1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00

Remove tx_scheduler_tdma_rr module

This commit is contained in:
Alex Forencich 2019-11-05 22:10:47 -08:00
parent 3655a6df00
commit c954b55da9

View File

@ -1,544 +0,0 @@
/*
Copyright 2019, The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA ''AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF CALIFORNIA OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of The Regents of the University of California.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* TDMA Transmit scheduler (round-robin)
*/
module tx_scheduler_tdma_rr #
(
// Width of AXI lite data bus in bits
parameter AXIL_DATA_WIDTH = 32,
// Width of AXI lite address bus in bits
parameter AXIL_ADDR_WIDTH = 16,
// Width of AXI lite wstrb (width of data bus in words)
parameter AXIL_STRB_WIDTH = (AXIL_DATA_WIDTH/8),
// AXI DMA length field width
parameter AXI_DMA_LEN_WIDTH = 16,
// Transmit request tag field width
parameter REQ_TAG_WIDTH = 8,
// TDMA timeslot index width
parameter TDMA_INDEX_WIDTH = 6,
// Queue index width
parameter QUEUE_INDEX_WIDTH = 6,
// Schedule absolute PTP start time, seconds part
parameter SCHEDULE_START_S = 48'h0,
// Schedule absolute PTP start time, nanoseconds part
parameter SCHEDULE_START_NS = 30'h0,
// Schedule period, seconds part
parameter SCHEDULE_PERIOD_S = 48'd0,
// Schedule period, nanoseconds part
parameter SCHEDULE_PERIOD_NS = 30'd1000000,
// Timeslot period, seconds part
parameter TIMESLOT_PERIOD_S = 48'd0,
// Timeslot period, nanoseconds part
parameter TIMESLOT_PERIOD_NS = 30'd100000,
// Timeslot active period, seconds part
parameter ACTIVE_PERIOD_S = 48'd0,
// Timeslot active period, nanoseconds part
parameter ACTIVE_PERIOD_NS = 30'd100000
)
(
input wire clk,
input wire rst,
/*
* Transmit request output (queue index)
*/
output wire [QUEUE_INDEX_WIDTH-1:0] m_axis_tx_req_queue,
output wire [REQ_TAG_WIDTH-1:0] m_axis_tx_req_tag,
output wire m_axis_tx_req_valid,
input wire m_axis_tx_req_ready,
/*
* Transmit request status input
*/
input wire [AXI_DMA_LEN_WIDTH-1:0] s_axis_tx_req_status_len,
input wire [REQ_TAG_WIDTH-1:0] s_axis_tx_req_status_tag,
input wire s_axis_tx_req_status_valid,
/*
* Doorbell input
*/
input wire [QUEUE_INDEX_WIDTH-1:0] s_axis_doorbell_queue,
input wire s_axis_doorbell_valid,
/*
* AXI-Lite slave interface
*/
input wire [AXIL_ADDR_WIDTH-1:0] s_axil_awaddr,
input wire [2:0] s_axil_awprot,
input wire s_axil_awvalid,
output wire s_axil_awready,
input wire [AXIL_DATA_WIDTH-1:0] s_axil_wdata,
input wire [AXIL_STRB_WIDTH-1:0] s_axil_wstrb,
input wire s_axil_wvalid,
output wire s_axil_wready,
output wire [1:0] s_axil_bresp,
output wire s_axil_bvalid,
input wire s_axil_bready,
input wire [AXIL_ADDR_WIDTH-1:0] s_axil_araddr,
input wire [2:0] s_axil_arprot,
input wire s_axil_arvalid,
output wire s_axil_arready,
output wire [AXIL_DATA_WIDTH-1:0] s_axil_rdata,
output wire [1:0] s_axil_rresp,
output wire s_axil_rvalid,
input wire s_axil_rready,
/*
* PTP clock
*/
input wire [95:0] ptp_ts_96,
input wire ptp_ts_step
);
parameter VALID_ADDR_WIDTH = AXIL_ADDR_WIDTH - $clog2(AXIL_STRB_WIDTH);
parameter WORD_WIDTH = AXIL_STRB_WIDTH;
parameter WORD_SIZE = AXIL_DATA_WIDTH/WORD_WIDTH;
// check configuration
initial begin
if (AXIL_ADDR_WIDTH < 18) begin // TODO
$error("Error: AXI address width too narrow (instance %m)");
$finish;
end
if (AXIL_DATA_WIDTH != 32) begin
$error("Error: AXI data width must be 32 (instance %m)");
$finish;
end
if (AXIL_STRB_WIDTH * 8 != AXIL_DATA_WIDTH) begin
$error("Error: Interface requires byte (8-bit) granularity (instance %m)");
$finish;
end
end
parameter QUEUE_WIDTH = 2**QUEUE_INDEX_WIDTH;
reg [QUEUE_WIDTH-1:0] queue_enable_reg = 0, queue_enable_next;
reg [QUEUE_WIDTH-1:0] queue_active_reg = 0;
reg [QUEUE_WIDTH-1:0] queue_mask_reg = 0;
reg [QUEUE_WIDTH-1:0] global_enable_reg = 0, global_enable_next;
reg [QUEUE_WIDTH-1:0] slot_enable_reg = 0;
reg slot_enable_mem_read_reg = 0;
reg [QUEUE_WIDTH-1:0] slot_enable_mem_read_data_reg = 0;
reg tdma_timeslot_active_delay_reg = 1'b0;
reg [QUEUE_WIDTH-1:0] slot_enable_delay_reg = 0;
reg [QUEUE_WIDTH-1:0] slot_enable_mem[(2**TDMA_INDEX_WIDTH)-1:0];
reg [QUEUE_INDEX_WIDTH-1:0] m_axis_tx_req_queue_reg = 0;
reg [REQ_TAG_WIDTH-1:0] m_axis_tx_req_tag_reg = 0;
reg m_axis_tx_req_valid_reg = 1'b0;
wire queue_valid;
wire [QUEUE_INDEX_WIDTH-1:0] queue_index;
priority_encoder #(
.WIDTH(QUEUE_WIDTH),
.LSB_PRIORITY("HIGH")
)
priority_encoder_inst (
.input_unencoded(queue_active_reg & queue_enable_reg & (global_enable_reg | slot_enable_reg)),
.output_valid(queue_valid),
.output_encoded(queue_index),
.output_unencoded()
);
wire masked_queue_valid;
wire [QUEUE_INDEX_WIDTH-1:0] masked_queue_index;
priority_encoder #(
.WIDTH(QUEUE_WIDTH),
.LSB_PRIORITY("HIGH")
)
priority_encoder_masked (
.input_unencoded(queue_active_reg & queue_mask_reg & queue_enable_reg & (global_enable_reg | slot_enable_reg)),
.output_valid(masked_queue_valid),
.output_encoded(masked_queue_index),
.output_unencoded()
);
integer i;
initial begin
for (i = 0; i < 2**(TDMA_INDEX_WIDTH); i = i + 1) begin
slot_enable_mem[i] = 0;
end
end
always @(posedge clk) begin
if (s_axis_doorbell_valid) begin
queue_active_reg <= queue_active_reg | (1 << s_axis_doorbell_queue);
end
// TODO deactivate idle queues
m_axis_tx_req_valid_reg <= m_axis_tx_req_valid_reg && !m_axis_tx_req_ready;
if (!m_axis_tx_req_valid || m_axis_tx_req_ready) begin
if (queue_valid) begin
if (masked_queue_valid) begin
m_axis_tx_req_queue_reg <= masked_queue_index;
m_axis_tx_req_valid_reg <= 1'b1;
queue_mask_reg <= {QUEUE_WIDTH{1'b1}} << (masked_queue_index + 1);
end else begin
m_axis_tx_req_queue_reg <= queue_index;
m_axis_tx_req_valid_reg <= 1'b1;
queue_mask_reg <= {QUEUE_WIDTH{1'b1}} << (queue_index + 1);
end
end
end
slot_enable_delay_reg <= slot_enable_mem[tdma_timeslot_index];
tdma_timeslot_active_delay_reg <= tdma_timeslot_active;
if (tdma_enable_reg && tdma_timeslot_active_delay_reg) begin
slot_enable_reg <= slot_enable_delay_reg;
end else begin
slot_enable_reg <= 0;
end
if (rst) begin
queue_active_reg <= 0;
queue_mask_reg <= 0;
tdma_timeslot_active_delay_reg <= 1'b0;
end
end
// control registers
reg read_eligible;
reg write_eligible;
reg mem_wr_en;
reg mem_rd_en;
reg last_read_reg = 1'b0, last_read_next;
reg s_axil_awready_reg = 1'b0, s_axil_awready_next;
reg s_axil_wready_reg = 1'b0, s_axil_wready_next;
reg s_axil_bvalid_reg = 1'b0, s_axil_bvalid_next;
reg s_axil_arready_reg = 1'b0, s_axil_arready_next;
reg [AXIL_DATA_WIDTH-1:0] s_axil_rdata_reg = {AXIL_DATA_WIDTH{1'b0}}, s_axil_rdata_next;
reg s_axil_rvalid_reg = 1'b0, s_axil_rvalid_next;
reg tdma_enable_reg = 1'b0, tdma_enable_next;
wire tdma_locked;
wire tdma_error;
reg [79:0] set_tdma_schedule_start_reg = 0, set_tdma_schedule_start_next;
reg set_tdma_schedule_start_valid_reg = 0, set_tdma_schedule_start_valid_next;
reg [79:0] set_tdma_schedule_period_reg = 0, set_tdma_schedule_period_next;
reg set_tdma_schedule_period_valid_reg = 0, set_tdma_schedule_period_valid_next;
reg [79:0] set_tdma_timeslot_period_reg = 0, set_tdma_timeslot_period_next;
reg set_tdma_timeslot_period_valid_reg = 0, set_tdma_timeslot_period_valid_next;
reg [79:0] set_tdma_active_period_reg = 0, set_tdma_active_period_next;
reg set_tdma_active_period_valid_reg = 0, set_tdma_active_period_valid_next;
wire tdma_schedule_start;
wire [TDMA_INDEX_WIDTH-1:0] tdma_timeslot_index;
wire tdma_timeslot_start;
wire tdma_timeslot_end;
wire tdma_timeslot_active;
assign m_axis_tx_req_queue = m_axis_tx_req_queue_reg;
assign m_axis_tx_req_tag = m_axis_tx_req_tag_reg;
assign m_axis_tx_req_valid = m_axis_tx_req_valid_reg;
assign s_axil_awready = s_axil_awready_reg;
assign s_axil_wready = s_axil_wready_reg;
assign s_axil_bresp = 2'b00;
assign s_axil_bvalid = s_axil_bvalid_reg;
assign s_axil_arready = s_axil_arready_reg;
assign s_axil_rdata = slot_enable_mem_read_reg ? slot_enable_mem_read_data_reg : s_axil_rdata_reg;
assign s_axil_rresp = 2'b00;
assign s_axil_rvalid = s_axil_rvalid_reg;
wire [TDMA_INDEX_WIDTH-1:0] axil_ram_addr = mem_rd_en ? s_axil_araddr[15:8] : s_axil_awaddr[15:8];
always @* begin
mem_wr_en = 1'b0;
mem_rd_en = 1'b0;
last_read_next = last_read_reg;
s_axil_awready_next = 1'b0;
s_axil_wready_next = 1'b0;
s_axil_bvalid_next = s_axil_bvalid_reg && !s_axil_bready;
s_axil_arready_next = 1'b0;
s_axil_rdata_next = s_axil_rdata_reg;
s_axil_rvalid_next = s_axil_rvalid_reg && !s_axil_rready;
set_tdma_schedule_start_next = set_tdma_schedule_start_reg;
set_tdma_schedule_start_valid_next = 1'b0;
set_tdma_schedule_period_next = set_tdma_schedule_period_reg;
set_tdma_schedule_period_valid_next = 1'b0;
set_tdma_timeslot_period_next = set_tdma_timeslot_period_reg;
set_tdma_timeslot_period_valid_next = 1'b0;
set_tdma_active_period_next = set_tdma_active_period_reg;
set_tdma_active_period_valid_next = 1'b0;
queue_enable_next = queue_enable_reg;
global_enable_next = global_enable_reg;
tdma_enable_next = tdma_enable_reg;
write_eligible = s_axil_awvalid && s_axil_wvalid && (!s_axil_bvalid || s_axil_bready) && (!s_axil_awready && !s_axil_wready);
read_eligible = s_axil_arvalid && (!s_axil_rvalid || s_axil_rready) && (!s_axil_arready);
if (write_eligible && (!read_eligible || last_read_reg)) begin
last_read_next = 1'b0;
// write operation
s_axil_awready_next = 1'b1;
s_axil_wready_next = 1'b1;
s_axil_bvalid_next = 1'b1;
if (s_axil_awaddr[16]) begin
mem_wr_en = 1'b1;
end else begin
case (s_axil_awaddr & {{14{1'b1}}, 2'b00})
// TDMA scheduler
16'h0100: begin
// TDMA control
tdma_enable_next = s_axil_wdata[0];
end
16'h0114: set_tdma_schedule_start_next[29:0] = s_axil_wdata; // TDMA schedule start ns
16'h0118: set_tdma_schedule_start_next[63:32] = s_axil_wdata; // TDMA schedule start sec l
16'h011C: begin
// TDMA schedule start sec h
set_tdma_schedule_start_next[79:64] = s_axil_wdata;
set_tdma_schedule_start_valid_next = 1'b1;
end
16'h0124: set_tdma_schedule_period_next[29:0] = s_axil_wdata; // TDMA schedule period ns
16'h0128: set_tdma_schedule_period_next[63:32] = s_axil_wdata; // TDMA schedule period sec l
16'h012C: begin
// TDMA schedule period sec h
set_tdma_schedule_period_next[79:64] = s_axil_wdata;
set_tdma_schedule_period_valid_next = 1'b1;
end
16'h0134: set_tdma_timeslot_period_next[29:0] = s_axil_wdata; // TDMA timeslot period ns
16'h0138: set_tdma_timeslot_period_next[63:32] = s_axil_wdata; // TDMA timeslot period sec l
16'h013C: begin
// TDMA timeslot period sec h
set_tdma_timeslot_period_next[79:64] = s_axil_wdata;
set_tdma_timeslot_period_valid_next = 1'b1;
end
16'h0144: set_tdma_active_period_next[29:0] = s_axil_wdata; // TDMA active period ns
16'h0148: set_tdma_active_period_next[63:32] = s_axil_wdata; // TDMA active period sec l
16'h014C: begin
// TDMA active period sec h
set_tdma_active_period_next[79:64] = s_axil_wdata;
set_tdma_active_period_valid_next = 1'b1;
end
//
16'h0200: queue_enable_next = (queue_enable_reg & ~(32'hffffffff << 0)) | s_axil_wdata << 0;
16'h0204: queue_enable_next = (queue_enable_reg & ~(32'hffffffff << 32)) | s_axil_wdata << 32;
16'h0208: queue_enable_next = (queue_enable_reg & ~(32'hffffffff << 64)) | s_axil_wdata << 64;
16'h020c: queue_enable_next = (queue_enable_reg & ~(32'hffffffff << 96)) | s_axil_wdata << 96;
16'h0210: queue_enable_next = (queue_enable_reg & ~(32'hffffffff << 128)) | s_axil_wdata << 128;
16'h0214: queue_enable_next = (queue_enable_reg & ~(32'hffffffff << 160)) | s_axil_wdata << 160;
16'h0218: queue_enable_next = (queue_enable_reg & ~(32'hffffffff << 192)) | s_axil_wdata << 192;
16'h021c: queue_enable_next = (queue_enable_reg & ~(32'hffffffff << 224)) | s_axil_wdata << 224;
16'h0300: global_enable_next = (global_enable_reg & ~(32'hffffffff << 0)) | s_axil_wdata << 0;
16'h0304: global_enable_next = (global_enable_reg & ~(32'hffffffff << 32)) | s_axil_wdata << 32;
16'h0308: global_enable_next = (global_enable_reg & ~(32'hffffffff << 64)) | s_axil_wdata << 64;
16'h030c: global_enable_next = (global_enable_reg & ~(32'hffffffff << 96)) | s_axil_wdata << 96;
16'h0310: global_enable_next = (global_enable_reg & ~(32'hffffffff << 128)) | s_axil_wdata << 128;
16'h0314: global_enable_next = (global_enable_reg & ~(32'hffffffff << 160)) | s_axil_wdata << 160;
16'h0318: global_enable_next = (global_enable_reg & ~(32'hffffffff << 192)) | s_axil_wdata << 192;
16'h031c: global_enable_next = (global_enable_reg & ~(32'hffffffff << 224)) | s_axil_wdata << 224;
endcase
end
end else if (read_eligible) begin
last_read_next = 1'b1;
// read operation
s_axil_arready_next = 1'b1;
s_axil_rvalid_next = 1'b1;
s_axil_rdata_next = {AXIL_DATA_WIDTH{1'b0}};
if (s_axil_araddr[16]) begin
mem_rd_en = 1'b1;
end else begin
case (s_axil_araddr & {{14{1'b1}}, 2'b00})
16'h0000: s_axil_rdata_next = 32'h00000001;
16'h0010: s_axil_rdata_next = QUEUE_INDEX_WIDTH;
16'h0014: s_axil_rdata_next = TDMA_INDEX_WIDTH;
// TDMA scheduler
16'h0100: begin
// TDMA control
s_axil_rdata_next[0] = tdma_enable_reg;
end
16'h0104: begin
// TDMA status
s_axil_rdata_next[0] = tdma_locked;
s_axil_rdata_next[1] = tdma_error;
end
16'h0114: s_axil_rdata_next = set_tdma_schedule_start_reg[29:0]; // TDMA schedule start ns
16'h0118: s_axil_rdata_next = set_tdma_schedule_start_reg[63:32]; // TDMA schedule start sec l
16'h011C: s_axil_rdata_next = set_tdma_schedule_start_reg[79:64]; // TDMA schedule start sec h
16'h0124: s_axil_rdata_next = set_tdma_schedule_period_reg[29:0]; // TDMA schedule period ns
16'h0128: s_axil_rdata_next = set_tdma_schedule_period_reg[63:32]; // TDMA schedule period sec l
16'h012C: s_axil_rdata_next = set_tdma_schedule_period_reg[79:64]; // TDMA schedule period sec h
16'h0134: s_axil_rdata_next = set_tdma_timeslot_period_reg[29:0]; // TDMA timeslot period ns
16'h0138: s_axil_rdata_next = set_tdma_timeslot_period_reg[63:32]; // TDMA timeslot period sec l
16'h013C: s_axil_rdata_next = set_tdma_timeslot_period_reg[79:64]; // TDMA timeslot period sec h
16'h0144: s_axil_rdata_next = set_tdma_active_period_reg[29:0]; // TDMA active period ns
16'h0148: s_axil_rdata_next = set_tdma_active_period_reg[63:32]; // TDMA active period sec l
16'h014C: s_axil_rdata_next = set_tdma_active_period_reg[79:64]; // TDMA active period sec h
//
16'h0200: s_axil_rdata_next = queue_enable_reg;
16'h0204: s_axil_rdata_next = queue_enable_reg >> 32;
16'h0208: s_axil_rdata_next = queue_enable_reg >> 64;
16'h020C: s_axil_rdata_next = queue_enable_reg >> 96;
16'h0210: s_axil_rdata_next = queue_enable_reg >> 128;
16'h0214: s_axil_rdata_next = queue_enable_reg >> 160;
16'h0218: s_axil_rdata_next = queue_enable_reg >> 192;
16'h021C: s_axil_rdata_next = queue_enable_reg >> 224;
16'h0300: s_axil_rdata_next = global_enable_reg;
16'h0304: s_axil_rdata_next = global_enable_reg >> 32;
16'h0308: s_axil_rdata_next = global_enable_reg >> 64;
16'h030C: s_axil_rdata_next = global_enable_reg >> 96;
16'h0310: s_axil_rdata_next = global_enable_reg >> 128;
16'h0314: s_axil_rdata_next = global_enable_reg >> 160;
16'h0318: s_axil_rdata_next = global_enable_reg >> 192;
16'h031C: s_axil_rdata_next = global_enable_reg >> 224;
endcase
end
end
end
always @(posedge clk) begin
last_read_reg <= last_read_next;
s_axil_awready_reg <= s_axil_awready_next;
s_axil_wready_reg <= s_axil_wready_next;
s_axil_bvalid_reg <= s_axil_bvalid_next;
s_axil_arready_reg <= s_axil_arready_next;
s_axil_rdata_reg <= s_axil_rdata_next;
s_axil_rvalid_reg <= s_axil_rvalid_next;
set_tdma_schedule_start_reg <= set_tdma_schedule_start_next;
set_tdma_schedule_start_valid_reg <= set_tdma_schedule_start_valid_next;
set_tdma_schedule_period_reg <= set_tdma_schedule_period_next;
set_tdma_schedule_period_valid_reg <= set_tdma_schedule_period_valid_next;
set_tdma_timeslot_period_reg <= set_tdma_timeslot_period_next;
set_tdma_timeslot_period_valid_reg <= set_tdma_timeslot_period_valid_next;
set_tdma_active_period_reg <= set_tdma_active_period_next;
set_tdma_active_period_valid_reg <= set_tdma_active_period_valid_next;
queue_enable_reg <= queue_enable_next;
global_enable_reg <= global_enable_next;
tdma_enable_reg <= tdma_enable_next;
slot_enable_mem_read_reg <= 1'b0;
if (mem_rd_en) begin
slot_enable_mem_read_data_reg <= slot_enable_mem[axil_ram_addr];
slot_enable_mem_read_reg <= 1'b1;
end else begin
for (i = 0; i < WORD_WIDTH; i = i + 1) begin
if (mem_wr_en && s_axil_wstrb[i]) begin
slot_enable_mem[axil_ram_addr][WORD_SIZE*i +: WORD_SIZE] <= s_axil_wdata[WORD_SIZE*i +: WORD_SIZE];
end
end
end
if (rst) begin
last_read_reg <= 1'b0;
s_axil_awready_reg <= 1'b0;
s_axil_wready_reg <= 1'b0;
s_axil_bvalid_reg <= 1'b0;
s_axil_arready_reg <= 1'b0;
s_axil_rvalid_reg <= 1'b0;
set_tdma_schedule_start_valid_reg <= 1'b0;
set_tdma_schedule_period_valid_reg <= 1'b0;
set_tdma_timeslot_period_valid_reg <= 1'b0;
set_tdma_active_period_valid_reg <= 1'b0;
queue_enable_reg <= 0;
global_enable_reg <= 0;
tdma_enable_reg <= 1'b0;
end
end
tdma_scheduler #(
.INDEX_WIDTH(TDMA_INDEX_WIDTH),
.SCHEDULE_START_S(SCHEDULE_START_S),
.SCHEDULE_START_NS(SCHEDULE_START_NS),
.SCHEDULE_PERIOD_S(SCHEDULE_PERIOD_S),
.SCHEDULE_PERIOD_NS(SCHEDULE_PERIOD_NS),
.TIMESLOT_PERIOD_S(TIMESLOT_PERIOD_S),
.TIMESLOT_PERIOD_NS(TIMESLOT_PERIOD_NS),
.ACTIVE_PERIOD_S(ACTIVE_PERIOD_S),
.ACTIVE_PERIOD_NS(ACTIVE_PERIOD_NS)
)
tdma_scheduler_inst (
.clk(clk),
.rst(rst),
.input_ts_96(ptp_ts_96),
.input_ts_step(ptp_ts_step),
.enable(tdma_enable_reg),
.input_schedule_start(set_tdma_schedule_start_reg),
.input_schedule_start_valid(set_tdma_schedule_start_valid_reg),
.input_schedule_period(set_tdma_schedule_period_reg),
.input_schedule_period_valid(set_tdma_schedule_period_valid_reg),
.input_timeslot_period(set_tdma_timeslot_period_reg),
.input_timeslot_period_valid(set_tdma_timeslot_period_valid_reg),
.input_active_period(set_tdma_active_period_reg),
.input_active_period_valid(set_tdma_active_period_valid_reg),
.locked(tdma_locked),
.error(tdma_error),
.schedule_start(tdma_schedule_start),
.timeslot_index(tdma_timeslot_index),
.timeslot_start(tdma_timeslot_start),
.timeslot_end(tdma_timeslot_end),
.timeslot_active(tdma_timeslot_active)
);
endmodule