1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00

Convert generated demux to verilog parametrized demux

This commit is contained in:
Alex Forencich 2018-10-24 22:16:05 -07:00
parent 145ea2c40c
commit 9d813226d0
7 changed files with 706 additions and 1287 deletions

View File

@ -1,324 +0,0 @@
#!/usr/bin/env python
"""
Generates an AXI Stream demux with the specified number of ports
"""
from __future__ import print_function
import argparse
import math
from jinja2 import Template
def main():
parser = argparse.ArgumentParser(description=__doc__.strip())
parser.add_argument('-p', '--ports', type=int, default=4, help="number of ports")
parser.add_argument('-n', '--name', type=str, help="module name")
parser.add_argument('-o', '--output', type=str, help="output file name")
args = parser.parse_args()
try:
generate(**args.__dict__)
except IOError as ex:
print(ex)
exit(1)
def generate(ports=4, name=None, output=None):
if name is None:
name = "axis_demux_{0}".format(ports)
if output is None:
output = name + ".v"
print("Opening file '{0}'...".format(output))
output_file = open(output, 'w')
print("Generating {0} port AXI Stream demux {1}...".format(ports, name))
select_width = int(math.ceil(math.log(ports, 2)))
t = Template(u"""/*
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream {{n}} port demultiplexer
*/
module {{name}} #
(
parameter DATA_WIDTH = 8,
parameter KEEP_ENABLE = (DATA_WIDTH>8),
parameter KEEP_WIDTH = (DATA_WIDTH/8),
parameter ID_ENABLE = 0,
parameter ID_WIDTH = 8,
parameter DEST_ENABLE = 0,
parameter DEST_WIDTH = 8,
parameter USER_ENABLE = 1,
parameter USER_WIDTH = 1
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [DATA_WIDTH-1:0] input_axis_tdata,
input wire [KEEP_WIDTH-1:0] input_axis_tkeep,
input wire input_axis_tvalid,
output wire input_axis_tready,
input wire input_axis_tlast,
input wire [ID_WIDTH-1:0] input_axis_tid,
input wire [DEST_WIDTH-1:0] input_axis_tdest,
input wire [USER_WIDTH-1:0] input_axis_tuser,
/*
* AXI outputs
*/
{%- for p in ports %}
output wire [DATA_WIDTH-1:0] output_{{p}}_axis_tdata,
output wire [KEEP_WIDTH-1:0] output_{{p}}_axis_tkeep,
output wire output_{{p}}_axis_tvalid,
input wire output_{{p}}_axis_tready,
output wire output_{{p}}_axis_tlast,
output wire [ID_WIDTH-1:0] output_{{p}}_axis_tid,
output wire [DEST_WIDTH-1:0] output_{{p}}_axis_tdest,
output wire [USER_WIDTH-1:0] output_{{p}}_axis_tuser,
{% endfor %}
/*
* Control
*/
input wire enable,
input wire [{{w-1}}:0] select
);
reg [{{w-1}}:0] select_reg = {{w}}'d0, select_next;
reg frame_reg = 1'b0, frame_next;
reg input_axis_tready_reg = 1'b0, input_axis_tready_next;
// internal datapath
reg [DATA_WIDTH-1:0] output_axis_tdata_int;
reg [KEEP_WIDTH-1:0] output_axis_tkeep_int;
reg output_axis_tvalid_int;
reg output_axis_tready_int_reg = 1'b0;
reg output_axis_tlast_int;
reg [ID_WIDTH-1:0] output_axis_tid_int;
reg [DEST_WIDTH-1:0] output_axis_tdest_int;
reg [USER_WIDTH-1:0] output_axis_tuser_int;
wire output_axis_tready_int_early;
assign input_axis_tready = input_axis_tready_reg;
// mux for output control signals
reg current_output_tready;
reg current_output_tvalid;
always @* begin
case (select_reg)
{%- for p in ports %}
{{w}}'d{{p}}: begin
current_output_tvalid = output_{{p}}_axis_tvalid;
current_output_tready = output_{{p}}_axis_tready;
end
{%- endfor %}
default: begin
current_output_tvalid = 1'b0;
current_output_tready = 1'b0;
end
endcase
end
always @* begin
select_next = select_reg;
frame_next = frame_reg;
input_axis_tready_next = 1'b0;
if (input_axis_tvalid & input_axis_tready) begin
// end of frame detection
if (input_axis_tlast) begin
frame_next = 1'b0;
end
end
if (~frame_reg & enable & input_axis_tvalid & ~current_output_tvalid) begin
// start of frame, grab select value
frame_next = 1'b1;
select_next = select;
end
input_axis_tready_next = output_axis_tready_int_early & frame_next;
output_axis_tdata_int = input_axis_tdata;
output_axis_tkeep_int = input_axis_tkeep;
output_axis_tvalid_int = input_axis_tvalid & input_axis_tready;
output_axis_tlast_int = input_axis_tlast;
output_axis_tid_int = input_axis_tid;
output_axis_tdest_int = input_axis_tdest;
output_axis_tuser_int = input_axis_tuser;
end
always @(posedge clk) begin
if (rst) begin
select_reg <= {{w}}'d0;
frame_reg <= 1'b0;
input_axis_tready_reg <= 1'b0;
end else begin
select_reg <= select_next;
frame_reg <= frame_next;
input_axis_tready_reg <= input_axis_tready_next;
end
end
// output datapath logic
reg [DATA_WIDTH-1:0] output_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] output_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
{%- for p in ports %}
reg output_{{p}}_axis_tvalid_reg = 1'b0, output_{{p}}_axis_tvalid_next;
{%- endfor %}
reg output_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] output_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] output_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] output_axis_tuser_reg = {USER_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] temp_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] temp_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg temp_axis_tvalid_reg = 1'b0, temp_axis_tvalid_next;
reg temp_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] temp_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] temp_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] temp_axis_tuser_reg = {USER_WIDTH{1'b0}};
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
{% for p in ports %}
assign output_{{p}}_axis_tdata = output_axis_tdata_reg;
assign output_{{p}}_axis_tkeep = KEEP_ENABLE ? output_axis_tkeep_reg : {KEEP_WIDTH{1'b1}};
assign output_{{p}}_axis_tvalid = output_{{p}}_axis_tvalid_reg;
assign output_{{p}}_axis_tlast = output_axis_tlast_reg;
assign output_{{p}}_axis_tid = ID_ENABLE ? output_axis_tid_reg : {ID_WIDTH{1'b0}};
assign output_{{p}}_axis_tdest = DEST_ENABLE ? output_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign output_{{p}}_axis_tuser = USER_ENABLE ? output_axis_tuser_int : {USER_WIDTH{1'b0}};
{% endfor %}
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign output_axis_tready_int_early = current_output_tready | (~temp_axis_tvalid_reg & (~current_output_tvalid | ~output_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
{%- for p in ports %}
output_{{p}}_axis_tvalid_next = output_{{p}}_axis_tvalid_reg;
{%- endfor %}
temp_axis_tvalid_next = temp_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (output_axis_tready_int_reg) begin
// input is ready
if (current_output_tready | ~current_output_tvalid) begin
// output is ready or currently not valid, transfer data to output
{%- for p in ports %}
output_{{p}}_axis_tvalid_next = output_axis_tvalid_int & (select_reg == {{w}}'d{{p}});
{%- endfor %}
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_axis_tvalid_next = output_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (current_output_tready) begin
// input is not ready, but output is ready
{%- for p in ports %}
output_{{p}}_axis_tvalid_next = temp_axis_tvalid_reg & (select_reg == {{w}}'d{{p}});
{%- endfor %}
temp_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
{%- for p in ports %}
output_{{p}}_axis_tvalid_reg <= 1'b0;
{%- endfor %}
output_axis_tready_int_reg <= 1'b0;
temp_axis_tvalid_reg <= 1'b0;
end else begin
{%- for p in ports %}
output_{{p}}_axis_tvalid_reg <= output_{{p}}_axis_tvalid_next;
{%- endfor %}
output_axis_tready_int_reg <= output_axis_tready_int_early;
temp_axis_tvalid_reg <= temp_axis_tvalid_next;
end
// datapath
if (store_axis_int_to_output) begin
output_axis_tdata_reg <= output_axis_tdata_int;
output_axis_tkeep_reg <= output_axis_tkeep_int;
output_axis_tlast_reg <= output_axis_tlast_int;
output_axis_tid_reg <= output_axis_tid_int;
output_axis_tdest_reg <= output_axis_tdest_int;
output_axis_tuser_reg <= output_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
output_axis_tdata_reg <= temp_axis_tdata_reg;
output_axis_tkeep_reg <= temp_axis_tkeep_reg;
output_axis_tlast_reg <= temp_axis_tlast_reg;
output_axis_tid_reg <= temp_axis_tid_reg;
output_axis_tdest_reg <= temp_axis_tdest_reg;
output_axis_tuser_reg <= temp_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_axis_tdata_reg <= output_axis_tdata_int;
temp_axis_tkeep_reg <= output_axis_tkeep_int;
temp_axis_tlast_reg <= output_axis_tlast_int;
temp_axis_tid_reg <= output_axis_tid_int;
temp_axis_tdest_reg <= output_axis_tdest_int;
temp_axis_tuser_reg <= output_axis_tuser_int;
end
end
endmodule
""")
output_file.write(t.render(
n=ports,
w=select_width,
name=name,
ports=range(ports)
))
print("Done")
if __name__ == "__main__":
main()

258
rtl/axis_demux.v Normal file
View File

@ -0,0 +1,258 @@
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream demultiplexer
*/
module axis_demux #
(
parameter M_COUNT = 4,
parameter DATA_WIDTH = 8,
parameter KEEP_ENABLE = (DATA_WIDTH>8),
parameter KEEP_WIDTH = (DATA_WIDTH/8),
parameter ID_ENABLE = 0,
parameter ID_WIDTH = 8,
parameter DEST_ENABLE = 0,
parameter DEST_WIDTH = 8,
parameter USER_ENABLE = 1,
parameter USER_WIDTH = 1
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [DATA_WIDTH-1:0] s_axis_tdata,
input wire [KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [ID_WIDTH-1:0] s_axis_tid,
input wire [DEST_WIDTH-1:0] s_axis_tdest,
input wire [USER_WIDTH-1:0] s_axis_tuser,
/*
* AXI outputs
*/
output wire [M_COUNT*DATA_WIDTH-1:0] m_axis_tdata,
output wire [M_COUNT*KEEP_WIDTH-1:0] m_axis_tkeep,
output wire [M_COUNT-1:0] m_axis_tvalid,
input wire [M_COUNT-1:0] m_axis_tready,
output wire [M_COUNT-1:0] m_axis_tlast,
output wire [M_COUNT*ID_WIDTH-1:0] m_axis_tid,
output wire [M_COUNT*DEST_WIDTH-1:0] m_axis_tdest,
output wire [M_COUNT*USER_WIDTH-1:0] m_axis_tuser,
/*
* Control
*/
input wire enable,
input wire drop,
input wire [$clog2(M_COUNT)-1:0] select
);
parameter CL_M_COUNT = $clog2(M_COUNT);
reg [CL_M_COUNT-1:0] select_reg = {CL_M_COUNT{1'b0}}, select_ctl, select_next;
reg drop_reg = 1'b0, drop_ctl, drop_next;
reg frame_reg = 1'b0, frame_ctl, frame_next;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
// internal datapath
reg [DATA_WIDTH-1:0] m_axis_tdata_int;
reg [KEEP_WIDTH-1:0] m_axis_tkeep_int;
reg [M_COUNT-1:0] m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg [ID_WIDTH-1:0] m_axis_tid_int;
reg [DEST_WIDTH-1:0] m_axis_tdest_int;
reg [USER_WIDTH-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early;
assign s_axis_tready = s_axis_tready_reg && enable;
integer i;
always @* begin
select_next = select_reg;
select_ctl = select_reg;
drop_next = drop_reg;
drop_ctl = drop_reg;
frame_next = frame_reg;
frame_ctl = frame_reg;
s_axis_tready_next = 1'b0;
if (s_axis_tvalid && s_axis_tready) begin
// end of frame detection
if (s_axis_tlast) begin
frame_next = 1'b0;
drop_next = 1'b0;
end
end
if (!frame_reg && s_axis_tvalid && s_axis_tready) begin
// start of frame, grab select value
select_ctl = select;
drop_ctl = drop;
frame_ctl = 1'b1;
if (!(s_axis_tready && s_axis_tvalid && s_axis_tlast)) begin
select_next = select_ctl;
drop_next = drop_ctl;
frame_next = 1'b1;
end
end
s_axis_tready_next = (m_axis_tready_int_early || drop_ctl);
m_axis_tdata_int = s_axis_tdata;
m_axis_tkeep_int = s_axis_tkeep;
m_axis_tvalid_int = (s_axis_tvalid && s_axis_tready && !drop_ctl) << select_ctl;
m_axis_tlast_int = s_axis_tlast;
m_axis_tid_int = s_axis_tid;
m_axis_tdest_int = s_axis_tdest;
m_axis_tuser_int = s_axis_tuser;
end
always @(posedge clk) begin
if (rst) begin
select_reg <= 2'd0;
drop_reg <= 1'b0;
frame_reg <= 1'b0;
s_axis_tready_reg <= 1'b0;
end else begin
select_reg <= select_next;
drop_reg <= drop_next;
frame_reg <= frame_next;
s_axis_tready_reg <= s_axis_tready_next;
end
end
// output datapath logic
reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg [M_COUNT-1:0] m_axis_tvalid_reg = {M_COUNT{1'b0}}, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] temp_m_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] temp_m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg [M_COUNT-1:0] temp_m_axis_tvalid_reg = {M_COUNT{1'b0}}, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] temp_m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] temp_m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] temp_m_axis_tuser_reg = {USER_WIDTH{1'b0}};
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_tdata = {M_COUNT{m_axis_tdata_reg}};
assign m_axis_tkeep = KEEP_ENABLE ? {M_COUNT{m_axis_tkeep_reg}} : {M_COUNT*KEEP_WIDTH{1'b1}};
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = {M_COUNT{m_axis_tlast_reg}};
assign m_axis_tid = ID_ENABLE ? {M_COUNT{m_axis_tid_reg}} : {M_COUNT*ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? {M_COUNT{m_axis_tdest_reg}} : {M_COUNT*DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? {M_COUNT{m_axis_tuser_reg}} : {M_COUNT*USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = (m_axis_tready & m_axis_tvalid) || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid || !m_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if ((m_axis_tready & m_axis_tvalid) || !m_axis_tvalid) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_tready & m_axis_tvalid) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= {M_COUNT{1'b0}};
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tid_reg <= m_axis_tid_int;
m_axis_tdest_reg <= m_axis_tdest_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tid_reg <= temp_m_axis_tid_reg;
m_axis_tdest_reg <= temp_m_axis_tdest_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tid_reg <= m_axis_tid_int;
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
end
endmodule

View File

@ -1,335 +0,0 @@
/*
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream 4 port demultiplexer
*/
module axis_demux_4 #
(
parameter DATA_WIDTH = 8,
parameter KEEP_ENABLE = (DATA_WIDTH>8),
parameter KEEP_WIDTH = (DATA_WIDTH/8),
parameter ID_ENABLE = 0,
parameter ID_WIDTH = 8,
parameter DEST_ENABLE = 0,
parameter DEST_WIDTH = 8,
parameter USER_ENABLE = 1,
parameter USER_WIDTH = 1
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [DATA_WIDTH-1:0] input_axis_tdata,
input wire [KEEP_WIDTH-1:0] input_axis_tkeep,
input wire input_axis_tvalid,
output wire input_axis_tready,
input wire input_axis_tlast,
input wire [ID_WIDTH-1:0] input_axis_tid,
input wire [DEST_WIDTH-1:0] input_axis_tdest,
input wire [USER_WIDTH-1:0] input_axis_tuser,
/*
* AXI outputs
*/
output wire [DATA_WIDTH-1:0] output_0_axis_tdata,
output wire [KEEP_WIDTH-1:0] output_0_axis_tkeep,
output wire output_0_axis_tvalid,
input wire output_0_axis_tready,
output wire output_0_axis_tlast,
output wire [ID_WIDTH-1:0] output_0_axis_tid,
output wire [DEST_WIDTH-1:0] output_0_axis_tdest,
output wire [USER_WIDTH-1:0] output_0_axis_tuser,
output wire [DATA_WIDTH-1:0] output_1_axis_tdata,
output wire [KEEP_WIDTH-1:0] output_1_axis_tkeep,
output wire output_1_axis_tvalid,
input wire output_1_axis_tready,
output wire output_1_axis_tlast,
output wire [ID_WIDTH-1:0] output_1_axis_tid,
output wire [DEST_WIDTH-1:0] output_1_axis_tdest,
output wire [USER_WIDTH-1:0] output_1_axis_tuser,
output wire [DATA_WIDTH-1:0] output_2_axis_tdata,
output wire [KEEP_WIDTH-1:0] output_2_axis_tkeep,
output wire output_2_axis_tvalid,
input wire output_2_axis_tready,
output wire output_2_axis_tlast,
output wire [ID_WIDTH-1:0] output_2_axis_tid,
output wire [DEST_WIDTH-1:0] output_2_axis_tdest,
output wire [USER_WIDTH-1:0] output_2_axis_tuser,
output wire [DATA_WIDTH-1:0] output_3_axis_tdata,
output wire [KEEP_WIDTH-1:0] output_3_axis_tkeep,
output wire output_3_axis_tvalid,
input wire output_3_axis_tready,
output wire output_3_axis_tlast,
output wire [ID_WIDTH-1:0] output_3_axis_tid,
output wire [DEST_WIDTH-1:0] output_3_axis_tdest,
output wire [USER_WIDTH-1:0] output_3_axis_tuser,
/*
* Control
*/
input wire enable,
input wire [1:0] select
);
reg [1:0] select_reg = 2'd0, select_next;
reg frame_reg = 1'b0, frame_next;
reg input_axis_tready_reg = 1'b0, input_axis_tready_next;
// internal datapath
reg [DATA_WIDTH-1:0] output_axis_tdata_int;
reg [KEEP_WIDTH-1:0] output_axis_tkeep_int;
reg output_axis_tvalid_int;
reg output_axis_tready_int_reg = 1'b0;
reg output_axis_tlast_int;
reg [ID_WIDTH-1:0] output_axis_tid_int;
reg [DEST_WIDTH-1:0] output_axis_tdest_int;
reg [USER_WIDTH-1:0] output_axis_tuser_int;
wire output_axis_tready_int_early;
assign input_axis_tready = input_axis_tready_reg;
// mux for output control signals
reg current_output_tready;
reg current_output_tvalid;
always @* begin
case (select_reg)
2'd0: begin
current_output_tvalid = output_0_axis_tvalid;
current_output_tready = output_0_axis_tready;
end
2'd1: begin
current_output_tvalid = output_1_axis_tvalid;
current_output_tready = output_1_axis_tready;
end
2'd2: begin
current_output_tvalid = output_2_axis_tvalid;
current_output_tready = output_2_axis_tready;
end
2'd3: begin
current_output_tvalid = output_3_axis_tvalid;
current_output_tready = output_3_axis_tready;
end
default: begin
current_output_tvalid = 1'b0;
current_output_tready = 1'b0;
end
endcase
end
always @* begin
select_next = select_reg;
frame_next = frame_reg;
input_axis_tready_next = 1'b0;
if (input_axis_tvalid & input_axis_tready) begin
// end of frame detection
if (input_axis_tlast) begin
frame_next = 1'b0;
end
end
if (~frame_reg & enable & input_axis_tvalid & ~current_output_tvalid) begin
// start of frame, grab select value
frame_next = 1'b1;
select_next = select;
end
input_axis_tready_next = output_axis_tready_int_early & frame_next;
output_axis_tdata_int = input_axis_tdata;
output_axis_tkeep_int = input_axis_tkeep;
output_axis_tvalid_int = input_axis_tvalid & input_axis_tready;
output_axis_tlast_int = input_axis_tlast;
output_axis_tid_int = input_axis_tid;
output_axis_tdest_int = input_axis_tdest;
output_axis_tuser_int = input_axis_tuser;
end
always @(posedge clk) begin
if (rst) begin
select_reg <= 2'd0;
frame_reg <= 1'b0;
input_axis_tready_reg <= 1'b0;
end else begin
select_reg <= select_next;
frame_reg <= frame_next;
input_axis_tready_reg <= input_axis_tready_next;
end
end
// output datapath logic
reg [DATA_WIDTH-1:0] output_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] output_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg output_0_axis_tvalid_reg = 1'b0, output_0_axis_tvalid_next;
reg output_1_axis_tvalid_reg = 1'b0, output_1_axis_tvalid_next;
reg output_2_axis_tvalid_reg = 1'b0, output_2_axis_tvalid_next;
reg output_3_axis_tvalid_reg = 1'b0, output_3_axis_tvalid_next;
reg output_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] output_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] output_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] output_axis_tuser_reg = {USER_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] temp_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] temp_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg temp_axis_tvalid_reg = 1'b0, temp_axis_tvalid_next;
reg temp_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] temp_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] temp_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] temp_axis_tuser_reg = {USER_WIDTH{1'b0}};
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign output_0_axis_tdata = output_axis_tdata_reg;
assign output_0_axis_tkeep = KEEP_ENABLE ? output_axis_tkeep_reg : {KEEP_WIDTH{1'b1}};
assign output_0_axis_tvalid = output_0_axis_tvalid_reg;
assign output_0_axis_tlast = output_axis_tlast_reg;
assign output_0_axis_tid = ID_ENABLE ? output_axis_tid_reg : {ID_WIDTH{1'b0}};
assign output_0_axis_tdest = DEST_ENABLE ? output_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign output_0_axis_tuser = USER_ENABLE ? output_axis_tuser_int : {USER_WIDTH{1'b0}};
assign output_1_axis_tdata = output_axis_tdata_reg;
assign output_1_axis_tkeep = KEEP_ENABLE ? output_axis_tkeep_reg : {KEEP_WIDTH{1'b1}};
assign output_1_axis_tvalid = output_1_axis_tvalid_reg;
assign output_1_axis_tlast = output_axis_tlast_reg;
assign output_1_axis_tid = ID_ENABLE ? output_axis_tid_reg : {ID_WIDTH{1'b0}};
assign output_1_axis_tdest = DEST_ENABLE ? output_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign output_1_axis_tuser = USER_ENABLE ? output_axis_tuser_int : {USER_WIDTH{1'b0}};
assign output_2_axis_tdata = output_axis_tdata_reg;
assign output_2_axis_tkeep = KEEP_ENABLE ? output_axis_tkeep_reg : {KEEP_WIDTH{1'b1}};
assign output_2_axis_tvalid = output_2_axis_tvalid_reg;
assign output_2_axis_tlast = output_axis_tlast_reg;
assign output_2_axis_tid = ID_ENABLE ? output_axis_tid_reg : {ID_WIDTH{1'b0}};
assign output_2_axis_tdest = DEST_ENABLE ? output_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign output_2_axis_tuser = USER_ENABLE ? output_axis_tuser_int : {USER_WIDTH{1'b0}};
assign output_3_axis_tdata = output_axis_tdata_reg;
assign output_3_axis_tkeep = KEEP_ENABLE ? output_axis_tkeep_reg : {KEEP_WIDTH{1'b1}};
assign output_3_axis_tvalid = output_3_axis_tvalid_reg;
assign output_3_axis_tlast = output_axis_tlast_reg;
assign output_3_axis_tid = ID_ENABLE ? output_axis_tid_reg : {ID_WIDTH{1'b0}};
assign output_3_axis_tdest = DEST_ENABLE ? output_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign output_3_axis_tuser = USER_ENABLE ? output_axis_tuser_int : {USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign output_axis_tready_int_early = current_output_tready | (~temp_axis_tvalid_reg & (~current_output_tvalid | ~output_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
output_0_axis_tvalid_next = output_0_axis_tvalid_reg;
output_1_axis_tvalid_next = output_1_axis_tvalid_reg;
output_2_axis_tvalid_next = output_2_axis_tvalid_reg;
output_3_axis_tvalid_next = output_3_axis_tvalid_reg;
temp_axis_tvalid_next = temp_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (output_axis_tready_int_reg) begin
// input is ready
if (current_output_tready | ~current_output_tvalid) begin
// output is ready or currently not valid, transfer data to output
output_0_axis_tvalid_next = output_axis_tvalid_int & (select_reg == 2'd0);
output_1_axis_tvalid_next = output_axis_tvalid_int & (select_reg == 2'd1);
output_2_axis_tvalid_next = output_axis_tvalid_int & (select_reg == 2'd2);
output_3_axis_tvalid_next = output_axis_tvalid_int & (select_reg == 2'd3);
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_axis_tvalid_next = output_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (current_output_tready) begin
// input is not ready, but output is ready
output_0_axis_tvalid_next = temp_axis_tvalid_reg & (select_reg == 2'd0);
output_1_axis_tvalid_next = temp_axis_tvalid_reg & (select_reg == 2'd1);
output_2_axis_tvalid_next = temp_axis_tvalid_reg & (select_reg == 2'd2);
output_3_axis_tvalid_next = temp_axis_tvalid_reg & (select_reg == 2'd3);
temp_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
output_0_axis_tvalid_reg <= 1'b0;
output_1_axis_tvalid_reg <= 1'b0;
output_2_axis_tvalid_reg <= 1'b0;
output_3_axis_tvalid_reg <= 1'b0;
output_axis_tready_int_reg <= 1'b0;
temp_axis_tvalid_reg <= 1'b0;
end else begin
output_0_axis_tvalid_reg <= output_0_axis_tvalid_next;
output_1_axis_tvalid_reg <= output_1_axis_tvalid_next;
output_2_axis_tvalid_reg <= output_2_axis_tvalid_next;
output_3_axis_tvalid_reg <= output_3_axis_tvalid_next;
output_axis_tready_int_reg <= output_axis_tready_int_early;
temp_axis_tvalid_reg <= temp_axis_tvalid_next;
end
// datapath
if (store_axis_int_to_output) begin
output_axis_tdata_reg <= output_axis_tdata_int;
output_axis_tkeep_reg <= output_axis_tkeep_int;
output_axis_tlast_reg <= output_axis_tlast_int;
output_axis_tid_reg <= output_axis_tid_int;
output_axis_tdest_reg <= output_axis_tdest_int;
output_axis_tuser_reg <= output_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
output_axis_tdata_reg <= temp_axis_tdata_reg;
output_axis_tkeep_reg <= temp_axis_tkeep_reg;
output_axis_tlast_reg <= temp_axis_tlast_reg;
output_axis_tid_reg <= temp_axis_tid_reg;
output_axis_tdest_reg <= temp_axis_tdest_reg;
output_axis_tuser_reg <= temp_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_axis_tdata_reg <= output_axis_tdata_int;
temp_axis_tkeep_reg <= output_axis_tkeep_int;
temp_axis_tlast_reg <= output_axis_tlast_int;
temp_axis_tid_reg <= output_axis_tid_int;
temp_axis_tdest_reg <= output_axis_tdest_int;
temp_axis_tuser_reg <= output_axis_tuser_int;
end
end
endmodule

View File

@ -27,9 +27,10 @@ from myhdl import *
import os
import axis_ep
import math
module = 'axis_demux_4'
testbench = 'test_%s' % module
module = 'axis_demux'
testbench = 'test_%s_4' % module
srcs = []
@ -43,6 +44,7 @@ build_cmd = "iverilog -o %s.vvp %s" % (testbench, src)
def bench():
# Parameters
M_COUNT = 4
DATA_WIDTH = 8
KEEP_ENABLE = (DATA_WIDTH>8)
KEEP_WIDTH = (DATA_WIDTH/8)
@ -58,145 +60,85 @@ def bench():
rst = Signal(bool(0))
current_test = Signal(intbv(0)[8:])
input_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
input_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:])
input_axis_tvalid = Signal(bool(0))
input_axis_tlast = Signal(bool(0))
input_axis_tid = Signal(intbv(0)[ID_WIDTH:])
input_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
input_axis_tuser = Signal(intbv(0)[USER_WIDTH:])
s_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
s_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:])
s_axis_tvalid = Signal(bool(0))
s_axis_tlast = Signal(bool(0))
s_axis_tid = Signal(intbv(0)[ID_WIDTH:])
s_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
s_axis_tuser = Signal(intbv(0)[USER_WIDTH:])
output_0_axis_tready = Signal(bool(0))
output_1_axis_tready = Signal(bool(0))
output_2_axis_tready = Signal(bool(0))
output_3_axis_tready = Signal(bool(0))
m_axis_tready_list = [Signal(bool(0)) for i in range(M_COUNT)]
m_axis_tready = ConcatSignal(*reversed(m_axis_tready_list))
enable = Signal(bool(0))
select = Signal(intbv(0)[2:])
drop = Signal(bool(0))
select = Signal(intbv(0)[math.ceil(math.log(M_COUNT, 2)):])
# Outputs
input_axis_tready = Signal(bool(0))
s_axis_tready = Signal(bool(0))
output_0_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_0_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:])
output_0_axis_tvalid = Signal(bool(0))
output_0_axis_tlast = Signal(bool(0))
output_0_axis_tid = Signal(intbv(0)[ID_WIDTH:])
output_0_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_0_axis_tuser = Signal(intbv(0)[USER_WIDTH:])
output_1_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_1_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:])
output_1_axis_tvalid = Signal(bool(0))
output_1_axis_tlast = Signal(bool(0))
output_1_axis_tid = Signal(intbv(0)[ID_WIDTH:])
output_1_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_1_axis_tuser = Signal(intbv(0)[USER_WIDTH:])
output_2_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_2_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:])
output_2_axis_tvalid = Signal(bool(0))
output_2_axis_tlast = Signal(bool(0))
output_2_axis_tid = Signal(intbv(0)[ID_WIDTH:])
output_2_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_2_axis_tuser = Signal(intbv(0)[USER_WIDTH:])
output_3_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_3_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:])
output_3_axis_tvalid = Signal(bool(0))
output_3_axis_tlast = Signal(bool(0))
output_3_axis_tid = Signal(intbv(0)[ID_WIDTH:])
output_3_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_3_axis_tuser = Signal(intbv(0)[USER_WIDTH:])
m_axis_tdata = Signal(intbv(0)[M_COUNT*DATA_WIDTH:])
m_axis_tkeep = Signal(intbv(0xf)[M_COUNT*KEEP_WIDTH:])
m_axis_tvalid = Signal(intbv(0)[M_COUNT:])
m_axis_tlast = Signal(intbv(0)[M_COUNT:])
m_axis_tid = Signal(intbv(0)[M_COUNT*ID_WIDTH:])
m_axis_tdest = Signal(intbv(0)[M_COUNT*DEST_WIDTH:])
m_axis_tuser = Signal(intbv(0)[M_COUNT*USER_WIDTH:])
m_axis_tdata_list = [m_axis_tdata((i+1)*DATA_WIDTH, i*DATA_WIDTH) for i in range(M_COUNT)]
m_axis_tkeep_list = [m_axis_tkeep((i+1)*KEEP_WIDTH, i*KEEP_WIDTH) for i in range(M_COUNT)]
m_axis_tvalid_list = [m_axis_tvalid(i) for i in range(M_COUNT)]
m_axis_tlast_list = [m_axis_tlast(i) for i in range(M_COUNT)]
m_axis_tid_list = [m_axis_tid((i+1)*ID_WIDTH, i*ID_WIDTH) for i in range(M_COUNT)]
m_axis_tdest_list = [m_axis_tdest((i+1)*DEST_WIDTH, i*DEST_WIDTH) for i in range(M_COUNT)]
m_axis_tuser_list = [m_axis_tuser((i+1)*USER_WIDTH, i*USER_WIDTH) for i in range(M_COUNT)]
# sources and sinks
source_pause = Signal(bool(0))
sink_0_pause = Signal(bool(0))
sink_1_pause = Signal(bool(0))
sink_2_pause = Signal(bool(0))
sink_3_pause = Signal(bool(0))
sink_pause_list = []
sink_list = []
sink_logic_list = []
source = axis_ep.AXIStreamSource()
source_logic = source.create_logic(
clk,
rst,
tdata=input_axis_tdata,
tkeep=input_axis_tkeep,
tvalid=input_axis_tvalid,
tready=input_axis_tready,
tlast=input_axis_tlast,
tid=input_axis_tid,
tdest=input_axis_tdest,
tuser=input_axis_tuser,
tdata=s_axis_tdata,
tkeep=s_axis_tkeep,
tvalid=s_axis_tvalid,
tready=s_axis_tready,
tlast=s_axis_tlast,
tid=s_axis_tid,
tdest=s_axis_tdest,
tuser=s_axis_tuser,
pause=source_pause,
name='source'
)
sink_0 = axis_ep.AXIStreamSink()
for k in range(M_COUNT):
s = axis_ep.AXIStreamSink()
p = Signal(bool(0))
sink_0_logic = sink_0.create_logic(
clk,
rst,
tdata=output_0_axis_tdata,
tkeep=output_0_axis_tkeep,
tvalid=output_0_axis_tvalid,
tready=output_0_axis_tready,
tlast=output_0_axis_tlast,
tid=output_0_axis_tid,
tdest=output_0_axis_tdest,
tuser=output_0_axis_tuser,
pause=sink_0_pause,
name='sink_0'
)
sink_list.append(s)
sink_pause_list.append(p)
sink_1 = axis_ep.AXIStreamSink()
sink_1_logic = sink_1.create_logic(
clk,
rst,
tdata=output_1_axis_tdata,
tkeep=output_1_axis_tkeep,
tvalid=output_1_axis_tvalid,
tready=output_1_axis_tready,
tlast=output_1_axis_tlast,
tid=output_1_axis_tid,
tdest=output_1_axis_tdest,
tuser=output_1_axis_tuser,
pause=sink_1_pause,
name='sink_1'
)
sink_2 = axis_ep.AXIStreamSink()
sink_2_logic = sink_2.create_logic(
clk,
rst,
tdata=output_2_axis_tdata,
tkeep=output_2_axis_tkeep,
tvalid=output_2_axis_tvalid,
tready=output_2_axis_tready,
tlast=output_2_axis_tlast,
tid=output_2_axis_tid,
tdest=output_2_axis_tdest,
tuser=output_2_axis_tuser,
pause=sink_2_pause,
name='sink_2'
)
sink_3 = axis_ep.AXIStreamSink()
sink_3_logic = sink_3.create_logic(
clk,
rst,
tdata=output_3_axis_tdata,
tkeep=output_3_axis_tkeep,
tvalid=output_3_axis_tvalid,
tready=output_3_axis_tready,
tlast=output_3_axis_tlast,
tid=output_3_axis_tid,
tdest=output_3_axis_tdest,
tuser=output_3_axis_tuser,
pause=sink_3_pause,
name='sink_3'
)
sink_logic_list.append(s.create_logic(
clk,
rst,
tdata=m_axis_tdata_list[k],
tkeep=m_axis_tkeep_list[k],
tvalid=m_axis_tvalid_list[k],
tready=m_axis_tready_list[k],
tlast=m_axis_tlast_list[k],
tid=m_axis_tid_list[k],
tdest=m_axis_tdest_list[k],
tuser=m_axis_tuser_list[k],
pause=p,
name='sink_%d' % k
))
# DUT
if os.system(build_cmd):
@ -208,49 +150,26 @@ def bench():
rst=rst,
current_test=current_test,
input_axis_tdata=input_axis_tdata,
input_axis_tkeep=input_axis_tkeep,
input_axis_tvalid=input_axis_tvalid,
input_axis_tready=input_axis_tready,
input_axis_tlast=input_axis_tlast,
input_axis_tid=input_axis_tid,
input_axis_tdest=input_axis_tdest,
input_axis_tuser=input_axis_tuser,
s_axis_tdata=s_axis_tdata,
s_axis_tkeep=s_axis_tkeep,
s_axis_tvalid=s_axis_tvalid,
s_axis_tready=s_axis_tready,
s_axis_tlast=s_axis_tlast,
s_axis_tid=s_axis_tid,
s_axis_tdest=s_axis_tdest,
s_axis_tuser=s_axis_tuser,
output_0_axis_tdata=output_0_axis_tdata,
output_0_axis_tkeep=output_0_axis_tkeep,
output_0_axis_tvalid=output_0_axis_tvalid,
output_0_axis_tready=output_0_axis_tready,
output_0_axis_tlast=output_0_axis_tlast,
output_0_axis_tid=output_0_axis_tid,
output_0_axis_tdest=output_0_axis_tdest,
output_0_axis_tuser=output_0_axis_tuser,
output_1_axis_tdata=output_1_axis_tdata,
output_1_axis_tkeep=output_1_axis_tkeep,
output_1_axis_tvalid=output_1_axis_tvalid,
output_1_axis_tready=output_1_axis_tready,
output_1_axis_tlast=output_1_axis_tlast,
output_1_axis_tid=output_1_axis_tid,
output_1_axis_tdest=output_1_axis_tdest,
output_1_axis_tuser=output_1_axis_tuser,
output_2_axis_tdata=output_2_axis_tdata,
output_2_axis_tkeep=output_2_axis_tkeep,
output_2_axis_tvalid=output_2_axis_tvalid,
output_2_axis_tready=output_2_axis_tready,
output_2_axis_tlast=output_2_axis_tlast,
output_2_axis_tid=output_2_axis_tid,
output_2_axis_tdest=output_2_axis_tdest,
output_2_axis_tuser=output_2_axis_tuser,
output_3_axis_tdata=output_3_axis_tdata,
output_3_axis_tkeep=output_3_axis_tkeep,
output_3_axis_tvalid=output_3_axis_tvalid,
output_3_axis_tready=output_3_axis_tready,
output_3_axis_tlast=output_3_axis_tlast,
output_3_axis_tid=output_3_axis_tid,
output_3_axis_tdest=output_3_axis_tdest,
output_3_axis_tuser=output_3_axis_tuser,
m_axis_tdata=m_axis_tdata,
m_axis_tkeep=m_axis_tkeep,
m_axis_tvalid=m_axis_tvalid,
m_axis_tready=m_axis_tready,
m_axis_tlast=m_axis_tlast,
m_axis_tid=m_axis_tid,
m_axis_tdest=m_axis_tdest,
m_axis_tuser=m_axis_tuser,
enable=enable,
drop=drop,
select=select
)
@ -271,6 +190,7 @@ def bench():
yield clk.posedge
enable.next = True
drop.next = False
yield clk.posedge
print("test 1: select port 0")
@ -289,8 +209,8 @@ def bench():
source.send(test_frame)
yield sink_0.wait()
rx_frame = sink_0.recv()
yield sink_list[0].wait()
rx_frame = sink_list[0].recv()
assert rx_frame == test_frame
@ -313,8 +233,8 @@ def bench():
source.send(test_frame)
yield sink_1.wait()
rx_frame = sink_1.recv()
yield sink_list[1].wait()
rx_frame = sink_list[1].recv()
assert rx_frame == test_frame
@ -346,13 +266,13 @@ def bench():
source.send(test_frame1)
source.send(test_frame2)
yield sink_0.wait()
rx_frame = sink_0.recv()
yield sink_list[0].wait()
rx_frame = sink_list[0].recv()
assert rx_frame == test_frame1
yield sink_0.wait()
rx_frame = sink_0.recv()
yield sink_list[0].wait()
rx_frame = sink_list[0].recv()
assert rx_frame == test_frame2
@ -385,17 +305,17 @@ def bench():
source.send(test_frame2)
yield clk.posedge
while input_axis_tvalid:
while s_axis_tvalid:
yield clk.posedge
select.next = 2
yield sink_1.wait()
rx_frame = sink_1.recv()
yield sink_list[1].wait()
rx_frame = sink_list[1].recv()
assert rx_frame == test_frame1
yield sink_2.wait()
rx_frame = sink_2.recv()
yield sink_list[2].wait()
rx_frame = sink_list[2].recv()
assert rx_frame == test_frame2
@ -428,7 +348,7 @@ def bench():
source.send(test_frame2)
yield clk.posedge
while input_axis_tvalid:
while s_axis_tvalid:
source_pause.next = True
yield clk.posedge
yield clk.posedge
@ -437,13 +357,13 @@ def bench():
yield clk.posedge
select.next = 2
yield sink_1.wait()
rx_frame = sink_1.recv()
yield sink_list[1].wait()
rx_frame = sink_list[1].recv()
assert rx_frame == test_frame1
yield sink_2.wait()
rx_frame = sink_2.recv()
yield sink_list[2].wait()
rx_frame = sink_list[2].recv()
assert rx_frame == test_frame2
@ -476,33 +396,90 @@ def bench():
source.send(test_frame2)
yield clk.posedge
while input_axis_tvalid:
sink_0_pause.next = True
sink_1_pause.next = True
sink_2_pause.next = True
sink_3_pause.next = True
while s_axis_tvalid:
sink_pause_list[0].next = True
sink_pause_list[1].next = True
sink_pause_list[2].next = True
sink_pause_list[3].next = True
yield clk.posedge
yield clk.posedge
yield clk.posedge
sink_0_pause.next = False
sink_1_pause.next = False
sink_2_pause.next = False
sink_3_pause.next = False
sink_pause_list[0].next = False
sink_pause_list[1].next = False
sink_pause_list[2].next = False
sink_pause_list[3].next = False
yield clk.posedge
select.next = 2
yield sink_1.wait()
rx_frame = sink_1.recv()
yield sink_list[1].wait()
rx_frame = sink_list[1].recv()
assert rx_frame == test_frame1
yield sink_2.wait()
rx_frame = sink_2.recv()
yield sink_list[2].wait()
rx_frame = sink_list[2].recv()
assert rx_frame == test_frame2
yield delay(100)
yield clk.posedge
print("test 7: enable")
current_test.next = 7
enable.next = False
select.next = 0
test_frame = axis_ep.AXIStreamFrame(
b'\xDA\xD1\xD2\xD3\xD4\xD5' +
b'\x5A\x51\x52\x53\x54\x55' +
b'\x80\x00' +
b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10',
id=7,
dest=1
)
source.send(test_frame)
yield delay(500)
assert sink_list[0].empty()
enable.next = True
yield sink_list[0].wait()
rx_frame = sink_list[0].recv()
assert rx_frame == test_frame
yield delay(100)
yield clk.posedge
print("test 8: drop")
current_test.next = 8
drop.next = True
select.next = 0
test_frame = axis_ep.AXIStreamFrame(
b'\xDA\xD1\xD2\xD3\xD4\xD5' +
b'\x5A\x51\x52\x53\x54\x55' +
b'\x80\x00' +
b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10',
id=8,
dest=1
)
source.send(test_frame)
yield delay(500)
assert sink_list[0].empty()
drop.next = False
yield delay(100)
raise StopSimulation
return instances()

View File

@ -27,11 +27,12 @@ THE SOFTWARE.
`timescale 1ns / 1ps
/*
* Testbench for axis_demux_4
* Testbench for axis_demux
*/
module test_axis_demux_4;
// Parameters
parameter M_COUNT = 4;
parameter DATA_WIDTH = 8;
parameter KEEP_ENABLE = (DATA_WIDTH>8);
parameter KEEP_WIDTH = (DATA_WIDTH/8);
@ -47,53 +48,30 @@ reg clk = 0;
reg rst = 0;
reg [7:0] current_test = 0;
reg [DATA_WIDTH-1:0] input_axis_tdata = 0;
reg [KEEP_WIDTH-1:0] input_axis_tkeep = 0;
reg input_axis_tvalid = 0;
reg input_axis_tlast = 0;
reg [ID_WIDTH-1:0] input_axis_tid = 0;
reg [DEST_WIDTH-1:0] input_axis_tdest = 0;
reg [USER_WIDTH-1:0] input_axis_tuser = 0;
reg [DATA_WIDTH-1:0] s_axis_tdata = 0;
reg [KEEP_WIDTH-1:0] s_axis_tkeep = 0;
reg s_axis_tvalid = 0;
reg s_axis_tlast = 0;
reg [ID_WIDTH-1:0] s_axis_tid = 0;
reg [DEST_WIDTH-1:0] s_axis_tdest = 0;
reg [USER_WIDTH-1:0] s_axis_tuser = 0;
reg output_0_axis_tready = 0;
reg output_1_axis_tready = 0;
reg output_2_axis_tready = 0;
reg output_3_axis_tready = 0;
reg [M_COUNT-1:0] m_axis_tready = 0;
reg enable = 0;
reg [1:0] select = 0;
reg drop = 0;
reg [$clog2(M_COUNT)-1:0] select = 0;
// Outputs
wire input_axis_tready;
wire s_axis_tready;
wire [DATA_WIDTH-1:0] output_0_axis_tdata;
wire [KEEP_WIDTH-1:0] output_0_axis_tkeep;
wire output_0_axis_tvalid;
wire output_0_axis_tlast;
wire [ID_WIDTH-1:0] output_0_axis_tid;
wire [DEST_WIDTH-1:0] output_0_axis_tdest;
wire [USER_WIDTH-1:0] output_0_axis_tuser;
wire [DATA_WIDTH-1:0] output_1_axis_tdata;
wire [KEEP_WIDTH-1:0] output_1_axis_tkeep;
wire output_1_axis_tvalid;
wire output_1_axis_tlast;
wire [ID_WIDTH-1:0] output_1_axis_tid;
wire [DEST_WIDTH-1:0] output_1_axis_tdest;
wire [USER_WIDTH-1:0] output_1_axis_tuser;
wire [DATA_WIDTH-1:0] output_2_axis_tdata;
wire [KEEP_WIDTH-1:0] output_2_axis_tkeep;
wire output_2_axis_tvalid;
wire output_2_axis_tlast;
wire [ID_WIDTH-1:0] output_2_axis_tid;
wire [DEST_WIDTH-1:0] output_2_axis_tdest;
wire [USER_WIDTH-1:0] output_2_axis_tuser;
wire [DATA_WIDTH-1:0] output_3_axis_tdata;
wire [KEEP_WIDTH-1:0] output_3_axis_tkeep;
wire output_3_axis_tvalid;
wire output_3_axis_tlast;
wire [ID_WIDTH-1:0] output_3_axis_tid;
wire [DEST_WIDTH-1:0] output_3_axis_tdest;
wire [USER_WIDTH-1:0] output_3_axis_tuser;
wire [M_COUNT*DATA_WIDTH-1:0] m_axis_tdata;
wire [M_COUNT*KEEP_WIDTH-1:0] m_axis_tkeep;
wire [M_COUNT-1:0] m_axis_tvalid;
wire [M_COUNT-1:0] m_axis_tlast;
wire [M_COUNT*ID_WIDTH-1:0] m_axis_tid;
wire [M_COUNT*DEST_WIDTH-1:0] m_axis_tdest;
wire [M_COUNT*USER_WIDTH-1:0] m_axis_tuser;
initial begin
// myhdl integration
@ -101,50 +79,27 @@ initial begin
clk,
rst,
current_test,
input_axis_tdata,
input_axis_tkeep,
input_axis_tvalid,
input_axis_tlast,
input_axis_tid,
input_axis_tdest,
input_axis_tuser,
output_0_axis_tready,
output_1_axis_tready,
output_2_axis_tready,
output_3_axis_tready,
s_axis_tdata,
s_axis_tkeep,
s_axis_tvalid,
s_axis_tlast,
s_axis_tid,
s_axis_tdest,
s_axis_tuser,
m_axis_tready,
enable,
drop,
select
);
$to_myhdl(
input_axis_tready,
output_0_axis_tdata,
output_0_axis_tkeep,
output_0_axis_tvalid,
output_0_axis_tlast,
output_0_axis_tid,
output_0_axis_tdest,
output_0_axis_tuser,
output_1_axis_tdata,
output_1_axis_tkeep,
output_1_axis_tvalid,
output_1_axis_tlast,
output_1_axis_tid,
output_1_axis_tdest,
output_1_axis_tuser,
output_2_axis_tdata,
output_2_axis_tkeep,
output_2_axis_tvalid,
output_2_axis_tlast,
output_2_axis_tid,
output_2_axis_tdest,
output_2_axis_tuser,
output_3_axis_tdata,
output_3_axis_tkeep,
output_3_axis_tvalid,
output_3_axis_tlast,
output_3_axis_tid,
output_3_axis_tdest,
output_3_axis_tuser
s_axis_tready,
m_axis_tdata,
m_axis_tkeep,
m_axis_tvalid,
m_axis_tlast,
m_axis_tid,
m_axis_tdest,
m_axis_tuser
);
// dump file
@ -152,7 +107,8 @@ initial begin
$dumpvars(0, test_axis_demux_4);
end
axis_demux_4 #(
axis_demux #(
.M_COUNT(M_COUNT),
.DATA_WIDTH(DATA_WIDTH),
.KEEP_ENABLE(KEEP_ENABLE),
.KEEP_WIDTH(KEEP_WIDTH),
@ -167,49 +123,26 @@ UUT (
.clk(clk),
.rst(rst),
// AXI input
.input_axis_tdata(input_axis_tdata),
.input_axis_tkeep(input_axis_tkeep),
.input_axis_tvalid(input_axis_tvalid),
.input_axis_tready(input_axis_tready),
.input_axis_tlast(input_axis_tlast),
.input_axis_tid(input_axis_tid),
.input_axis_tdest(input_axis_tdest),
.input_axis_tuser(input_axis_tuser),
.s_axis_tdata(s_axis_tdata),
.s_axis_tkeep(s_axis_tkeep),
.s_axis_tvalid(s_axis_tvalid),
.s_axis_tready(s_axis_tready),
.s_axis_tlast(s_axis_tlast),
.s_axis_tid(s_axis_tid),
.s_axis_tdest(s_axis_tdest),
.s_axis_tuser(s_axis_tuser),
// AXI outputs
.output_0_axis_tdata(output_0_axis_tdata),
.output_0_axis_tkeep(output_0_axis_tkeep),
.output_0_axis_tvalid(output_0_axis_tvalid),
.output_0_axis_tready(output_0_axis_tready),
.output_0_axis_tlast(output_0_axis_tlast),
.output_0_axis_tid(output_0_axis_tid),
.output_0_axis_tdest(output_0_axis_tdest),
.output_0_axis_tuser(output_0_axis_tuser),
.output_1_axis_tdata(output_1_axis_tdata),
.output_1_axis_tkeep(output_1_axis_tkeep),
.output_1_axis_tvalid(output_1_axis_tvalid),
.output_1_axis_tready(output_1_axis_tready),
.output_1_axis_tlast(output_1_axis_tlast),
.output_1_axis_tid(output_1_axis_tid),
.output_1_axis_tdest(output_1_axis_tdest),
.output_1_axis_tuser(output_1_axis_tuser),
.output_2_axis_tdata(output_2_axis_tdata),
.output_2_axis_tkeep(output_2_axis_tkeep),
.output_2_axis_tvalid(output_2_axis_tvalid),
.output_2_axis_tready(output_2_axis_tready),
.output_2_axis_tlast(output_2_axis_tlast),
.output_2_axis_tid(output_2_axis_tid),
.output_2_axis_tdest(output_2_axis_tdest),
.output_2_axis_tuser(output_2_axis_tuser),
.output_3_axis_tdata(output_3_axis_tdata),
.output_3_axis_tkeep(output_3_axis_tkeep),
.output_3_axis_tvalid(output_3_axis_tvalid),
.output_3_axis_tready(output_3_axis_tready),
.output_3_axis_tlast(output_3_axis_tlast),
.output_3_axis_tid(output_3_axis_tid),
.output_3_axis_tdest(output_3_axis_tdest),
.output_3_axis_tuser(output_3_axis_tuser),
.m_axis_tdata(m_axis_tdata),
.m_axis_tkeep(m_axis_tkeep),
.m_axis_tvalid(m_axis_tvalid),
.m_axis_tready(m_axis_tready),
.m_axis_tlast(m_axis_tlast),
.m_axis_tid(m_axis_tid),
.m_axis_tdest(m_axis_tdest),
.m_axis_tuser(m_axis_tuser),
// Control
.enable(enable),
.drop(drop),
.select(select)
);

View File

@ -27,9 +27,10 @@ from myhdl import *
import os
import axis_ep
import math
module = 'axis_demux_4'
testbench = 'test_%s_64' % module
module = 'axis_demux'
testbench = 'test_%s_4_64' % module
srcs = []
@ -43,6 +44,7 @@ build_cmd = "iverilog -o %s.vvp %s" % (testbench, src)
def bench():
# Parameters
M_COUNT = 4
DATA_WIDTH = 64
KEEP_ENABLE = (DATA_WIDTH>8)
KEEP_WIDTH = (DATA_WIDTH/8)
@ -58,145 +60,85 @@ def bench():
rst = Signal(bool(0))
current_test = Signal(intbv(0)[8:])
input_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
input_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:])
input_axis_tvalid = Signal(bool(0))
input_axis_tlast = Signal(bool(0))
input_axis_tid = Signal(intbv(0)[ID_WIDTH:])
input_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
input_axis_tuser = Signal(intbv(0)[USER_WIDTH:])
s_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
s_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:])
s_axis_tvalid = Signal(bool(0))
s_axis_tlast = Signal(bool(0))
s_axis_tid = Signal(intbv(0)[ID_WIDTH:])
s_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
s_axis_tuser = Signal(intbv(0)[USER_WIDTH:])
output_0_axis_tready = Signal(bool(0))
output_1_axis_tready = Signal(bool(0))
output_2_axis_tready = Signal(bool(0))
output_3_axis_tready = Signal(bool(0))
m_axis_tready_list = [Signal(bool(0)) for i in range(M_COUNT)]
m_axis_tready = ConcatSignal(*reversed(m_axis_tready_list))
enable = Signal(bool(0))
select = Signal(intbv(0)[2:])
drop = Signal(bool(0))
select = Signal(intbv(0)[math.ceil(math.log(M_COUNT, 2)):])
# Outputs
input_axis_tready = Signal(bool(0))
s_axis_tready = Signal(bool(0))
output_0_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_0_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:])
output_0_axis_tvalid = Signal(bool(0))
output_0_axis_tlast = Signal(bool(0))
output_0_axis_tid = Signal(intbv(0)[ID_WIDTH:])
output_0_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_0_axis_tuser = Signal(intbv(0)[USER_WIDTH:])
output_1_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_1_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:])
output_1_axis_tvalid = Signal(bool(0))
output_1_axis_tlast = Signal(bool(0))
output_1_axis_tid = Signal(intbv(0)[ID_WIDTH:])
output_1_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_1_axis_tuser = Signal(intbv(0)[USER_WIDTH:])
output_2_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_2_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:])
output_2_axis_tvalid = Signal(bool(0))
output_2_axis_tlast = Signal(bool(0))
output_2_axis_tid = Signal(intbv(0)[ID_WIDTH:])
output_2_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_2_axis_tuser = Signal(intbv(0)[USER_WIDTH:])
output_3_axis_tdata = Signal(intbv(0)[DATA_WIDTH:])
output_3_axis_tkeep = Signal(intbv(1)[KEEP_WIDTH:])
output_3_axis_tvalid = Signal(bool(0))
output_3_axis_tlast = Signal(bool(0))
output_3_axis_tid = Signal(intbv(0)[ID_WIDTH:])
output_3_axis_tdest = Signal(intbv(0)[DEST_WIDTH:])
output_3_axis_tuser = Signal(intbv(0)[USER_WIDTH:])
m_axis_tdata = Signal(intbv(0)[M_COUNT*DATA_WIDTH:])
m_axis_tkeep = Signal(intbv(0xf)[M_COUNT*KEEP_WIDTH:])
m_axis_tvalid = Signal(intbv(0)[M_COUNT:])
m_axis_tlast = Signal(intbv(0)[M_COUNT:])
m_axis_tid = Signal(intbv(0)[M_COUNT*ID_WIDTH:])
m_axis_tdest = Signal(intbv(0)[M_COUNT*DEST_WIDTH:])
m_axis_tuser = Signal(intbv(0)[M_COUNT*USER_WIDTH:])
m_axis_tdata_list = [m_axis_tdata((i+1)*DATA_WIDTH, i*DATA_WIDTH) for i in range(M_COUNT)]
m_axis_tkeep_list = [m_axis_tkeep((i+1)*KEEP_WIDTH, i*KEEP_WIDTH) for i in range(M_COUNT)]
m_axis_tvalid_list = [m_axis_tvalid(i) for i in range(M_COUNT)]
m_axis_tlast_list = [m_axis_tlast(i) for i in range(M_COUNT)]
m_axis_tid_list = [m_axis_tid((i+1)*ID_WIDTH, i*ID_WIDTH) for i in range(M_COUNT)]
m_axis_tdest_list = [m_axis_tdest((i+1)*DEST_WIDTH, i*DEST_WIDTH) for i in range(M_COUNT)]
m_axis_tuser_list = [m_axis_tuser((i+1)*USER_WIDTH, i*USER_WIDTH) for i in range(M_COUNT)]
# sources and sinks
source_pause = Signal(bool(0))
sink_0_pause = Signal(bool(0))
sink_1_pause = Signal(bool(0))
sink_2_pause = Signal(bool(0))
sink_3_pause = Signal(bool(0))
sink_pause_list = []
sink_list = []
sink_logic_list = []
source = axis_ep.AXIStreamSource()
source_logic = source.create_logic(
clk,
rst,
tdata=input_axis_tdata,
tkeep=input_axis_tkeep,
tvalid=input_axis_tvalid,
tready=input_axis_tready,
tlast=input_axis_tlast,
tid=input_axis_tid,
tdest=input_axis_tdest,
tuser=input_axis_tuser,
tdata=s_axis_tdata,
tkeep=s_axis_tkeep,
tvalid=s_axis_tvalid,
tready=s_axis_tready,
tlast=s_axis_tlast,
tid=s_axis_tid,
tdest=s_axis_tdest,
tuser=s_axis_tuser,
pause=source_pause,
name='source'
)
sink_0 = axis_ep.AXIStreamSink()
for k in range(M_COUNT):
s = axis_ep.AXIStreamSink()
p = Signal(bool(0))
sink_0_logic = sink_0.create_logic(
clk,
rst,
tdata=output_0_axis_tdata,
tkeep=output_0_axis_tkeep,
tvalid=output_0_axis_tvalid,
tready=output_0_axis_tready,
tlast=output_0_axis_tlast,
tid=output_0_axis_tid,
tdest=output_0_axis_tdest,
tuser=output_0_axis_tuser,
pause=sink_0_pause,
name='sink_0'
)
sink_list.append(s)
sink_pause_list.append(p)
sink_1 = axis_ep.AXIStreamSink()
sink_1_logic = sink_1.create_logic(
clk,
rst,
tdata=output_1_axis_tdata,
tkeep=output_1_axis_tkeep,
tvalid=output_1_axis_tvalid,
tready=output_1_axis_tready,
tlast=output_1_axis_tlast,
tid=output_1_axis_tid,
tdest=output_1_axis_tdest,
tuser=output_1_axis_tuser,
pause=sink_1_pause,
name='sink_1'
)
sink_2 = axis_ep.AXIStreamSink()
sink_2_logic = sink_2.create_logic(
clk,
rst,
tdata=output_2_axis_tdata,
tkeep=output_2_axis_tkeep,
tvalid=output_2_axis_tvalid,
tready=output_2_axis_tready,
tlast=output_2_axis_tlast,
tid=output_2_axis_tid,
tdest=output_2_axis_tdest,
tuser=output_2_axis_tuser,
pause=sink_2_pause,
name='sink_2'
)
sink_3 = axis_ep.AXIStreamSink()
sink_3_logic = sink_3.create_logic(
clk,
rst,
tdata=output_3_axis_tdata,
tkeep=output_3_axis_tkeep,
tvalid=output_3_axis_tvalid,
tready=output_3_axis_tready,
tlast=output_3_axis_tlast,
tid=output_3_axis_tid,
tdest=output_3_axis_tdest,
tuser=output_3_axis_tuser,
pause=sink_3_pause,
name='sink_3'
)
sink_logic_list.append(s.create_logic(
clk,
rst,
tdata=m_axis_tdata_list[k],
tkeep=m_axis_tkeep_list[k],
tvalid=m_axis_tvalid_list[k],
tready=m_axis_tready_list[k],
tlast=m_axis_tlast_list[k],
tid=m_axis_tid_list[k],
tdest=m_axis_tdest_list[k],
tuser=m_axis_tuser_list[k],
pause=p,
name='sink_%d' % k
))
# DUT
if os.system(build_cmd):
@ -208,49 +150,26 @@ def bench():
rst=rst,
current_test=current_test,
input_axis_tdata=input_axis_tdata,
input_axis_tkeep=input_axis_tkeep,
input_axis_tvalid=input_axis_tvalid,
input_axis_tready=input_axis_tready,
input_axis_tlast=input_axis_tlast,
input_axis_tid=input_axis_tid,
input_axis_tdest=input_axis_tdest,
input_axis_tuser=input_axis_tuser,
s_axis_tdata=s_axis_tdata,
s_axis_tkeep=s_axis_tkeep,
s_axis_tvalid=s_axis_tvalid,
s_axis_tready=s_axis_tready,
s_axis_tlast=s_axis_tlast,
s_axis_tid=s_axis_tid,
s_axis_tdest=s_axis_tdest,
s_axis_tuser=s_axis_tuser,
output_0_axis_tdata=output_0_axis_tdata,
output_0_axis_tkeep=output_0_axis_tkeep,
output_0_axis_tvalid=output_0_axis_tvalid,
output_0_axis_tready=output_0_axis_tready,
output_0_axis_tlast=output_0_axis_tlast,
output_0_axis_tid=output_0_axis_tid,
output_0_axis_tdest=output_0_axis_tdest,
output_0_axis_tuser=output_0_axis_tuser,
output_1_axis_tdata=output_1_axis_tdata,
output_1_axis_tkeep=output_1_axis_tkeep,
output_1_axis_tvalid=output_1_axis_tvalid,
output_1_axis_tready=output_1_axis_tready,
output_1_axis_tlast=output_1_axis_tlast,
output_1_axis_tid=output_1_axis_tid,
output_1_axis_tdest=output_1_axis_tdest,
output_1_axis_tuser=output_1_axis_tuser,
output_2_axis_tdata=output_2_axis_tdata,
output_2_axis_tkeep=output_2_axis_tkeep,
output_2_axis_tvalid=output_2_axis_tvalid,
output_2_axis_tready=output_2_axis_tready,
output_2_axis_tlast=output_2_axis_tlast,
output_2_axis_tid=output_2_axis_tid,
output_2_axis_tdest=output_2_axis_tdest,
output_2_axis_tuser=output_2_axis_tuser,
output_3_axis_tdata=output_3_axis_tdata,
output_3_axis_tkeep=output_3_axis_tkeep,
output_3_axis_tvalid=output_3_axis_tvalid,
output_3_axis_tready=output_3_axis_tready,
output_3_axis_tlast=output_3_axis_tlast,
output_3_axis_tid=output_3_axis_tid,
output_3_axis_tdest=output_3_axis_tdest,
output_3_axis_tuser=output_3_axis_tuser,
m_axis_tdata=m_axis_tdata,
m_axis_tkeep=m_axis_tkeep,
m_axis_tvalid=m_axis_tvalid,
m_axis_tready=m_axis_tready,
m_axis_tlast=m_axis_tlast,
m_axis_tid=m_axis_tid,
m_axis_tdest=m_axis_tdest,
m_axis_tuser=m_axis_tuser,
enable=enable,
drop=drop,
select=select
)
@ -271,6 +190,7 @@ def bench():
yield clk.posedge
enable.next = True
drop.next = False
yield clk.posedge
print("test 1: select port 0")
@ -289,8 +209,8 @@ def bench():
source.send(test_frame)
yield sink_0.wait()
rx_frame = sink_0.recv()
yield sink_list[0].wait()
rx_frame = sink_list[0].recv()
assert rx_frame == test_frame
@ -313,8 +233,8 @@ def bench():
source.send(test_frame)
yield sink_1.wait()
rx_frame = sink_1.recv()
yield sink_list[1].wait()
rx_frame = sink_list[1].recv()
assert rx_frame == test_frame
@ -346,13 +266,13 @@ def bench():
source.send(test_frame1)
source.send(test_frame2)
yield sink_0.wait()
rx_frame = sink_0.recv()
yield sink_list[0].wait()
rx_frame = sink_list[0].recv()
assert rx_frame == test_frame1
yield sink_0.wait()
rx_frame = sink_0.recv()
yield sink_list[0].wait()
rx_frame = sink_list[0].recv()
assert rx_frame == test_frame2
@ -385,17 +305,17 @@ def bench():
source.send(test_frame2)
yield clk.posedge
while input_axis_tvalid:
while s_axis_tvalid:
yield clk.posedge
select.next = 2
yield sink_1.wait()
rx_frame = sink_1.recv()
yield sink_list[1].wait()
rx_frame = sink_list[1].recv()
assert rx_frame == test_frame1
yield sink_2.wait()
rx_frame = sink_2.recv()
yield sink_list[2].wait()
rx_frame = sink_list[2].recv()
assert rx_frame == test_frame2
@ -428,7 +348,7 @@ def bench():
source.send(test_frame2)
yield clk.posedge
while input_axis_tvalid:
while s_axis_tvalid:
source_pause.next = True
yield clk.posedge
yield clk.posedge
@ -437,13 +357,13 @@ def bench():
yield clk.posedge
select.next = 2
yield sink_1.wait()
rx_frame = sink_1.recv()
yield sink_list[1].wait()
rx_frame = sink_list[1].recv()
assert rx_frame == test_frame1
yield sink_2.wait()
rx_frame = sink_2.recv()
yield sink_list[2].wait()
rx_frame = sink_list[2].recv()
assert rx_frame == test_frame2
@ -476,33 +396,90 @@ def bench():
source.send(test_frame2)
yield clk.posedge
while input_axis_tvalid:
sink_0_pause.next = True
sink_1_pause.next = True
sink_2_pause.next = True
sink_3_pause.next = True
while s_axis_tvalid:
sink_pause_list[0].next = True
sink_pause_list[1].next = True
sink_pause_list[2].next = True
sink_pause_list[3].next = True
yield clk.posedge
yield clk.posedge
yield clk.posedge
sink_0_pause.next = False
sink_1_pause.next = False
sink_2_pause.next = False
sink_3_pause.next = False
sink_pause_list[0].next = False
sink_pause_list[1].next = False
sink_pause_list[2].next = False
sink_pause_list[3].next = False
yield clk.posedge
select.next = 2
yield sink_1.wait()
rx_frame = sink_1.recv()
yield sink_list[1].wait()
rx_frame = sink_list[1].recv()
assert rx_frame == test_frame1
yield sink_2.wait()
rx_frame = sink_2.recv()
yield sink_list[2].wait()
rx_frame = sink_list[2].recv()
assert rx_frame == test_frame2
yield delay(100)
yield clk.posedge
print("test 7: enable")
current_test.next = 7
enable.next = False
select.next = 0
test_frame = axis_ep.AXIStreamFrame(
b'\xDA\xD1\xD2\xD3\xD4\xD5' +
b'\x5A\x51\x52\x53\x54\x55' +
b'\x80\x00' +
b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10',
id=7,
dest=1
)
source.send(test_frame)
yield delay(100)
assert sink_list[0].empty()
enable.next = True
yield sink_list[0].wait()
rx_frame = sink_list[0].recv()
assert rx_frame == test_frame
yield delay(100)
yield clk.posedge
print("test 8: drop")
current_test.next = 8
drop.next = True
select.next = 0
test_frame = axis_ep.AXIStreamFrame(
b'\xDA\xD1\xD2\xD3\xD4\xD5' +
b'\x5A\x51\x52\x53\x54\x55' +
b'\x80\x00' +
b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10',
id=8,
dest=1
)
source.send(test_frame)
yield delay(100)
assert sink_list[0].empty()
drop.next = False
yield delay(100)
raise StopSimulation
return instances()

View File

@ -27,11 +27,12 @@ THE SOFTWARE.
`timescale 1ns / 1ps
/*
* Testbench for axis_demux_4
* Testbench for axis_demux
*/
module test_axis_demux_4_64;
// Parameters
parameter M_COUNT = 4;
parameter DATA_WIDTH = 64;
parameter KEEP_ENABLE = (DATA_WIDTH>8);
parameter KEEP_WIDTH = (DATA_WIDTH/8);
@ -47,53 +48,30 @@ reg clk = 0;
reg rst = 0;
reg [7:0] current_test = 0;
reg [DATA_WIDTH-1:0] input_axis_tdata = 0;
reg [KEEP_WIDTH-1:0] input_axis_tkeep = 0;
reg input_axis_tvalid = 0;
reg input_axis_tlast = 0;
reg [ID_WIDTH-1:0] input_axis_tid = 0;
reg [DEST_WIDTH-1:0] input_axis_tdest = 0;
reg [USER_WIDTH-1:0] input_axis_tuser = 0;
reg [DATA_WIDTH-1:0] s_axis_tdata = 0;
reg [KEEP_WIDTH-1:0] s_axis_tkeep = 0;
reg s_axis_tvalid = 0;
reg s_axis_tlast = 0;
reg [ID_WIDTH-1:0] s_axis_tid = 0;
reg [DEST_WIDTH-1:0] s_axis_tdest = 0;
reg [USER_WIDTH-1:0] s_axis_tuser = 0;
reg output_0_axis_tready = 0;
reg output_1_axis_tready = 0;
reg output_2_axis_tready = 0;
reg output_3_axis_tready = 0;
reg [M_COUNT-1:0] m_axis_tready = 0;
reg enable = 0;
reg [1:0] select = 0;
reg drop = 0;
reg [$clog2(M_COUNT)-1:0] select = 0;
// Outputs
wire input_axis_tready;
wire s_axis_tready;
wire [DATA_WIDTH-1:0] output_0_axis_tdata;
wire [KEEP_WIDTH-1:0] output_0_axis_tkeep;
wire output_0_axis_tvalid;
wire output_0_axis_tlast;
wire [ID_WIDTH-1:0] output_0_axis_tid;
wire [DEST_WIDTH-1:0] output_0_axis_tdest;
wire [USER_WIDTH-1:0] output_0_axis_tuser;
wire [DATA_WIDTH-1:0] output_1_axis_tdata;
wire [KEEP_WIDTH-1:0] output_1_axis_tkeep;
wire output_1_axis_tvalid;
wire output_1_axis_tlast;
wire [ID_WIDTH-1:0] output_1_axis_tid;
wire [DEST_WIDTH-1:0] output_1_axis_tdest;
wire [USER_WIDTH-1:0] output_1_axis_tuser;
wire [DATA_WIDTH-1:0] output_2_axis_tdata;
wire [KEEP_WIDTH-1:0] output_2_axis_tkeep;
wire output_2_axis_tvalid;
wire output_2_axis_tlast;
wire [ID_WIDTH-1:0] output_2_axis_tid;
wire [DEST_WIDTH-1:0] output_2_axis_tdest;
wire [USER_WIDTH-1:0] output_2_axis_tuser;
wire [DATA_WIDTH-1:0] output_3_axis_tdata;
wire [KEEP_WIDTH-1:0] output_3_axis_tkeep;
wire output_3_axis_tvalid;
wire output_3_axis_tlast;
wire [ID_WIDTH-1:0] output_3_axis_tid;
wire [DEST_WIDTH-1:0] output_3_axis_tdest;
wire [USER_WIDTH-1:0] output_3_axis_tuser;
wire [M_COUNT*DATA_WIDTH-1:0] m_axis_tdata;
wire [M_COUNT*KEEP_WIDTH-1:0] m_axis_tkeep;
wire [M_COUNT-1:0] m_axis_tvalid;
wire [M_COUNT-1:0] m_axis_tlast;
wire [M_COUNT*ID_WIDTH-1:0] m_axis_tid;
wire [M_COUNT*DEST_WIDTH-1:0] m_axis_tdest;
wire [M_COUNT*USER_WIDTH-1:0] m_axis_tuser;
initial begin
// myhdl integration
@ -101,50 +79,27 @@ initial begin
clk,
rst,
current_test,
input_axis_tdata,
input_axis_tkeep,
input_axis_tvalid,
input_axis_tlast,
input_axis_tid,
input_axis_tdest,
input_axis_tuser,
output_0_axis_tready,
output_1_axis_tready,
output_2_axis_tready,
output_3_axis_tready,
s_axis_tdata,
s_axis_tkeep,
s_axis_tvalid,
s_axis_tlast,
s_axis_tid,
s_axis_tdest,
s_axis_tuser,
m_axis_tready,
enable,
drop,
select
);
$to_myhdl(
input_axis_tready,
output_0_axis_tdata,
output_0_axis_tkeep,
output_0_axis_tvalid,
output_0_axis_tlast,
output_0_axis_tid,
output_0_axis_tdest,
output_0_axis_tuser,
output_1_axis_tdata,
output_1_axis_tkeep,
output_1_axis_tvalid,
output_1_axis_tlast,
output_1_axis_tid,
output_1_axis_tdest,
output_1_axis_tuser,
output_2_axis_tdata,
output_2_axis_tkeep,
output_2_axis_tvalid,
output_2_axis_tlast,
output_2_axis_tid,
output_2_axis_tdest,
output_2_axis_tuser,
output_3_axis_tdata,
output_3_axis_tkeep,
output_3_axis_tvalid,
output_3_axis_tlast,
output_3_axis_tid,
output_3_axis_tdest,
output_3_axis_tuser
s_axis_tready,
m_axis_tdata,
m_axis_tkeep,
m_axis_tvalid,
m_axis_tlast,
m_axis_tid,
m_axis_tdest,
m_axis_tuser
);
// dump file
@ -152,7 +107,8 @@ initial begin
$dumpvars(0, test_axis_demux_4_64);
end
axis_demux_4 #(
axis_demux #(
.M_COUNT(M_COUNT),
.DATA_WIDTH(DATA_WIDTH),
.KEEP_ENABLE(KEEP_ENABLE),
.KEEP_WIDTH(KEEP_WIDTH),
@ -167,49 +123,26 @@ UUT (
.clk(clk),
.rst(rst),
// AXI input
.input_axis_tdata(input_axis_tdata),
.input_axis_tkeep(input_axis_tkeep),
.input_axis_tvalid(input_axis_tvalid),
.input_axis_tready(input_axis_tready),
.input_axis_tlast(input_axis_tlast),
.input_axis_tid(input_axis_tid),
.input_axis_tdest(input_axis_tdest),
.input_axis_tuser(input_axis_tuser),
.s_axis_tdata(s_axis_tdata),
.s_axis_tkeep(s_axis_tkeep),
.s_axis_tvalid(s_axis_tvalid),
.s_axis_tready(s_axis_tready),
.s_axis_tlast(s_axis_tlast),
.s_axis_tid(s_axis_tid),
.s_axis_tdest(s_axis_tdest),
.s_axis_tuser(s_axis_tuser),
// AXI outputs
.output_0_axis_tdata(output_0_axis_tdata),
.output_0_axis_tkeep(output_0_axis_tkeep),
.output_0_axis_tvalid(output_0_axis_tvalid),
.output_0_axis_tready(output_0_axis_tready),
.output_0_axis_tlast(output_0_axis_tlast),
.output_0_axis_tid(output_0_axis_tid),
.output_0_axis_tdest(output_0_axis_tdest),
.output_0_axis_tuser(output_0_axis_tuser),
.output_1_axis_tdata(output_1_axis_tdata),
.output_1_axis_tkeep(output_1_axis_tkeep),
.output_1_axis_tvalid(output_1_axis_tvalid),
.output_1_axis_tready(output_1_axis_tready),
.output_1_axis_tlast(output_1_axis_tlast),
.output_1_axis_tid(output_1_axis_tid),
.output_1_axis_tdest(output_1_axis_tdest),
.output_1_axis_tuser(output_1_axis_tuser),
.output_2_axis_tdata(output_2_axis_tdata),
.output_2_axis_tkeep(output_2_axis_tkeep),
.output_2_axis_tvalid(output_2_axis_tvalid),
.output_2_axis_tready(output_2_axis_tready),
.output_2_axis_tlast(output_2_axis_tlast),
.output_2_axis_tid(output_2_axis_tid),
.output_2_axis_tdest(output_2_axis_tdest),
.output_2_axis_tuser(output_2_axis_tuser),
.output_3_axis_tdata(output_3_axis_tdata),
.output_3_axis_tkeep(output_3_axis_tkeep),
.output_3_axis_tvalid(output_3_axis_tvalid),
.output_3_axis_tready(output_3_axis_tready),
.output_3_axis_tlast(output_3_axis_tlast),
.output_3_axis_tid(output_3_axis_tid),
.output_3_axis_tdest(output_3_axis_tdest),
.output_3_axis_tuser(output_3_axis_tuser),
.m_axis_tdata(m_axis_tdata),
.m_axis_tkeep(m_axis_tkeep),
.m_axis_tvalid(m_axis_tvalid),
.m_axis_tready(m_axis_tready),
.m_axis_tlast(m_axis_tlast),
.m_axis_tid(m_axis_tid),
.m_axis_tdest(m_axis_tdest),
.m_axis_tuser(m_axis_tuser),
// Control
.enable(enable),
.drop(drop),
.select(select)
);