg_ram_wr_cmd_valid_reg <= {PORTS{1'b0}};
|
||||
seg_ram_wr_cmd_ready_int_reg <= 1'b0;
|
||||
temp_seg_ram_wr_cmd_valid_reg <= {PORTS{1'b0}};
|
||||
end else begin
|
||||
seg_ram_wr_cmd_valid_reg <= seg_ram_wr_cmd_valid_next;
|
||||
seg_ram_wr_cmd_ready_int_reg <= seg_ram_wr_cmd_ready_int_early;
|
||||
temp_seg_ram_wr_cmd_valid_reg <= temp_seg_ram_wr_cmd_valid_next;
|
||||
end
|
||||
|
||||
// datapath
|
||||
if (store_axis_resp_int_to_output) begin
|
||||
seg_ram_wr_cmd_sel_reg <= seg_ram_wr_cmd_sel_int;
|
||||
seg_ram_wr_cmd_be_reg <= seg_ram_wr_cmd_be_int;
|
||||
seg_ram_wr_cmd_addr_reg <= seg_ram_wr_cmd_addr_int;
|
||||
seg_ram_wr_cmd_data_reg <= seg_ram_wr_cmd_data_int;
|
||||
end else if (store_axis_resp_temp_to_output) begin
|
||||
seg_ram_wr_cmd_sel_reg <= temp_seg_ram_wr_cmd_sel_reg;
|
||||
seg_ram_wr_cmd_be_reg <= temp_seg_ram_wr_cmd_be_reg;
|
||||
seg_ram_wr_cmd_addr_reg <= temp_seg_ram_wr_cmd_addr_reg;
|
||||
seg_ram_wr_cmd_data_reg <= temp_seg_ram_wr_cmd_data_reg;
|
||||
end
|
||||
|
||||
if (store_axis_resp_int_to_temp) begin
|
||||
temp_seg_ram_wr_cmd_sel_reg <= seg_ram_wr_cmd_sel_int;
|
||||
temp_seg_ram_wr_cmd_be_reg <= seg_ram_wr_cmd_be_int;
|
||||
temp_seg_ram_wr_cmd_addr_reg <= seg_ram_wr_cmd_addr_int;
|
||||
temp_seg_ram_wr_cmd_data_reg <= seg_ram_wr_cmd_data_int;
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
endgenerate
|
||||
|
||||
endmodule
|
589
rtl/dma_if_mux_wr.v
Normal file
589
rtl/dma_if_mux_wr.v
Normal file
@ -0,0 +1,589 @@
|
||||
/*
|
||||
|
||||
Copyright (c) 2019 Alex Forencich
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
|
||||
*/
|
||||
|
||||
// Language: Verilog 2001
|
||||
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
/*
|
||||
* DMA interface mux (write)
|
||||
*/
|
||||
module dma_if_mux_wr #
|
||||
(
|
||||
// Number of ports
|
||||
parameter PORTS = 2,
|
||||
// RAM segment count
|
||||
parameter SEG_COUNT = 2,
|
||||
// RAM segment data width
|
||||
parameter SEG_DATA_WIDTH = 64,
|
||||
// RAM segment address width
|
||||
parameter SEG_ADDR_WIDTH = 8,
|
||||
// RAM segment byte enable width
|
||||
parameter SEG_BE_WIDTH = SEG_DATA_WIDTH/8,
|
||||
// Input RAM segment select width
|
||||
parameter S_RAM_SEL_WIDTH = 2,
|
||||
// Output RAM segment select width
|
||||
// Additional bits required for response routing
|
||||
parameter M_RAM_SEL_WIDTH = S_RAM_SEL_WIDTH+$clog2(PORTS),
|
||||
// RAM address width
|
||||
parameter RAM_ADDR_WIDTH = SEG_ADDR_WIDTH+$clog2(SEG_COUNT)+$clog2(SEG_BE_WIDTH),
|
||||
// DMA address width
|
||||
parameter DMA_ADDR_WIDTH = 64,
|
||||
// Length field width
|
||||
parameter LEN_WIDTH = 16,
|
||||
// Input tag field width
|
||||
parameter S_TAG_WIDTH = 8,
|
||||
// Output tag field width (towards DMA module)
|
||||
// Additional bits required for response routing
|
||||
parameter M_TAG_WIDTH = S_TAG_WIDTH+$clog2(PORTS),
|
||||
// arbitration type: "PRIORITY" or "ROUND_ROBIN"
|
||||
parameter ARB_TYPE = "PRIORITY",
|
||||
// LSB priority: "LOW", "HIGH"
|
||||
parameter LSB_PRIORITY = "HIGH"
|
||||
)
|
||||
(
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
|
||||
/*
|
||||
* Write descriptor output (to DMA interface)
|
||||
*/
|
||||
output wire [DMA_ADDR_WIDTH-1:0] m_axis_write_desc_dma_addr,
|
||||
output wire [M_RAM_SEL_WIDTH-1:0] m_axis_write_desc_ram_sel,
|
||||
output wire [RAM_ADDR_WIDTH-1:0] m_axis_write_desc_ram_addr,
|
||||
output wire [LEN_WIDTH-1:0] m_axis_write_desc_len,
|
||||
output wire [M_TAG_WIDTH-1:0] m_axis_write_desc_tag,
|
||||
output wire m_axis_write_desc_valid,
|
||||
input wire m_axis_write_desc_ready,
|
||||
|
||||
/*
|
||||
* Write descriptor status input (from DMA interface)
|
||||
*/
|
||||
input wire [M_TAG_WIDTH-1:0] s_axis_write_desc_status_tag,
|
||||
input wire s_axis_write_desc_status_valid,
|
||||
|
||||
/*
|
||||
* Write descriptor input
|
||||
*/
|
||||
input wire [PORTS*DMA_ADDR_WIDTH-1:0] s_axis_write_desc_dma_addr,
|
||||
input wire [PORTS*S_RAM_SEL_WIDTH-1:0] s_axis_write_desc_ram_sel,
|
||||
input wire [PORTS*RAM_ADDR_WIDTH-1:0] s_axis_write_desc_ram_addr,
|
||||
input wire [PORTS*LEN_WIDTH-1:0] s_axis_write_desc_len,
|
||||
input wire [PORTS*S_TAG_WIDTH-1:0] s_axis_write_desc_tag,
|
||||
input wire [PORTS-1:0] s_axis_write_desc_valid,
|
||||
output wire [PORTS-1:0] s_axis_write_desc_ready,
|
||||
|
||||
/*
|
||||
* Write descriptor status output
|
||||
*/
|
||||
output wire [PORTS*S_TAG_WIDTH-1:0] m_axis_write_desc_status_tag,
|
||||
output wire [PORTS-1:0] m_axis_write_desc_status_valid,
|
||||
|
||||
/*
|
||||
* RAM interface (from DMA interface)
|
||||
*/
|
||||
input wire [SEG_COUNT*M_RAM_SEL_WIDTH-1:0] if_ram_rd_cmd_sel,
|
||||
input wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] if_ram_rd_cmd_addr,
|
||||
input wire [SEG_COUNT-1:0] if_ram_rd_cmd_valid,
|
||||
output wire [SEG_COUNT-1:0] if_ram_rd_cmd_ready,
|
||||
output wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] if_ram_rd_resp_data,
|
||||
output wire [SEG_COUNT-1:0] if_ram_rd_resp_valid,
|
||||
input wire [SEG_COUNT-1:0] if_ram_rd_resp_ready,
|
||||
|
||||
/*
|
||||
* RAM interface
|
||||
*/
|
||||
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_rd_cmd_sel,
|
||||
output wire [PORTS*SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr,
|
||||
output wire [PORTS*SEG_COUNT-1:0] ram_rd_cmd_valid,
|
||||
input wire [PORTS*SEG_COUNT-1:0] ram_rd_cmd_ready,
|
||||
input wire [PORTS*SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_rd_resp_data,
|
||||
input wire [PORTS*SEG_COUNT-1:0] ram_rd_resp_valid,
|
||||
output wire [PORTS*SEG_COUNT-1:0] ram_rd_resp_ready
|
||||
);
|
||||
|
||||
parameter CL_PORTS = $clog2(PORTS);
|
||||
|
||||
parameter S_RAM_SEL_WIDTH_INT = S_RAM_SEL_WIDTH > 0 ? S_RAM_SEL_WIDTH : 1;
|
||||
|
||||
parameter FIFO_ADDR_WIDTH = 5;
|
||||
|
||||
// check configuration
|
||||
initial begin
|
||||
if (M_TAG_WIDTH < S_TAG_WIDTH+$clog2(PORTS)) begin
|
||||
$error("Error: M_TAG_WIDTH must be at least $clog2(PORTS) larger than S_TAG_WIDTH (instance %m)");
|
||||
$finish;
|
||||
end
|
||||
|
||||
if (M_RAM_SEL_WIDTH < S_RAM_SEL_WIDTH+$clog2(PORTS)) begin
|
||||
$error("Error: M_RAM_SEL_WIDTH must be at least $clog2(PORTS) larger than S_RAM_SEL_WIDTH (instance %m)");
|
||||
$finish;
|
||||
end
|
||||
end
|
||||
|
||||
// descriptor mux
|
||||
wire [PORTS-1:0] request;
|
||||
wire [PORTS-1:0] acknowledge;
|
||||
wire [PORTS-1:0] grant;
|
||||
wire grant_valid;
|
||||
wire [CL_PORTS-1:0] grant_encoded;
|
||||
|
||||
// internal datapath
|
||||
reg [DMA_ADDR_WIDTH-1:0] m_axis_write_desc_dma_addr_int;
|
||||
reg [M_RAM_SEL_WIDTH-1:0] m_axis_write_desc_ram_sel_int;
|
||||
reg [RAM_ADDR_WIDTH-1:0] m_axis_write_desc_ram_addr_int;
|
||||
reg [LEN_WIDTH-1:0] m_axis_write_desc_len_int;
|
||||
reg [M_TAG_WIDTH-1:0] m_axis_write_desc_tag_int;
|
||||
reg m_axis_write_desc_valid_int;
|
||||
reg m_axis_write_desc_ready_int_reg = 1'b0;
|
||||
wire m_axis_write_desc_ready_int_early;
|
||||
|
||||
assign s_axis_write_desc_ready = (m_axis_write_desc_ready_int_reg && grant_valid) << grant_encoded;
|
||||
|
||||
// mux for incoming packet
|
||||
wire [DMA_ADDR_WIDTH-1:0] current_s_desc_dma_addr = s_axis_write_desc_dma_addr[grant_encoded*DMA_ADDR_WIDTH +: DMA_ADDR_WIDTH];
|
||||
wire [S_RAM_SEL_WIDTH-1:0] current_s_desc_ram_sel = s_axis_write_desc_ram_sel[grant_encoded*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
|
||||
wire [RAM_ADDR_WIDTH-1:0] current_s_desc_ram_addr = s_axis_write_desc_ram_addr[grant_encoded*RAM_ADDR_WIDTH +: RAM_ADDR_WIDTH];
|
||||
wire [LEN_WIDTH-1:0] current_s_desc_len = s_axis_write_desc_len[grant_encoded*LEN_WIDTH +: LEN_WIDTH];
|
||||
wire [S_TAG_WIDTH-1:0] current_s_desc_tag = s_axis_write_desc_tag[grant_encoded*S_TAG_WIDTH +: S_TAG_WIDTH];
|
||||
wire current_s_desc_valid = s_axis_write_desc_valid[grant_encoded];
|
||||
wire current_s_desc_ready = s_axis_write_desc_ready[grant_encoded];
|
||||
|
||||
// arbiter instance
|
||||
arbiter #(
|
||||
.PORTS(PORTS),
|
||||
.TYPE(ARB_TYPE),
|
||||
.BLOCK("ACKNOWLEDGE"),
|
||||
.LSB_PRIORITY(LSB_PRIORITY)
|
||||
)
|
||||
arb_inst (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
.request(request),
|
||||
.acknowledge(acknowledge),
|
||||
.grant(grant),
|
||||
.grant_valid(grant_valid),
|
||||
.grant_encoded(grant_encoded)
|
||||
);
|
||||
|
||||
assign request = s_axis_write_desc_valid & ~grant;
|
||||
assign acknowledge = grant & s_axis_write_desc_valid & s_axis_write_desc_ready;
|
||||
|
||||
always @* begin
|
||||
// pass through selected packet data
|
||||
m_axis_write_desc_dma_addr_int = current_s_desc_dma_addr;
|
||||
if (S_RAM_SEL_WIDTH > 0) begin
|
||||
m_axis_write_desc_ram_sel_int = {grant_encoded, current_s_desc_ram_sel};
|
||||
end else begin
|
||||
m_axis_write_desc_ram_sel_int = grant_encoded;
|
||||
end
|
||||
m_axis_write_desc_ram_addr_int = current_s_desc_ram_addr;
|
||||
m_axis_write_desc_len_int = current_s_desc_len;
|
||||
m_axis_write_desc_tag_int = {grant_encoded, current_s_desc_tag};
|
||||
m_axis_write_desc_valid_int = current_s_desc_valid && m_axis_write_desc_ready_int_reg && grant_valid;
|
||||
end
|
||||
|
||||
// output datapath logic
|
||||
reg [DMA_ADDR_WIDTH-1:0] m_axis_write_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
|
||||
reg [M_RAM_SEL_WIDTH-1:0] m_axis_write_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
|
||||
reg [RAM_ADDR_WIDTH-1:0] m_axis_write_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
|
||||
reg [LEN_WIDTH-1:0] m_axis_write_desc_len_reg = {LEN_WIDTH{1'b0}};
|
||||
reg [M_TAG_WIDTH-1:0] m_axis_write_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
|
||||
reg m_axis_write_desc_valid_reg = 1'b0, m_axis_write_desc_valid_next;
|
||||
|
||||
reg [DMA_ADDR_WIDTH-1:0] temp_m_axis_write_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
|
||||
reg [M_RAM_SEL_WIDTH-1:0] temp_m_axis_write_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
|
||||
reg [RAM_ADDR_WIDTH-1:0] temp_m_axis_write_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
|
||||
reg [LEN_WIDTH-1:0] temp_m_axis_write_desc_len_reg = {LEN_WIDTH{1'b0}};
|
||||
reg [M_TAG_WIDTH-1:0] temp_m_axis_write_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
|
||||
reg temp_m_axis_write_desc_valid_reg = 1'b0, temp_m_axis_write_desc_valid_next;
|
||||
|
||||
// datapath control
|
||||
reg store_axis_int_to_output;
|
||||
reg store_axis_int_to_temp;
|
||||
reg store_axis_temp_to_output;
|
||||
|
||||
assign m_axis_write_desc_dma_addr = m_axis_write_desc_dma_addr_reg;
|
||||
assign m_axis_write_desc_ram_addr = m_axis_write_desc_ram_addr_reg;
|
||||
assign m_axis_write_desc_ram_sel = m_axis_write_desc_ram_sel_reg;
|
||||
assign m_axis_write_desc_len = m_axis_write_desc_len_reg;
|
||||
assign m_axis_write_desc_tag = m_axis_write_desc_tag_reg;
|
||||
assign m_axis_write_desc_valid = m_axis_write_desc_valid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
assign m_axis_write_desc_ready_int_early = m_axis_write_desc_ready || (!temp_m_axis_write_desc_valid_reg && (!m_axis_write_desc_valid_reg || !m_axis_write_desc_valid_int));
|
||||
|
||||
always @* begin
|
||||
// transfer sink ready state to source
|
||||
m_axis_write_desc_valid_next = m_axis_write_desc_valid_reg;
|
||||
temp_m_axis_write_desc_valid_next = temp_m_axis_write_desc_valid_reg;
|
||||
|
||||
store_axis_int_to_output = 1'b0;
|
||||
store_axis_int_to_temp = 1'b0;
|
||||
store_axis_temp_to_output = 1'b0;
|
||||
|
||||
if (m_axis_write_desc_ready_int_reg) begin
|
||||
// input is ready
|
||||
if (m_axis_write_desc_ready || !m_axis_write_desc_valid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
m_axis_write_desc_valid_next = m_axis_write_desc_valid_int;
|
||||
store_axis_int_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_m_axis_write_desc_valid_next = m_axis_write_desc_valid_int;
|
||||
store_axis_int_to_temp = 1'b1;
|
||||
end
|
||||
end else if (m_axis_write_desc_ready) begin
|
||||
// input is not ready, but output is ready
|
||||
m_axis_write_desc_valid_next = temp_m_axis_write_desc_valid_reg;
|
||||
temp_m_axis_write_desc_valid_next = 1'b0;
|
||||
store_axis_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
m_axis_write_desc_valid_reg <= 1'b0;
|
||||
m_axis_write_desc_ready_int_reg <= 1'b0;
|
||||
temp_m_axis_write_desc_valid_reg <= 1'b0;
|
||||
end else begin
|
||||
m_axis_write_desc_valid_reg <= m_axis_write_desc_valid_next;
|
||||
m_axis_write_desc_ready_int_reg <= m_axis_write_desc_ready_int_early;
|
||||
temp_m_axis_write_desc_valid_reg <= temp_m_axis_write_desc_valid_next;
|
||||
end
|
||||
|
||||
// datapath
|
||||
if (store_axis_int_to_output) begin
|
||||
m_axis_write_desc_dma_addr_reg <= m_axis_write_desc_dma_addr_int;
|
||||
m_axis_write_desc_ram_sel_reg <= m_axis_write_desc_ram_sel_int;
|
||||
m_axis_write_desc_ram_addr_reg <= m_axis_write_desc_ram_addr_int;
|
||||
m_axis_write_desc_len_reg <= m_axis_write_desc_len_int;
|
||||
m_axis_write_desc_tag_reg <= m_axis_write_desc_tag_int;
|
||||
end else if (store_axis_temp_to_output) begin
|
||||
m_axis_write_desc_dma_addr_reg <= temp_m_axis_write_desc_dma_addr_reg;
|
||||
m_axis_write_desc_ram_sel_reg <= temp_m_axis_write_desc_ram_sel_reg;
|
||||
m_axis_write_desc_ram_addr_reg <= temp_m_axis_write_desc_ram_addr_reg;
|
||||
m_axis_write_desc_len_reg <= temp_m_axis_write_desc_len_reg;
|
||||
m_axis_write_desc_tag_reg <= temp_m_axis_write_desc_tag_reg;
|
||||
end
|
||||
|
||||
if (store_axis_int_to_temp) begin
|
||||
temp_m_axis_write_desc_dma_addr_reg <= m_axis_write_desc_dma_addr_int;
|
||||
temp_m_axis_write_desc_ram_sel_reg <= m_axis_write_desc_ram_sel_int;
|
||||
temp_m_axis_write_desc_ram_addr_reg <= m_axis_write_desc_ram_addr_int;
|
||||
temp_m_axis_write_desc_len_reg <= m_axis_write_desc_len_int;
|
||||
temp_m_axis_write_desc_tag_reg <= m_axis_write_desc_tag_int;
|
||||
end
|
||||
end
|
||||
|
||||
// descriptor status demux
|
||||
reg [S_TAG_WIDTH-1:0] m_axis_write_desc_status_tag_reg = {S_TAG_WIDTH{1'b0}}, m_axis_write_desc_status_tag_next;
|
||||
reg [PORTS-1:0] m_axis_write_desc_status_valid_reg = {PORTS{1'b0}}, m_axis_write_desc_status_valid_next;
|
||||
|
||||
assign m_axis_write_desc_status_tag = {PORTS{m_axis_write_desc_status_tag_reg}};
|
||||
assign m_axis_write_desc_status_valid = m_axis_write_desc_status_valid_reg;
|
||||
|
||||
always @* begin
|
||||
m_axis_write_desc_status_tag_next = s_axis_write_desc_status_tag;
|
||||
m_axis_write_desc_status_valid_next = s_axis_write_desc_status_valid << (PORTS > 1 ? s_axis_write_desc_status_tag[S_TAG_WIDTH+CL_PORTS-1:S_TAG_WIDTH] : 0);
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
m_axis_write_desc_status_valid_reg <= {PORTS{1'b0}};
|
||||
end else begin
|
||||
m_axis_write_desc_status_valid_reg <= m_axis_write_desc_status_valid_next;
|
||||
end
|
||||
|
||||
m_axis_write_desc_status_tag_reg <= m_axis_write_desc_status_tag_next;
|
||||
end
|
||||
|
||||
generate
|
||||
|
||||
genvar n, p;
|
||||
|
||||
for (n = 0; n < SEG_COUNT; n = n + 1) begin
|
||||
|
||||
// FIFO to maintain response ordering
|
||||
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_wr_ptr_reg = 0;
|
||||
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_rd_ptr_reg = 0;
|
||||
reg [CL_PORTS-1:0] fifo_sel[(2**FIFO_ADDR_WIDTH)-1:0];
|
||||
|
||||
wire fifo_empty = fifo_wr_ptr_reg == fifo_rd_ptr_reg;
|
||||
wire fifo_full = fifo_wr_ptr_reg == (fifo_rd_ptr_reg ^ (1 << FIFO_ADDR_WIDTH));
|
||||
|
||||
integer i;
|
||||
|
||||
initial begin
|
||||
for (i = 0; i < 2**FIFO_ADDR_WIDTH; i = i + 1) begin
|
||||
fifo_sel[i] = 0;
|
||||
end
|
||||
end
|
||||
|
||||
// RAM read command demux
|
||||
|
||||
wire [M_RAM_SEL_WIDTH-1:0] seg_if_ram_rd_cmd_sel = if_ram_rd_cmd_sel[M_RAM_SEL_WIDTH*n +: M_RAM_SEL_WIDTH];
|
||||
wire [SEG_ADDR_WIDTH-1:0] seg_if_ram_rd_cmd_addr = if_ram_rd_cmd_addr[SEG_ADDR_WIDTH*n +: SEG_ADDR_WIDTH];
|
||||
wire seg_if_ram_rd_cmd_valid = if_ram_rd_cmd_valid[n];
|
||||
wire seg_if_ram_rd_cmd_ready;
|
||||
|
||||
assign if_ram_rd_cmd_ready[n] = seg_if_ram_rd_cmd_ready;
|
||||
|
||||
wire [PORTS*S_RAM_SEL_WIDTH-1:0] seg_ram_rd_cmd_sel;
|
||||
wire [PORTS*SEG_ADDR_WIDTH-1:0] seg_ram_rd_cmd_addr;
|
||||
wire [PORTS-1:0] seg_ram_rd_cmd_valid;
|
||||
wire [PORTS-1:0] seg_ram_rd_cmd_ready;
|
||||
|
||||
for (p = 0; p < PORTS; p = p + 1) begin
|
||||
assign ram_rd_cmd_sel[(p*SEG_COUNT+n)*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT] = seg_ram_rd_cmd_sel[p*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
|
||||
assign ram_rd_cmd_addr[(p*SEG_COUNT+n)*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = seg_ram_rd_cmd_addr[p*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH];
|
||||
assign ram_rd_cmd_valid[p*SEG_COUNT+n] = seg_ram_rd_cmd_valid[p];
|
||||
assign seg_ram_rd_cmd_ready[p] = ram_rd_cmd_ready[p*SEG_COUNT+n];
|
||||
end
|
||||
|
||||
// internal datapath
|
||||
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_rd_cmd_sel_int;
|
||||
reg [SEG_ADDR_WIDTH-1:0] seg_ram_rd_cmd_addr_int;
|
||||
reg [PORTS-1:0] seg_ram_rd_cmd_valid_int;
|
||||
reg seg_ram_rd_cmd_ready_int_reg = 1'b0;
|
||||
wire seg_ram_rd_cmd_ready_int_early;
|
||||
|
||||
assign seg_if_ram_rd_cmd_ready = seg_ram_rd_cmd_ready_int_reg && !fifo_full;
|
||||
|
||||
wire [CL_PORTS-1:0] select = PORTS > 1 ? (seg_if_ram_rd_cmd_sel >> (M_RAM_SEL_WIDTH - CL_PORTS)) : 0;
|
||||
|
||||
always @* begin
|
||||
seg_ram_rd_cmd_sel_int = seg_if_ram_rd_cmd_sel;
|
||||
seg_ram_rd_cmd_addr_int = seg_if_ram_rd_cmd_addr;
|
||||
seg_ram_rd_cmd_valid_int = (seg_if_ram_rd_cmd_valid && seg_if_ram_rd_cmd_ready) << select;
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (seg_if_ram_rd_cmd_valid && seg_if_ram_rd_cmd_ready) begin
|
||||
fifo_sel[fifo_wr_ptr_reg[FIFO_ADDR_WIDTH-1:0]] <= select;
|
||||
fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
fifo_wr_ptr_reg <= 0;
|
||||
end
|
||||
end
|
||||
|
||||
// output datapath logic
|
||||
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_rd_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
|
||||
reg [SEG_ADDR_WIDTH-1:0] seg_ram_rd_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
|
||||
reg [PORTS-1:0] seg_ram_rd_cmd_valid_reg = {PORTS{1'b0}}, seg_ram_rd_cmd_valid_next;
|
||||
|
||||
reg [S_RAM_SEL_WIDTH-1:0] temp_seg_ram_rd_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
|
||||
reg [SEG_ADDR_WIDTH-1:0] temp_seg_ram_rd_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
|
||||
reg [PORTS-1:0] temp_seg_ram_rd_cmd_valid_reg = {PORTS{1'b0}}, temp_seg_ram_rd_cmd_valid_next;
|
||||
|
||||
// datapath control
|
||||
reg store_axis_resp_int_to_output;
|
||||
reg store_axis_resp_int_to_temp;
|
||||
reg store_axis_resp_temp_to_output;
|
||||
|
||||
assign seg_ram_rd_cmd_sel = {PORTS{seg_ram_rd_cmd_sel_reg}};
|
||||
assign seg_ram_rd_cmd_addr = {PORTS{seg_ram_rd_cmd_addr_reg}};
|
||||
assign seg_ram_rd_cmd_valid = seg_ram_rd_cmd_valid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
assign seg_ram_rd_cmd_ready_int_early = (seg_ram_rd_cmd_ready & seg_ram_rd_cmd_valid_reg) || (!temp_seg_ram_rd_cmd_valid_reg && (!seg_ram_rd_cmd_valid_reg || !seg_ram_rd_cmd_valid_int));
|
||||
|
||||
always @* begin
|
||||
// transfer sink ready state to source
|
||||
seg_ram_rd_cmd_valid_next = seg_ram_rd_cmd_valid_reg;
|
||||
temp_seg_ram_rd_cmd_valid_next = temp_seg_ram_rd_cmd_valid_reg;
|
||||
|
||||
store_axis_resp_int_to_output = 1'b0;
|
||||
store_axis_resp_int_to_temp = 1'b0;
|
||||
store_axis_resp_temp_to_output = 1'b0;
|
||||
|
||||
if (seg_ram_rd_cmd_ready_int_reg) begin
|
||||
// input is ready
|
||||
if ((seg_ram_rd_cmd_ready & seg_ram_rd_cmd_valid_reg) || !seg_ram_rd_cmd_valid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
seg_ram_rd_cmd_valid_next = seg_ram_rd_cmd_valid_int;
|
||||
store_axis_resp_int_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_seg_ram_rd_cmd_valid_next = seg_ram_rd_cmd_valid_int;
|
||||
store_axis_resp_int_to_temp = 1'b1;
|
||||
end
|
||||
end else if (seg_ram_rd_cmd_ready & seg_ram_rd_cmd_valid_reg) begin
|
||||
// input is not ready, but output is ready
|
||||
seg_ram_rd_cmd_valid_next = temp_seg_ram_rd_cmd_valid_reg;
|
||||
temp_seg_ram_rd_cmd_valid_next = {PORTS{1'b0}};
|
||||
store_axis_resp_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
seg_ram_rd_cmd_valid_reg <= {PORTS{1'b0}};
|
||||
seg_ram_rd_cmd_ready_int_reg <= 1'b0;
|
||||
temp_seg_ram_rd_cmd_valid_reg <= {PORTS{1'b0}};
|
||||
end else begin
|
||||
seg_ram_rd_cmd_valid_reg <= seg_ram_rd_cmd_valid_next;
|
||||
seg_ram_rd_cmd_ready_int_reg <= seg_ram_rd_cmd_ready_int_early;
|
||||
temp_seg_ram_rd_cmd_valid_reg <= temp_seg_ram_rd_cmd_valid_next;
|
||||
end
|
||||
|
||||
// datapath
|
||||
if (store_axis_resp_int_to_output) begin
|
||||
seg_ram_rd_cmd_sel_reg <= seg_ram_rd_cmd_sel_int;
|
||||
seg_ram_rd_cmd_addr_reg <= seg_ram_rd_cmd_addr_int;
|
||||
end else if (store_axis_resp_temp_to_output) begin
|
||||
seg_ram_rd_cmd_sel_reg <= temp_seg_ram_rd_cmd_sel_reg;
|
||||
seg_ram_rd_cmd_addr_reg <= temp_seg_ram_rd_cmd_addr_reg;
|
||||
end
|
||||
|
||||
if (store_axis_resp_int_to_temp) begin
|
||||
temp_seg_ram_rd_cmd_sel_reg <= seg_ram_rd_cmd_sel_int;
|
||||
temp_seg_ram_rd_cmd_addr_reg <= seg_ram_rd_cmd_addr_int;
|
||||
end
|
||||
end
|
||||
|
||||
// RAM read response mux
|
||||
|
||||
wire [PORTS*SEG_DATA_WIDTH-1:0] seg_ram_rd_resp_data;
|
||||
wire [PORTS-1:0] seg_ram_rd_resp_valid;
|
||||
wire [PORTS-1:0] seg_ram_rd_resp_ready;
|
||||
|
||||
for (p = 0; p < PORTS; p = p + 1) begin
|
||||
assign seg_ram_rd_resp_data[p*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = ram_rd_resp_data[(p*SEG_COUNT+n)*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
|
||||
assign seg_ram_rd_resp_valid[p] = ram_rd_resp_valid[p*SEG_COUNT+n];
|
||||
assign ram_rd_resp_ready[p*SEG_COUNT+n] = seg_ram_rd_resp_ready[p];
|
||||
end
|
||||
|
||||
wire [SEG_DATA_WIDTH-1:0] seg_if_ram_rd_resp_data;
|
||||
wire seg_if_ram_rd_resp_valid;
|
||||
wire seg_if_ram_rd_resp_ready = if_ram_rd_resp_ready[n];
|
||||
|
||||
assign if_ram_rd_resp_data[n*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = seg_if_ram_rd_resp_data_reg;
|
||||
assign if_ram_rd_resp_valid[n] = seg_if_ram_rd_resp_valid_reg;
|
||||
|
||||
// internal datapath
|
||||
reg [SEG_DATA_WIDTH-1:0] seg_if_ram_rd_resp_data_int;
|
||||
reg seg_if_ram_rd_resp_valid_int;
|
||||
reg seg_if_ram_rd_resp_ready_int_reg = 1'b0;
|
||||
wire seg_if_ram_rd_resp_ready_int_early;
|
||||
|
||||
assign seg_ram_rd_resp_ready = (seg_if_ram_rd_resp_ready_int_reg && !fifo_empty) << fifo_sel[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]];
|
||||
|
||||
// mux for incoming packet
|
||||
wire [SEG_DATA_WIDTH-1:0] current_resp_data = seg_ram_rd_resp_data[fifo_sel[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]]*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
|
||||
wire current_resp_valid = seg_ram_rd_resp_valid[fifo_sel[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]]];
|
||||
wire current_resp_ready = seg_ram_rd_resp_ready[fifo_sel[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]]];
|
||||
|
||||
always @* begin
|
||||
// pass through selected packet data
|
||||
seg_if_ram_rd_resp_data_int = current_resp_data;
|
||||
seg_if_ram_rd_resp_valid_int = current_resp_valid && seg_if_ram_rd_resp_ready_int_reg && !fifo_empty;
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (current_resp_valid && seg_if_ram_rd_resp_ready_int_reg && !fifo_empty) begin
|
||||
fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
fifo_rd_ptr_reg <= 0;
|
||||
end
|
||||
end
|
||||
|
||||
// output datapath logic
|
||||
reg [SEG_DATA_WIDTH-1:0] seg_if_ram_rd_resp_data_reg = {SEG_DATA_WIDTH{1'b0}};
|
||||
reg seg_if_ram_rd_resp_valid_reg = 1'b0, seg_if_ram_rd_resp_valid_next;
|
||||
|
||||
reg [SEG_DATA_WIDTH-1:0] temp_seg_if_ram_rd_resp_data_reg = {SEG_DATA_WIDTH{1'b0}};
|
||||
reg temp_seg_if_ram_rd_resp_valid_reg = 1'b0, temp_seg_if_ram_rd_resp_valid_next;
|
||||
|
||||
// datapath control
|
||||
reg store_axis_int_to_output;
|
||||
reg store_axis_int_to_temp;
|
||||
reg store_axis_temp_to_output;
|
||||
|
||||
assign seg_if_ram_rd_resp_data = seg_if_ram_rd_resp_data_reg;
|
||||
assign seg_if_ram_rd_resp_valid = seg_if_ram_rd_resp_valid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
assign seg_if_ram_rd_resp_ready_int_early = seg_if_ram_rd_resp_ready || (!temp_seg_if_ram_rd_resp_valid_reg && (!seg_if_ram_rd_resp_valid_reg || !seg_if_ram_rd_resp_valid_int));
|
||||
|
||||
always @* begin
|
||||
// transfer sink ready state to source
|
||||
seg_if_ram_rd_resp_valid_next = seg_if_ram_rd_resp_valid_reg;
|
||||
temp_seg_if_ram_rd_resp_valid_next = temp_seg_if_ram_rd_resp_valid_reg;
|
||||
|
||||
store_axis_int_to_output = 1'b0;
|
||||
store_axis_int_to_temp = 1'b0;
|
||||
store_axis_temp_to_output = 1'b0;
|
||||
|
||||
if (seg_if_ram_rd_resp_ready_int_reg) begin
|
||||
// input is ready
|
||||
if (seg_if_ram_rd_resp_ready || !seg_if_ram_rd_resp_valid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
seg_if_ram_rd_resp_valid_next = seg_if_ram_rd_resp_valid_int;
|
||||
store_axis_int_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_seg_if_ram_rd_resp_valid_next = seg_if_ram_rd_resp_valid_int;
|
||||
store_axis_int_to_temp = 1'b1;
|
||||
end
|
||||
end else if (seg_if_ram_rd_resp_ready) begin
|
||||
// input is not ready, but output is ready
|
||||
seg_if_ram_rd_resp_valid_next = temp_seg_if_ram_rd_resp_valid_reg;
|
||||
temp_seg_if_ram_rd_resp_valid_next = 1'b0;
|
||||
store_axis_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
seg_if_ram_rd_resp_valid_reg <= 1'b0;
|
||||
seg_if_ram_rd_resp_ready_int_reg <= 1'b0;
|
||||
temp_seg_if_ram_rd_resp_valid_reg <= 1'b0;
|
||||
end else begin
|
||||
seg_if_ram_rd_resp_valid_reg <= seg_if_ram_rd_resp_valid_next;
|
||||
seg_if_ram_rd_resp_ready_int_reg <= seg_if_ram_rd_resp_ready_int_early;
|
||||
temp_seg_if_ram_rd_resp_valid_reg <= temp_seg_if_ram_rd_resp_valid_next;
|
||||
end
|
||||
|
||||
// datapath
|
||||
if (store_axis_int_to_output) begin
|
||||
seg_if_ram_rd_resp_data_reg <= seg_if_ram_rd_resp_data_int;
|
||||
end else if (store_axis_temp_to_output) begin
|
||||
seg_if_ram_rd_resp_data_reg <= temp_seg_if_ram_rd_resp_data_reg;
|
||||
end
|
||||
|
||||
if (store_axis_int_to_temp) begin
|
||||
temp_seg_if_ram_rd_resp_data_reg <= seg_if_ram_rd_resp_data_int;
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
endgenerate
|
||||
|
||||
endmodule
|
Loading…
x
Reference in New Issue
Block a user