1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00

Add AXI stream XGMII RX and TX modules and testbenches

This commit is contained in:
Alex Forencich 2018-10-23 23:34:43 -07:00
parent 030fe90bf5
commit de69975872
12 changed files with 3955 additions and 0 deletions

415
rtl/axis_xgmii_rx_32.v Normal file
View File

@ -0,0 +1,415 @@
/*
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream XGMII frame receiver (XGMII in, AXI out)
*/
module axis_xgmii_rx_32
(
input wire clk,
input wire rst,
/*
* XGMII input
*/
input wire [31:0] xgmii_rxd,
input wire [3:0] xgmii_rxc,
/*
* AXI output
*/
output wire [31:0] output_axis_tdata,
output wire [3:0] output_axis_tkeep,
output wire output_axis_tvalid,
output wire output_axis_tlast,
output wire output_axis_tuser,
/*
* Status
*/
output wire error_bad_frame,
output wire error_bad_fcs
);
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_PREAMBLE = 3'd1,
STATE_PAYLOAD = 3'd2,
STATE_LAST = 3'd3;
reg [2:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg [3:0] last_cycle_tkeep_reg = 4'd0, last_cycle_tkeep_next;
reg [31:0] xgmii_rxd_d0 = 32'd0;
reg [31:0] xgmii_rxd_d1 = 32'd0;
reg [31:0] xgmii_rxd_d2 = 32'd0;
reg [3:0] xgmii_rxc_d0 = 4'd0;
reg [3:0] xgmii_rxc_d1 = 4'd0;
reg [3:0] xgmii_rxc_d2 = 4'd0;
reg [31:0] output_axis_tdata_reg = 32'd0, output_axis_tdata_next;
reg [3:0] output_axis_tkeep_reg = 4'd0, output_axis_tkeep_next;
reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next;
reg output_axis_tlast_reg = 1'b0, output_axis_tlast_next;
reg output_axis_tuser_reg = 1'b0, output_axis_tuser_next;
reg error_bad_frame_reg = 1'b0, error_bad_frame_next;
reg error_bad_fcs_reg = 1'b0, error_bad_fcs_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
wire crc_valid0 = crc_next0 == ~32'h2144df1c;
wire crc_valid1 = crc_next1 == ~32'h2144df1c;
wire crc_valid2 = crc_next2 == ~32'h2144df1c;
wire crc_valid3 = crc_next3 == ~32'h2144df1c;
reg crc_valid0_save = 1'b0;
reg crc_valid1_save = 1'b0;
reg crc_valid2_save = 1'b0;
reg crc_valid3_save = 1'b0;
assign output_axis_tdata = output_axis_tdata_reg;
assign output_axis_tkeep = output_axis_tkeep_reg;
assign output_axis_tvalid = output_axis_tvalid_reg;
assign output_axis_tlast = output_axis_tlast_reg;
assign output_axis_tuser = output_axis_tuser_reg;
assign error_bad_frame = error_bad_frame_reg;
assign error_bad_fcs = error_bad_fcs_reg;
wire last_cycle = state_reg == STATE_LAST;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(xgmii_rxd_d0[7:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(xgmii_rxd_d0[15:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(xgmii_rxd_d0[23:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(xgmii_rxd_d0[31:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next3)
);
// detect control characters
reg [3:0] detect_start;
reg [3:0] detect_term;
reg [3:0] detect_error;
reg [3:0] detect_term_save;
integer i;
always @* begin
for (i = 0; i < 4; i = i + 1) begin
detect_start[i] = xgmii_rxc_d0[i] && (xgmii_rxd_d0[i*8 +: 8] == 8'hfb);
detect_term[i] = xgmii_rxc_d0[i] && (xgmii_rxd_d0[i*8 +: 8] == 8'hfd);
detect_error[i] = xgmii_rxc_d0[i] && (xgmii_rxd_d0[i*8 +: 8] == 8'hfe);
end
end
// mask errors to within packet
reg [3:0] detect_error_masked;
reg [3:0] control_masked;
reg [3:0] tkeep_mask;
always @* begin
casez (detect_term)
4'b0000: begin
detect_error_masked = detect_error;
control_masked = xgmii_rxc_d0;
tkeep_mask = 4'b1111;
end
4'bzzz1: begin
detect_error_masked = 0;
control_masked = 0;
tkeep_mask = 4'b0000;
end
4'bzz10: begin
detect_error_masked = detect_error[0];
control_masked = xgmii_rxc_d0[0];
tkeep_mask = 4'b0001;
end
4'bz100: begin
detect_error_masked = detect_error[1:0];
control_masked = xgmii_rxc_d0[1:0];
tkeep_mask = 4'b0011;
end
4'b1000: begin
detect_error_masked = detect_error[2:0];
control_masked = xgmii_rxc_d0[2:0];
tkeep_mask = 4'b0111;
end
default: begin
detect_error_masked = detect_error;
control_masked = xgmii_rxc_d0;
tkeep_mask = 4'b1111;
end
endcase
end
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
last_cycle_tkeep_next = last_cycle_tkeep_reg;
output_axis_tdata_next = 32'd0;
output_axis_tkeep_next = 4'd0;
output_axis_tvalid_next = 1'b0;
output_axis_tlast_next = 1'b0;
output_axis_tuser_next = 1'b0;
error_bad_frame_next = 1'b0;
error_bad_fcs_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for packet
reset_crc = 1'b1;
if (xgmii_rxc_d2[0] && xgmii_rxd_d2[7:0] == 8'hfb) begin
// start condition
if (detect_error_masked) begin
// error in first data word
output_axis_tdata_next = 32'd0;
output_axis_tkeep_next = 4'h1;
output_axis_tvalid_next = 1'b1;
output_axis_tlast_next = 1'b1;
output_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
state_next = STATE_IDLE;
end else begin
reset_crc = 1'b0;
update_crc = 1'b1;
state_next = STATE_PREAMBLE;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_PREAMBLE: begin
// drop preamble
update_crc = 1'b1;
state_next = STATE_PAYLOAD;
end
STATE_PAYLOAD: begin
// read payload
update_crc = 1'b1;
output_axis_tdata_next = xgmii_rxd_d2;
output_axis_tkeep_next = ~xgmii_rxc_d2;
output_axis_tvalid_next = 1'b1;
output_axis_tlast_next = 1'b0;
output_axis_tuser_next = 1'b0;
if (control_masked) begin
// control or error characters in packet
output_axis_tlast_next = 1'b1;
output_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
reset_crc = 1'b1;
state_next = STATE_IDLE;
end else if (detect_term) begin
if (detect_term[0]) begin
// end this cycle
reset_crc = 1'b1;
output_axis_tkeep_next = 4'b1111;
output_axis_tlast_next = 1'b1;
if (detect_term[0] & crc_valid3_save) begin
// CRC valid
end else begin
output_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
state_next = STATE_IDLE;
end else begin
// need extra cycle
last_cycle_tkeep_next = tkeep_mask;
state_next = STATE_LAST;
end
end else begin
state_next = STATE_PAYLOAD;
end
end
STATE_LAST: begin
// last cycle of packet
output_axis_tdata_next = xgmii_rxd_d2;
output_axis_tkeep_next = last_cycle_tkeep_reg;
output_axis_tvalid_next = 1'b1;
output_axis_tlast_next = 1'b1;
output_axis_tuser_next = 1'b0;
reset_crc = 1'b1;
if ((detect_term_save[1] & crc_valid0_save) ||
(detect_term_save[2] & crc_valid1_save) ||
(detect_term_save[3] & crc_valid2_save)) begin
// CRC valid
end else begin
output_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
if (xgmii_rxc_d1[0] && xgmii_rxd_d1[7:0] == 8'hfb) begin
// start condition
state_next = STATE_PAYLOAD;
end else begin
state_next = STATE_IDLE;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
output_axis_tvalid_reg <= 1'b0;
error_bad_frame_reg <= 1'b0;
error_bad_fcs_reg <= 1'b0;
crc_state <= 32'hFFFFFFFF;
crc_valid0_save <= 1'b0;
crc_valid1_save <= 1'b0;
crc_valid2_save <= 1'b0;
crc_valid3_save <= 1'b0;
xgmii_rxc_d0 <= 4'd0;
xgmii_rxc_d1 <= 4'd0;
end else begin
state_reg <= state_next;
output_axis_tvalid_reg <= output_axis_tvalid_next;
error_bad_frame_reg <= error_bad_frame_next;
error_bad_fcs_reg <= error_bad_fcs_next;
xgmii_rxc_d0 <= xgmii_rxc;
xgmii_rxc_d1 <= xgmii_rxc_d0;
xgmii_rxc_d2 <= xgmii_rxc_d1;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
crc_valid0_save <= 1'b0;
crc_valid1_save <= 1'b0;
crc_valid2_save <= 1'b0;
crc_valid3_save <= 1'b0;
end else if (update_crc) begin
crc_state <= crc_next3;
crc_valid0_save <= crc_valid0;
crc_valid1_save <= crc_valid1;
crc_valid2_save <= crc_valid2;
crc_valid3_save <= crc_valid3;
end
end
output_axis_tdata_reg <= output_axis_tdata_next;
output_axis_tkeep_reg <= output_axis_tkeep_next;
output_axis_tlast_reg <= output_axis_tlast_next;
output_axis_tuser_reg <= output_axis_tuser_next;
last_cycle_tkeep_reg <= last_cycle_tkeep_next;
detect_term_save <= detect_term;
xgmii_rxd_d0 <= xgmii_rxd;
xgmii_rxd_d1 <= xgmii_rxd_d0;
xgmii_rxd_d2 <= xgmii_rxd_d1;
end
endmodule

476
rtl/axis_xgmii_rx_64.v Normal file
View File

@ -0,0 +1,476 @@
/*
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream XGMII frame receiver (XGMII in, AXI out)
*/
module axis_xgmii_rx_64
(
input wire clk,
input wire rst,
/*
* XGMII input
*/
input wire [63:0] xgmii_rxd,
input wire [7:0] xgmii_rxc,
/*
* AXI output
*/
output wire [63:0] output_axis_tdata,
output wire [7:0] output_axis_tkeep,
output wire output_axis_tvalid,
output wire output_axis_tlast,
output wire output_axis_tuser,
/*
* Status
*/
output wire error_bad_frame,
output wire error_bad_fcs
);
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_PAYLOAD = 3'd1,
STATE_LAST = 3'd2;
reg [2:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg [7:0] last_cycle_tkeep_reg = 8'd0, last_cycle_tkeep_next;
reg lanes_swapped = 1'b0;
reg [31:0] swap_rxd = 32'd0;
reg [3:0] swap_rxc = 4'd0;
reg [63:0] xgmii_rxd_d0 = 32'd0;
reg [63:0] xgmii_rxd_d1 = 32'd0;
reg [7:0] xgmii_rxc_d0 = 8'd0;
reg [7:0] xgmii_rxc_d1 = 8'd0;
reg [63:0] output_axis_tdata_reg = 64'd0, output_axis_tdata_next;
reg [7:0] output_axis_tkeep_reg = 8'd0, output_axis_tkeep_next;
reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next;
reg output_axis_tlast_reg = 1'b0, output_axis_tlast_next;
reg output_axis_tuser_reg = 1'b0, output_axis_tuser_next;
reg error_bad_frame_reg = 1'b0, error_bad_frame_next;
reg error_bad_fcs_reg = 1'b0, error_bad_fcs_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
reg [31:0] crc_state3 = 32'hFFFFFFFF;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
wire [31:0] crc_next7;
wire crc_valid0 = crc_next0 == ~32'h2144df1c;
wire crc_valid1 = crc_next1 == ~32'h2144df1c;
wire crc_valid2 = crc_next2 == ~32'h2144df1c;
wire crc_valid3 = crc_next3 == ~32'h2144df1c;
wire crc_valid7 = crc_next7 == ~32'h2144df1c;
reg crc_valid7_save = 1'b0;
assign output_axis_tdata = output_axis_tdata_reg;
assign output_axis_tkeep = output_axis_tkeep_reg;
assign output_axis_tvalid = output_axis_tvalid_reg;
assign output_axis_tlast = output_axis_tlast_reg;
assign output_axis_tuser = output_axis_tuser_reg;
assign error_bad_frame = error_bad_frame_reg;
assign error_bad_fcs = error_bad_fcs_reg;
wire last_cycle = state_reg == STATE_LAST;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(xgmii_rxd_d0[7:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(xgmii_rxd_d0[15:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(xgmii_rxd_d0[23:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(xgmii_rxd_d0[31:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next3)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(64),
.STYLE("AUTO")
)
eth_crc_64 (
.data_in(xgmii_rxd_d0[63:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next7)
);
// detect control characters
reg [7:0] detect_start;
reg [7:0] detect_term;
reg [7:0] detect_error;
reg [7:0] detect_term_save = 8'd0;
integer i;
always @* begin
for (i = 0; i < 8; i = i + 1) begin
detect_start[i] = xgmii_rxc_d0[i] && (xgmii_rxd_d0[i*8 +: 8] == 8'hfb);
detect_term[i] = xgmii_rxc_d0[i] && (xgmii_rxd_d0[i*8 +: 8] == 8'hfd);
detect_error[i] = xgmii_rxc_d0[i] && (xgmii_rxd_d0[i*8 +: 8] == 8'hfe);
end
end
// mask errors to within packet
reg [7:0] detect_error_masked;
reg [7:0] control_masked;
reg [7:0] tkeep_mask;
always @* begin
casez (detect_term)
8'b00000000: begin
detect_error_masked = detect_error;
control_masked = xgmii_rxc_d0;
tkeep_mask = 8'b11111111;
end
8'bzzzzzzz1: begin
detect_error_masked = 0;
control_masked = 0;
tkeep_mask = 8'b00000000;
end
8'bzzzzzz10: begin
detect_error_masked = detect_error[0];
control_masked = xgmii_rxc_d0[0];
tkeep_mask = 8'b00000001;
end
8'bzzzzz100: begin
detect_error_masked = detect_error[1:0];
control_masked = xgmii_rxc_d0[1:0];
tkeep_mask = 8'b00000011;
end
8'bzzzz1000: begin
detect_error_masked = detect_error[2:0];
control_masked = xgmii_rxc_d0[2:0];
tkeep_mask = 8'b00000111;
end
8'bzzz10000: begin
detect_error_masked = detect_error[3:0];
control_masked = xgmii_rxc_d0[3:0];
tkeep_mask = 8'b00001111;
end
8'bzz100000: begin
detect_error_masked = detect_error[4:0];
control_masked = xgmii_rxc_d0[4:0];
tkeep_mask = 8'b00011111;
end
8'bz1000000: begin
detect_error_masked = detect_error[5:0];
control_masked = xgmii_rxc_d0[5:0];
tkeep_mask = 8'b00111111;
end
8'b10000000: begin
detect_error_masked = detect_error[6:0];
control_masked = xgmii_rxc_d0[6:0];
tkeep_mask = 8'b01111111;
end
default: begin
detect_error_masked = detect_error;
control_masked = xgmii_rxc_d0;
tkeep_mask = 8'b11111111;
end
endcase
end
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
last_cycle_tkeep_next = last_cycle_tkeep_reg;
output_axis_tdata_next = 64'd0;
output_axis_tkeep_next = 8'd0;
output_axis_tvalid_next = 1'b0;
output_axis_tlast_next = 1'b0;
output_axis_tuser_next = 1'b0;
error_bad_frame_next = 1'b0;
error_bad_fcs_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for packet
reset_crc = 1'b1;
if (xgmii_rxc_d1[0] && xgmii_rxd_d1[7:0] == 8'hfb) begin
// start condition
if (detect_error_masked) begin
// error in first data word
output_axis_tdata_next = 64'd0;
output_axis_tkeep_next = 8'h01;
output_axis_tvalid_next = 1'b1;
output_axis_tlast_next = 1'b1;
output_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
state_next = STATE_IDLE;
end else begin
reset_crc = 1'b0;
update_crc = 1'b1;
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// read payload
update_crc = 1'b1;
output_axis_tdata_next = xgmii_rxd_d1;
output_axis_tkeep_next = ~xgmii_rxc_d1;
output_axis_tvalid_next = 1'b1;
output_axis_tlast_next = 1'b0;
output_axis_tuser_next = 1'b0;
if (control_masked) begin
// control or error characters in packet
output_axis_tlast_next = 1'b1;
output_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
reset_crc = 1'b1;
state_next = STATE_IDLE;
end else if (detect_term) begin
if (detect_term[4:0]) begin
// end this cycle
reset_crc = 1'b1;
output_axis_tkeep_next = {tkeep_mask[3:0], 4'b1111};
output_axis_tlast_next = 1'b1;
if ((detect_term[0] & crc_valid7_save) ||
(detect_term[1] & crc_valid0) ||
(detect_term[2] & crc_valid1) ||
(detect_term[3] & crc_valid2) ||
(detect_term[4] & crc_valid3)) begin
// CRC valid
end else begin
output_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
state_next = STATE_IDLE;
end else begin
// need extra cycle
last_cycle_tkeep_next = {4'b0000, tkeep_mask[7:4]};
state_next = STATE_LAST;
end
end else begin
state_next = STATE_PAYLOAD;
end
end
STATE_LAST: begin
// last cycle of packet
output_axis_tdata_next = xgmii_rxd_d1;
output_axis_tkeep_next = last_cycle_tkeep_reg;
output_axis_tvalid_next = 1'b1;
output_axis_tlast_next = 1'b1;
output_axis_tuser_next = 1'b0;
reset_crc = 1'b1;
if ((detect_term_save[5] & crc_valid0) ||
(detect_term_save[6] & crc_valid1) ||
(detect_term_save[7] & crc_valid2)) begin
// CRC valid
end else begin
output_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
if (xgmii_rxc_d1[0] && xgmii_rxd_d1[7:0] == 8'hfb) begin
// start condition
state_next = STATE_PAYLOAD;
end else begin
state_next = STATE_IDLE;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
output_axis_tvalid_reg <= 1'b0;
error_bad_frame_reg <= 1'b0;
error_bad_fcs_reg <= 1'b0;
crc_state <= 32'hFFFFFFFF;
crc_state3 <= 32'hFFFFFFFF;
crc_valid7_save <= 1'b0;
xgmii_rxc_d0 <= 8'd0;
xgmii_rxc_d1 <= 8'd0;
lanes_swapped <= 1'b0;
end else begin
state_reg <= state_next;
output_axis_tvalid_reg <= output_axis_tvalid_next;
error_bad_frame_reg <= error_bad_frame_next;
error_bad_fcs_reg <= error_bad_fcs_next;
if (xgmii_rxc[0] && xgmii_rxd[7:0] == 8'hfb) begin
lanes_swapped <= 1'b0;
xgmii_rxc_d0 <= xgmii_rxc;
end else if (xgmii_rxc[4] && xgmii_rxd[39:32] == 8'hfb) begin
lanes_swapped <= 1'b1;
xgmii_rxc_d0 <= {xgmii_rxc[3:0], swap_rxc};
end else if (lanes_swapped) begin
xgmii_rxc_d0 <= {xgmii_rxc[3:0], swap_rxc};
end else begin
xgmii_rxc_d0 <= xgmii_rxc;
end
if (state_next == STATE_LAST) begin
xgmii_rxc_d0[3:0] <= xgmii_rxc_d0[7:4];
end
xgmii_rxc_d1 <= xgmii_rxc_d0;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
crc_state3 <= 32'hFFFFFFFF;
crc_valid7_save <= 1'b0;
end else if (update_crc) begin
crc_state <= crc_next7;
crc_state3 <= crc_next3;
crc_valid7_save <= crc_valid7;
end
end
output_axis_tdata_reg <= output_axis_tdata_next;
output_axis_tkeep_reg <= output_axis_tkeep_next;
output_axis_tlast_reg <= output_axis_tlast_next;
output_axis_tuser_reg <= output_axis_tuser_next;
last_cycle_tkeep_reg <= last_cycle_tkeep_next;
detect_term_save <= detect_term;
swap_rxd <= xgmii_rxd[63:32];
swap_rxc <= xgmii_rxc[7:4];
if (xgmii_rxc[0] && xgmii_rxd[7:0] == 8'hfb) begin
xgmii_rxd_d0 <= xgmii_rxd;
end else if (xgmii_rxc[4] && xgmii_rxd[39:32] == 8'hfb) begin
xgmii_rxd_d0 <= {xgmii_rxd[31:0], swap_rxd};
end else if (lanes_swapped) begin
xgmii_rxd_d0 <= {xgmii_rxd[31:0], swap_rxd};
end else begin
xgmii_rxd_d0 <= xgmii_rxd;
end
if (state_next == STATE_LAST) begin
xgmii_rxd_d0[31:0] <= xgmii_rxd_d0[63:32];
end
xgmii_rxd_d1 <= xgmii_rxd_d0;
end
endmodule

549
rtl/axis_xgmii_tx_32.v Normal file
View File

@ -0,0 +1,549 @@
/*
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream XGMII frame transmitter (AXI in, XGMII out)
*/
module axis_xgmii_tx_32 #
(
parameter ENABLE_PADDING = 1,
parameter ENABLE_DIC = 1,
parameter MIN_FRAME_LENGTH = 64
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [31:0] input_axis_tdata,
input wire [3:0] input_axis_tkeep,
input wire input_axis_tvalid,
output wire input_axis_tready,
input wire input_axis_tlast,
input wire input_axis_tuser,
/*
* XGMII output
*/
output wire [31:0] xgmii_txd,
output wire [3:0] xgmii_txc,
/*
* Configuration
*/
input wire [7:0] ifg_delay
);
localparam MIN_FL_NOCRC = MIN_FRAME_LENGTH-4;
localparam MIN_FL_NOCRC_MS = MIN_FL_NOCRC & 16'hfffc;
localparam MIN_FL_NOCRC_LS = MIN_FL_NOCRC & 16'h0003;
localparam [3:0]
STATE_IDLE = 4'd0,
STATE_PREAMBLE = 4'd1,
STATE_PAYLOAD = 4'd2,
STATE_PAD = 4'd3,
STATE_FCS_1 = 4'd4,
STATE_FCS_2 = 4'd5,
STATE_FCS_3 = 4'd6,
STATE_IFG = 4'd7,
STATE_WAIT_END = 4'd8;
reg [2:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg [31:0] input_axis_tdata_masked;
reg [31:0] input_tdata_reg = 64'd0, input_tdata_next;
reg [3:0] input_tkeep_reg = 8'd0, input_tkeep_next;
reg [31:0] fcs_output_txd_0;
reg [31:0] fcs_output_txd_1;
reg [3:0] fcs_output_txc_0;
reg [3:0] fcs_output_txc_1;
reg [7:0] ifg_offset;
reg extra_cycle;
reg [15:0] frame_ptr_reg = 16'd0, frame_ptr_next;
reg [7:0] ifg_count_reg = 8'd0, ifg_count_next;
reg [1:0] deficit_idle_count_reg = 2'd0, deficit_idle_count_next;
reg input_axis_tready_reg = 1'b0, input_axis_tready_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
reg [31:0] xgmii_txd_reg = 32'h07070707, xgmii_txd_next;
reg [3:0] xgmii_txc_reg = 4'b1111, xgmii_txc_next;
assign input_axis_tready = input_axis_tready_reg;
assign xgmii_txd = xgmii_txd_reg;
assign xgmii_txc = xgmii_txc_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(input_tdata_reg[7:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(input_tdata_reg[15:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(input_tdata_reg[23:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(input_tdata_reg[31:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next3)
);
function [2:0] keep2count;
input [3:0] k;
casez (k)
4'bzzz0: keep2count = 3'd0;
4'bzz01: keep2count = 3'd1;
4'bz011: keep2count = 3'd2;
4'b0111: keep2count = 3'd3;
4'b1111: keep2count = 3'd4;
endcase
endfunction
function [3:0] count2keep;
input [2:0] k;
case (k)
3'd0: count2keep = 4'b0000;
3'd1: count2keep = 4'b0001;
3'd2: count2keep = 4'b0011;
3'd3: count2keep = 4'b0111;
3'd4: count2keep = 4'b1111;
endcase
endfunction
// Mask input data
integer j;
always @* begin
for (j = 0; j < 4; j = j + 1) begin
input_axis_tdata_masked[j*8 +: 8] = input_axis_tkeep[j] ? input_axis_tdata[j*8 +: 8] : 8'd0;
end
end
// FCS cycle calculation
always @* begin
casez (input_tkeep_reg)
4'bzz01: begin
fcs_output_txd_0 = {~crc_next0[23:0], input_tdata_reg[7:0]};
fcs_output_txd_1 = {24'h0707fd, ~crc_next0[31:24]};
fcs_output_txc_0 = 4'b0000;
fcs_output_txc_1 = 4'b1110;
ifg_offset = 8'd3;
extra_cycle = 1'b0;
end
4'bz011: begin
fcs_output_txd_0 = {~crc_next1[15:0], input_tdata_reg[15:0]};
fcs_output_txd_1 = {16'h07fd, ~crc_next1[31:16]};
fcs_output_txc_0 = 4'b0000;
fcs_output_txc_1 = 4'b1100;
ifg_offset = 8'd2;
extra_cycle = 1'b0;
end
4'b0111: begin
fcs_output_txd_0 = {~crc_next2[7:0], input_tdata_reg[23:0]};
fcs_output_txd_1 = {16'hfd, ~crc_next2[31:8]};
fcs_output_txc_0 = 4'b0000;
fcs_output_txc_1 = 4'b1000;
ifg_offset = 8'd1;
extra_cycle = 1'b0;
end
4'b1111: begin
fcs_output_txd_0 = input_tdata_reg;
fcs_output_txd_1 = ~crc_next3;
fcs_output_txc_0 = 4'b0000;
fcs_output_txc_1 = 4'b0000;
ifg_offset = 8'd4;
extra_cycle = 1'b1;
end
default: begin
fcs_output_txd_0 = 32'd0;
fcs_output_txd_1 = 32'd0;
fcs_output_txc_0 = 4'd0;
fcs_output_txc_1 = 4'd0;
ifg_offset = 8'd0;
extra_cycle = 1'b0;
end
endcase
end
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
frame_ptr_next = frame_ptr_reg;
ifg_count_next = ifg_count_reg;
deficit_idle_count_next = deficit_idle_count_reg;
input_axis_tready_next = 1'b0;
input_tdata_next = input_tdata_reg;
input_tkeep_next = input_tkeep_reg;
// XGMII idle
xgmii_txd_next = 32'h07070707;
xgmii_txc_next = 4'b1111;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for data
frame_ptr_next = 16'd4;
reset_crc = 1'b1;
// XGMII idle
xgmii_txd_next = 32'h07070707;
xgmii_txc_next = 4'b1111;
input_tdata_next = input_axis_tdata_masked;
input_tkeep_next = input_axis_tkeep;
if (input_axis_tvalid) begin
// XGMII start and preamble
xgmii_txd_next = 32'h555555fb;
xgmii_txc_next = 4'b0001;
input_axis_tready_next = 1'b1;
state_next = STATE_PREAMBLE;
end else begin
ifg_count_next = 8'd0;
deficit_idle_count_next = 2'd0;
state_next = STATE_IDLE;
end
end
STATE_PREAMBLE: begin
// send preamble
input_tdata_next = input_axis_tdata_masked;
input_tkeep_next = input_axis_tkeep;
xgmii_txd_next = 32'hd5555555;
xgmii_txc_next = 4'b0000;
input_axis_tready_next = 1'b1;
state_next = STATE_PAYLOAD;
end
STATE_PAYLOAD: begin
// transfer payload
update_crc = 1'b1;
input_axis_tready_next = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd4;
xgmii_txd_next = input_tdata_reg;
xgmii_txc_next = 4'b0000;
input_tdata_next = input_axis_tdata_masked;
input_tkeep_next = input_axis_tkeep;
if (input_axis_tvalid) begin
if (input_axis_tlast) begin
frame_ptr_next = frame_ptr_reg + keep2count(input_axis_tkeep);
input_axis_tready_next = 1'b0;
if (input_axis_tuser) begin
xgmii_txd_next = 32'h07fdfefe;
xgmii_txc_next = 4'b1111;
frame_ptr_next = 16'd0;
ifg_count_next = 8'd10;
state_next = STATE_IFG;
end else begin
input_axis_tready_next = 1'b0;
if (ENABLE_PADDING && (frame_ptr_reg < MIN_FL_NOCRC_MS || (frame_ptr_reg == MIN_FL_NOCRC_MS && keep2count(input_axis_tkeep) < MIN_FL_NOCRC_LS))) begin
input_tkeep_next = 4'hf;
frame_ptr_next = frame_ptr_reg + 16'd4;
if (frame_ptr_reg < (MIN_FL_NOCRC_LS > 0 ? MIN_FL_NOCRC_MS : MIN_FL_NOCRC_MS-4)) begin
state_next = STATE_PAD;
end else begin
input_tkeep_next = 4'hf >> ((4-MIN_FL_NOCRC_LS) % 4);
state_next = STATE_FCS_1;
end
end else begin
state_next = STATE_FCS_1;
end
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
// tvalid deassert, fail frame
xgmii_txd_next = 32'h07fdfefe;
xgmii_txc_next = 4'b1111;
frame_ptr_next = 16'd0;
ifg_count_next = 8'd10;
state_next = STATE_WAIT_END;
end
end
STATE_PAD: begin
// pad frame to MIN_FRAME_LENGTH
input_axis_tready_next = 1'b0;
xgmii_txd_next = input_tdata_reg;
xgmii_txc_next = 4'b0000;
input_tdata_next = 32'd0;
input_tkeep_next = 4'hf;
update_crc = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd4;
if (frame_ptr_reg < (MIN_FL_NOCRC_LS > 0 ? MIN_FL_NOCRC_MS : MIN_FL_NOCRC_MS-4)) begin
state_next = STATE_PAD;
end else begin
input_tkeep_next = 4'hf >> ((4-MIN_FL_NOCRC_LS) % 4);
state_next = STATE_FCS_1;
end
end
STATE_FCS_1: begin
// last cycle
input_axis_tready_next = 1'b0;
xgmii_txd_next = fcs_output_txd_0;
xgmii_txc_next = fcs_output_txc_0;
frame_ptr_next = 16'd0;
ifg_count_next = (ifg_delay > 8'd12 ? ifg_delay : 8'd12) - ifg_offset + deficit_idle_count_reg;
state_next = STATE_FCS_2;
end
STATE_FCS_2: begin
// last cycle
input_axis_tready_next = 1'b0;
xgmii_txd_next = fcs_output_txd_1;
xgmii_txc_next = fcs_output_txc_1;
frame_ptr_next = 16'd0;
if (extra_cycle) begin
state_next = STATE_FCS_3;
end else begin
state_next = STATE_IFG;
end
end
STATE_FCS_3: begin
// last cycle
input_axis_tready_next = 1'b0;
xgmii_txd_next = 32'h070707fd;
xgmii_txc_next = 4'b1111;
reset_crc = 1'b1;
frame_ptr_next = 16'd0;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd3) begin
state_next = STATE_IFG;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
input_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd0) begin
state_next = STATE_IFG;
end else begin
state_next = STATE_IDLE;
end
end
end
STATE_IFG: begin
// send IFG
if (ifg_count_reg > 8'd4) begin
ifg_count_next = ifg_count_reg - 8'd4;
end else begin
ifg_count_next = 8'd0;
end
reset_crc = 1'b1;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd3) begin
state_next = STATE_IFG;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd0) begin
state_next = STATE_IFG;
end else begin
state_next = STATE_IDLE;
end
end
end
STATE_WAIT_END: begin
// wait for end of frame
if (ifg_count_reg > 8'd8) begin
ifg_count_next = ifg_count_reg - 8'd8;
end else begin
ifg_count_next = 8'd0;
end
reset_crc = 1'b1;
if (input_axis_tvalid) begin
if (input_axis_tlast) begin
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd3) begin
state_next = STATE_IFG;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd0) begin
state_next = STATE_IFG;
end else begin
state_next = STATE_IDLE;
end
end
end else begin
state_next = STATE_WAIT_END;
end
end else begin
state_next = STATE_WAIT_END;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
frame_ptr_reg <= 16'd0;
ifg_count_reg <= 8'd0;
deficit_idle_count_reg <= 2'd0;
input_axis_tready_reg <= 1'b0;
xgmii_txd_reg <= 32'h07070707;
xgmii_txc_reg <= 4'b1111;
crc_state <= 32'hFFFFFFFF;
end else begin
state_reg <= state_next;
frame_ptr_reg <= frame_ptr_next;
ifg_count_reg <= ifg_count_next;
deficit_idle_count_reg <= deficit_idle_count_next;
input_axis_tready_reg <= input_axis_tready_next;
xgmii_txd_reg <= xgmii_txd_next;
xgmii_txc_reg <= xgmii_txc_next;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else if (update_crc) begin
crc_state <= crc_next3;
end
end
input_tdata_reg <= input_tdata_next;
input_tkeep_reg <= input_tkeep_next;
end
endmodule

691
rtl/axis_xgmii_tx_64.v Normal file
View File

@ -0,0 +1,691 @@
/*
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream XGMII frame transmitter (AXI in, XGMII out)
*/
module axis_xgmii_tx_64 #
(
parameter ENABLE_PADDING = 1,
parameter ENABLE_DIC = 1,
parameter MIN_FRAME_LENGTH = 64
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [63:0] input_axis_tdata,
input wire [7:0] input_axis_tkeep,
input wire input_axis_tvalid,
output wire input_axis_tready,
input wire input_axis_tlast,
input wire input_axis_tuser,
/*
* XGMII output
*/
output wire [63:0] xgmii_txd,
output wire [7:0] xgmii_txc,
/*
* Configuration
*/
input wire [7:0] ifg_delay
);
localparam MIN_FL_NOCRC = MIN_FRAME_LENGTH-4;
localparam MIN_FL_NOCRC_MS = MIN_FL_NOCRC & 16'hfff8;
localparam MIN_FL_NOCRC_LS = MIN_FL_NOCRC & 16'h0007;
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_PAYLOAD = 3'd1,
STATE_PAD = 3'd2,
STATE_FCS_1 = 3'd3,
STATE_FCS_2 = 3'd4,
STATE_IFG = 3'd5,
STATE_WAIT_END = 3'd6;
reg [2:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg swap_lanes;
reg unswap_lanes;
reg lanes_swapped = 1'b0;
reg [31:0] swap_txd = 32'd0;
reg [3:0] swap_txc = 4'd0;
reg [63:0] input_axis_tdata_masked;
reg [63:0] input_tdata_reg = 64'd0, input_tdata_next;
reg [7:0] input_tkeep_reg = 8'd0, input_tkeep_next;
reg [63:0] fcs_output_txd_0;
reg [63:0] fcs_output_txd_1;
reg [7:0] fcs_output_txc_0;
reg [7:0] fcs_output_txc_1;
reg [7:0] ifg_offset;
reg extra_cycle;
reg [15:0] frame_ptr_reg = 16'd0, frame_ptr_next;
reg [7:0] ifg_count_reg = 8'd0, ifg_count_next;
reg [1:0] deficit_idle_count_reg = 2'd0, deficit_idle_count_next;
reg input_axis_tready_reg = 1'b0, input_axis_tready_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
wire [31:0] crc_next4;
wire [31:0] crc_next5;
wire [31:0] crc_next6;
wire [31:0] crc_next7;
reg [63:0] xgmii_txd_reg = 64'h0707070707070707, xgmii_txd_next;
reg [7:0] xgmii_txc_reg = 8'b11111111, xgmii_txc_next;
assign input_axis_tready = input_axis_tready_reg;
assign xgmii_txd = xgmii_txd_reg;
assign xgmii_txc = xgmii_txc_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(input_tdata_reg[7:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(input_tdata_reg[15:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(input_tdata_reg[23:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(input_tdata_reg[31:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next3)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(40),
.STYLE("AUTO")
)
eth_crc_40 (
.data_in(input_tdata_reg[39:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next4)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(48),
.STYLE("AUTO")
)
eth_crc_48 (
.data_in(input_tdata_reg[47:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next5)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(56),
.STYLE("AUTO")
)
eth_crc_56 (
.data_in(input_tdata_reg[55:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next6)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(64),
.STYLE("AUTO")
)
eth_crc_64 (
.data_in(input_tdata_reg[63:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next7)
);
function [3:0] keep2count;
input [7:0] k;
casez (k)
8'bzzzzzzz0: keep2count = 4'd0;
8'bzzzzzz01: keep2count = 4'd1;
8'bzzzzz011: keep2count = 4'd2;
8'bzzzz0111: keep2count = 4'd3;
8'bzzz01111: keep2count = 4'd4;
8'bzz011111: keep2count = 4'd5;
8'bz0111111: keep2count = 4'd6;
8'b01111111: keep2count = 4'd7;
8'b11111111: keep2count = 4'd8;
endcase
endfunction
function [7:0] count2keep;
input [3:0] k;
case (k)
4'd0: count2keep = 8'b00000000;
4'd1: count2keep = 8'b00000001;
4'd2: count2keep = 8'b00000011;
4'd3: count2keep = 8'b00000111;
4'd4: count2keep = 8'b00001111;
4'd5: count2keep = 8'b00011111;
4'd6: count2keep = 8'b00111111;
4'd7: count2keep = 8'b01111111;
4'd8: count2keep = 8'b11111111;
endcase
endfunction
// Mask input data
integer j;
always @* begin
for (j = 0; j < 8; j = j + 1) begin
input_axis_tdata_masked[j*8 +: 8] = input_axis_tkeep[j] ? input_axis_tdata[j*8 +: 8] : 8'd0;
end
end
// FCS cycle calculation
always @* begin
casez (input_tkeep_reg)
8'bzzzzzz01: begin
fcs_output_txd_0 = {24'h0707fd, ~crc_next0[31:0], input_tdata_reg[7:0]};
fcs_output_txd_1 = {63'h0707070707070707};
fcs_output_txc_0 = 8'b11100000;
fcs_output_txc_1 = 8'b11111111;
ifg_offset = 8'd3;
extra_cycle = 1'b0;
end
8'bzzzzz011: begin
fcs_output_txd_0 = {16'h07fd, ~crc_next1[31:0], input_tdata_reg[15:0]};
fcs_output_txd_1 = {63'h0707070707070707};
fcs_output_txc_0 = 8'b11000000;
fcs_output_txc_1 = 8'b11111111;
ifg_offset = 8'd2;
extra_cycle = 1'b0;
end
8'bzzzz0111: begin
fcs_output_txd_0 = {8'hfd, ~crc_next2[31:0], input_tdata_reg[23:0]};
fcs_output_txd_1 = {63'h0707070707070707};
fcs_output_txc_0 = 8'b10000000;
fcs_output_txc_1 = 8'b11111111;
ifg_offset = 8'd1;
extra_cycle = 1'b0;
end
8'bzzz01111: begin
fcs_output_txd_0 = {~crc_next3[31:0], input_tdata_reg[31:0]};
fcs_output_txd_1 = {63'h07070707070707fd};
fcs_output_txc_0 = 8'b00000000;
fcs_output_txc_1 = 8'b11111111;
ifg_offset = 8'd8;
extra_cycle = 1'b1;
end
8'bzz011111: begin
fcs_output_txd_0 = {~crc_next4[23:0], input_tdata_reg[39:0]};
fcs_output_txd_1 = {56'h070707070707fd, ~crc_next4[31:24]};
fcs_output_txc_0 = 8'b00000000;
fcs_output_txc_1 = 8'b11111110;
ifg_offset = 8'd7;
extra_cycle = 1'b1;
end
8'bz0111111: begin
fcs_output_txd_0 = {~crc_next5[15:0], input_tdata_reg[47:0]};
fcs_output_txd_1 = {48'h0707070707fd, ~crc_next5[31:16]};
fcs_output_txc_0 = 8'b00000000;
fcs_output_txc_1 = 8'b11111100;
ifg_offset = 8'd6;
extra_cycle = 1'b1;
end
8'b01111111: begin
fcs_output_txd_0 = {~crc_next6[7:0], input_tdata_reg[55:0]};
fcs_output_txd_1 = {40'h07070707fd, ~crc_next6[31:8]};
fcs_output_txc_0 = 8'b00000000;
fcs_output_txc_1 = 8'b11111000;
ifg_offset = 8'd5;
extra_cycle = 1'b1;
end
8'b11111111: begin
fcs_output_txd_0 = input_tdata_reg;
fcs_output_txd_1 = {32'h070707fd, ~crc_next7[31:0]};
fcs_output_txc_0 = 8'b00000000;
fcs_output_txc_1 = 8'b11110000;
ifg_offset = 8'd4;
extra_cycle = 1'b1;
end
default: begin
fcs_output_txd_0 = 64'd0;
fcs_output_txd_1 = 64'd0;
fcs_output_txc_0 = 8'd0;
fcs_output_txc_1 = 8'd0;
ifg_offset = 8'd0;
extra_cycle = 1'b1;
end
endcase
end
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
swap_lanes = 1'b0;
unswap_lanes = 1'b0;
frame_ptr_next = frame_ptr_reg;
ifg_count_next = ifg_count_reg;
deficit_idle_count_next = deficit_idle_count_reg;
input_axis_tready_next = 1'b0;
input_tdata_next = input_tdata_reg;
input_tkeep_next = input_tkeep_reg;
// XGMII idle
xgmii_txd_next = 64'h0707070707070707;
xgmii_txc_next = 8'b11111111;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for data
frame_ptr_next = 16'd8;
reset_crc = 1'b1;
input_axis_tready_next = 1'b1;
// XGMII idle
xgmii_txd_next = 64'h0707070707070707;
xgmii_txc_next = 8'b11111111;
input_tdata_next = input_axis_tdata_masked;
input_tkeep_next = input_axis_tkeep;
if (input_axis_tvalid) begin
// XGMII start and preamble
if (ifg_count_reg > 8'd0) begin
// need to send more idles - swap lanes
swap_lanes = 1'b1;
end else begin
// no more idles - unswap
unswap_lanes = 1'b1;
end
xgmii_txd_next = 64'hd5555555555555fb;
xgmii_txc_next = 8'b00000001;
input_axis_tready_next = 1'b1;
state_next = STATE_PAYLOAD;
end else begin
ifg_count_next = 8'd0;
deficit_idle_count_next = 2'd0;
unswap_lanes = 1'b1;
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// transfer payload
update_crc = 1'b1;
input_axis_tready_next = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd8;
xgmii_txd_next = input_tdata_reg;
xgmii_txc_next = 8'b00000000;
input_tdata_next = input_axis_tdata_masked;
input_tkeep_next = input_axis_tkeep;
if (input_axis_tvalid) begin
if (input_axis_tlast) begin
frame_ptr_next = frame_ptr_reg + keep2count(input_axis_tkeep);
input_axis_tready_next = 1'b0;
if (input_axis_tuser) begin
xgmii_txd_next = 64'h070707fdfefefefe;
xgmii_txc_next = 8'b11111111;
frame_ptr_next = 16'd0;
ifg_count_next = 8'd8;
state_next = STATE_IFG;
end else begin
input_axis_tready_next = 1'b0;
if (ENABLE_PADDING && (frame_ptr_reg < MIN_FL_NOCRC_MS || (frame_ptr_reg == MIN_FL_NOCRC_MS && keep2count(input_axis_tkeep) < MIN_FL_NOCRC_LS))) begin
input_tkeep_next = 8'hff;
frame_ptr_next = frame_ptr_reg + 16'd8;
if (frame_ptr_reg < (MIN_FL_NOCRC_LS > 0 ? MIN_FL_NOCRC_MS : MIN_FL_NOCRC_MS-8)) begin
state_next = STATE_PAD;
end else begin
input_tkeep_next = 8'hff >> ((8-MIN_FL_NOCRC_LS) % 8);
state_next = STATE_FCS_1;
end
end else begin
state_next = STATE_FCS_1;
end
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
// tvalid deassert, fail frame
xgmii_txd_next = 64'h070707fdfefefefe;
xgmii_txc_next = 8'b11111111;
frame_ptr_next = 16'd0;
ifg_count_next = 8'd8;
state_next = STATE_WAIT_END;
end
end
STATE_PAD: begin
// pad frame to MIN_FRAME_LENGTH
input_axis_tready_next = 1'b0;
xgmii_txd_next = input_tdata_reg;
xgmii_txc_next = 8'b00000000;
input_tdata_next = 64'd0;
input_tkeep_next = 8'hff;
update_crc = 1'b1;
frame_ptr_next = frame_ptr_reg + 16'd8;
if (frame_ptr_reg < (MIN_FL_NOCRC_LS > 0 ? MIN_FL_NOCRC_MS : MIN_FL_NOCRC_MS-8)) begin
state_next = STATE_PAD;
end else begin
input_tkeep_next = 8'hff >> ((8-MIN_FL_NOCRC_LS) % 8);
state_next = STATE_FCS_1;
end
end
STATE_FCS_1: begin
// last cycle
input_axis_tready_next = 1'b0;
xgmii_txd_next = fcs_output_txd_0;
xgmii_txc_next = fcs_output_txc_0;
frame_ptr_next = 16'd0;
ifg_count_next = (ifg_delay > 8'd12 ? ifg_delay : 8'd12) - ifg_offset + (lanes_swapped ? 8'd4 : 8'd0) + deficit_idle_count_reg;
if (extra_cycle) begin
state_next = STATE_FCS_2;
end else begin
state_next = STATE_IFG;
end
end
STATE_FCS_2: begin
// last cycle
input_axis_tready_next = 1'b0;
xgmii_txd_next = fcs_output_txd_1;
xgmii_txc_next = fcs_output_txc_1;
reset_crc = 1'b1;
frame_ptr_next = 16'd0;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd7) begin
state_next = STATE_IFG;
end else begin
if (ifg_count_next >= 8'd4) begin
deficit_idle_count_next = ifg_count_next - 8'd4;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
end
input_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd4) begin
state_next = STATE_IFG;
end else begin
input_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end
end
STATE_IFG: begin
// send IFG
if (ifg_count_reg > 8'd8) begin
ifg_count_next = ifg_count_reg - 8'd8;
end else begin
ifg_count_next = 8'd0;
end
reset_crc = 1'b1;
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd7) begin
state_next = STATE_IFG;
end else begin
if (ifg_count_next >= 8'd4) begin
deficit_idle_count_next = ifg_count_next - 8'd4;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
end
input_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd4) begin
state_next = STATE_IFG;
end else begin
input_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end
end
STATE_WAIT_END: begin
// wait for end of frame
if (ifg_count_reg > 8'd8) begin
ifg_count_next = ifg_count_reg - 8'd8;
end else begin
ifg_count_next = 8'd0;
end
reset_crc = 1'b1;
if (input_axis_tvalid) begin
if (input_axis_tlast) begin
if (ENABLE_DIC) begin
if (ifg_count_next > 8'd7) begin
state_next = STATE_IFG;
end else begin
if (ifg_count_next >= 8'd4) begin
deficit_idle_count_next = ifg_count_next - 8'd4;
end else begin
deficit_idle_count_next = ifg_count_next;
ifg_count_next = 8'd0;
end
input_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
if (ifg_count_next > 8'd4) begin
state_next = STATE_IFG;
end else begin
input_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end
end else begin
state_next = STATE_WAIT_END;
end
end else begin
state_next = STATE_WAIT_END;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
frame_ptr_reg <= 16'd0;
ifg_count_reg <= 8'd0;
deficit_idle_count_reg <= 2'd0;
input_axis_tready_reg <= 1'b0;
xgmii_txd_reg <= 64'h0707070707070707;
xgmii_txc_reg <= 8'b11111111;
crc_state <= 32'hFFFFFFFF;
lanes_swapped <= 1'b0;
end else begin
state_reg <= state_next;
frame_ptr_reg <= frame_ptr_next;
ifg_count_reg <= ifg_count_next;
deficit_idle_count_reg <= deficit_idle_count_next;
input_axis_tready_reg <= input_axis_tready_next;
if (lanes_swapped) begin
if (unswap_lanes) begin
lanes_swapped <= 1'b0;
xgmii_txd_reg <= xgmii_txd_next;
xgmii_txc_reg <= xgmii_txc_next;
end else begin
xgmii_txd_reg <= {xgmii_txd_next[31:0], swap_txd};
xgmii_txc_reg <= {xgmii_txc_next[3:0], swap_txc};
end
end else begin
if (swap_lanes) begin
lanes_swapped <= 1'b1;
xgmii_txd_reg <= {xgmii_txd_next[31:0], swap_txd};
xgmii_txc_reg <= {xgmii_txc_next[3:0], swap_txc};
end else begin
xgmii_txd_reg <= xgmii_txd_next;
xgmii_txc_reg <= xgmii_txc_next;
end
end
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else if (update_crc) begin
crc_state <= crc_next7;
end
end
input_tdata_reg <= input_tdata_next;
input_tkeep_reg <= input_tkeep_next;
swap_txd <= xgmii_txd_next[63:32];
swap_txc <= xgmii_txc_next[7:4];
end
endmodule

364
tb/test_axis_xgmii_rx_32.py Executable file
View File

@ -0,0 +1,364 @@
#!/usr/bin/env python
"""
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from myhdl import *
import os
import axis_ep
import eth_ep
import xgmii_ep
module = 'axis_xgmii_rx_32'
testbench = 'test_%s' % module
srcs = []
srcs.append("../rtl/%s.v" % module)
srcs.append("../rtl/lfsr.v")
srcs.append("%s.v" % testbench)
src = ' '.join(srcs)
build_cmd = "iverilog -o %s.vvp %s" % (testbench, src)
def bench():
# Parameters
# Inputs
clk = Signal(bool(0))
rst = Signal(bool(0))
current_test = Signal(intbv(0)[4:])
xgmii_rxd = Signal(intbv(0x07070707)[32:])
xgmii_rxc = Signal(intbv(0xf)[4:])
# Outputs
output_axis_tdata = Signal(intbv(0)[32:])
output_axis_tkeep = Signal(intbv(0)[4:])
output_axis_tvalid = Signal(bool(0))
output_axis_tlast = Signal(bool(0))
output_axis_tuser = Signal(bool(0))
error_bad_frame = Signal(bool(0))
error_bad_fcs = Signal(bool(0))
# sources and sinks
source = xgmii_ep.XGMIISource()
source_logic = source.create_logic(
clk,
rst,
txd=xgmii_rxd,
txc=xgmii_rxc,
name='source'
)
sink = axis_ep.AXIStreamSink()
sink_logic = sink.create_logic(
clk,
rst,
tdata=output_axis_tdata,
tkeep=output_axis_tkeep,
tvalid=output_axis_tvalid,
tlast=output_axis_tlast,
tuser=output_axis_tuser,
name='sink'
)
# DUT
if os.system(build_cmd):
raise Exception("Error running build command")
dut = Cosimulation(
"vvp -m myhdl %s.vvp -lxt2" % testbench,
clk=clk,
rst=rst,
current_test=current_test,
xgmii_rxd=xgmii_rxd,
xgmii_rxc=xgmii_rxc,
output_axis_tdata=output_axis_tdata,
output_axis_tkeep=output_axis_tkeep,
output_axis_tvalid=output_axis_tvalid,
output_axis_tlast=output_axis_tlast,
output_axis_tuser=output_axis_tuser,
error_bad_frame=error_bad_frame,
error_bad_fcs=error_bad_fcs
)
@always(delay(4))
def clkgen():
clk.next = not clk
error_bad_frame_asserted = Signal(bool(0))
error_bad_fcs_asserted = Signal(bool(0))
@always(clk.posedge)
def monitor():
if (error_bad_frame):
error_bad_frame_asserted.next = 1
if (error_bad_fcs):
error_bad_fcs_asserted.next = 1
@instance
def check():
yield delay(100)
yield clk.posedge
rst.next = 1
yield clk.posedge
rst.next = 0
yield clk.posedge
yield delay(100)
yield clk.posedge
# testbench stimulus
for payload_len in list(range(1,18))+list(range(64,82)):
yield clk.posedge
print("test 1: test packet, length %d" % payload_len)
current_test.next = 1
test_frame = eth_ep.EthFrame()
test_frame.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame.eth_src_mac = 0x5A5152535455
test_frame.eth_type = 0x8000
test_frame.payload = bytearray(range(payload_len))
test_frame.update_fcs()
axis_frame = test_frame.build_axis_fcs()
xgmii_frame = xgmii_ep.XGMIIFrame(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame))
source.send(xgmii_frame)
yield sink.wait()
rx_frame = sink.recv()
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis(rx_frame)
eth_frame.update_fcs()
assert eth_frame == test_frame
assert sink.empty()
yield delay(100)
yield clk.posedge
print("test 2: back-to-back packets, length %d" % payload_len)
current_test.next = 2
test_frame1 = eth_ep.EthFrame()
test_frame1.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame1.eth_src_mac = 0x5A5152535455
test_frame1.eth_type = 0x8000
test_frame1.payload = bytearray(range(payload_len))
test_frame1.update_fcs()
test_frame2 = eth_ep.EthFrame()
test_frame2.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame2.eth_src_mac = 0x5A5152535455
test_frame2.eth_type = 0x8000
test_frame2.payload = bytearray(range(payload_len))
test_frame2.update_fcs()
axis_frame1 = test_frame1.build_axis_fcs()
axis_frame2 = test_frame2.build_axis_fcs()
xgmii_frame1 = xgmii_ep.XGMIIFrame(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame1))
xgmii_frame2 = xgmii_ep.XGMIIFrame(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame2))
source.send(xgmii_frame1)
source.send(xgmii_frame2)
yield sink.wait()
rx_frame = sink.recv()
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis(rx_frame)
eth_frame.update_fcs()
assert eth_frame == test_frame1
yield sink.wait()
rx_frame = sink.recv()
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis(rx_frame)
eth_frame.update_fcs()
assert eth_frame == test_frame2
assert sink.empty()
yield delay(100)
yield clk.posedge
print("test 3: truncated frame, length %d" % payload_len)
current_test.next = 3
test_frame1 = eth_ep.EthFrame()
test_frame1.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame1.eth_src_mac = 0x5A5152535455
test_frame1.eth_type = 0x8000
test_frame1.payload = bytearray(range(payload_len))
test_frame1.update_fcs()
test_frame2 = eth_ep.EthFrame()
test_frame2.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame2.eth_src_mac = 0x5A5152535455
test_frame2.eth_type = 0x8000
test_frame2.payload = bytearray(range(payload_len))
test_frame2.update_fcs()
axis_frame1 = test_frame1.build_axis_fcs()
axis_frame2 = test_frame2.build_axis_fcs()
axis_frame1.data = axis_frame1.data[:-1]
error_bad_frame_asserted.next = 0
error_bad_fcs_asserted.next = 0
xgmii_frame1 = xgmii_ep.XGMIIFrame(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame1))
xgmii_frame2 = xgmii_ep.XGMIIFrame(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame2))
source.send(xgmii_frame1)
source.send(xgmii_frame2)
yield sink.wait()
rx_frame = sink.recv()
assert error_bad_frame_asserted
assert error_bad_fcs_asserted
assert rx_frame.user[-1]
yield sink.wait()
rx_frame = sink.recv()
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis(rx_frame)
eth_frame.update_fcs()
assert eth_frame == test_frame2
assert sink.empty()
yield delay(100)
yield clk.posedge
print("test 4: errored frame, length %d" % payload_len)
current_test.next = 4
test_frame1 = eth_ep.EthFrame()
test_frame1.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame1.eth_src_mac = 0x5A5152535455
test_frame1.eth_type = 0x8000
test_frame1.payload = bytearray(range(payload_len))
test_frame1.update_fcs()
test_frame2 = eth_ep.EthFrame()
test_frame2.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame2.eth_src_mac = 0x5A5152535455
test_frame2.eth_type = 0x8000
test_frame2.payload = bytearray(range(payload_len))
test_frame2.update_fcs()
axis_frame1 = test_frame1.build_axis_fcs()
axis_frame2 = test_frame2.build_axis_fcs()
error_bad_frame_asserted.next = 0
error_bad_fcs_asserted.next = 0
xgmii_frame1 = xgmii_ep.XGMIIFrame(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame1))
xgmii_frame2 = xgmii_ep.XGMIIFrame(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame2))
xgmii_frame1.error = 1
source.send(xgmii_frame1)
source.send(xgmii_frame2)
yield sink.wait()
rx_frame = sink.recv()
assert error_bad_frame_asserted
assert not error_bad_fcs_asserted
assert rx_frame.last_cycle_user
yield sink.wait()
rx_frame = sink.recv()
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis(rx_frame)
eth_frame.update_fcs()
assert eth_frame == test_frame2
assert sink.empty()
yield delay(100)
for payload_len in list(range(46,54)):
yield clk.posedge
print("test 5: test stream, length %d" % payload_len)
current_test.next = 5
for i in range(10):
test_frame = eth_ep.EthFrame()
test_frame.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame.eth_src_mac = 0x5A5152535455
test_frame.eth_type = 0x8000
test_frame.payload = bytearray(range(payload_len))
test_frame.update_fcs()
axis_frame = test_frame.build_axis_fcs()
source.send(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame))
for i in range(10):
yield sink.wait()
rx_frame = sink.recv()
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis(rx_frame)
eth_frame.update_fcs()
assert eth_frame == test_frame
yield delay(100)
raise StopSimulation
return instances()
def test_bench():
sim = Simulation(bench())
sim.run()
if __name__ == '__main__':
print("Running test...")
test_bench()

View File

@ -0,0 +1,92 @@
/*
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Testbench for axis_xgmii_rx_32
*/
module test_axis_xgmii_rx_32;
// Parameters
// Inputs
reg clk = 0;
reg rst = 0;
reg [3:0] current_test = 0;
reg [31:0] xgmii_rxd = 32'h07070707;
reg [3:0] xgmii_rxc = 4'hf;
// Outputs
wire [31:0] output_axis_tdata;
wire [3:0] output_axis_tkeep;
wire output_axis_tvalid;
wire output_axis_tlast;
wire output_axis_tuser;
wire error_bad_frame;
wire error_bad_fcs;
initial begin
// myhdl integration
$from_myhdl(
clk,
rst,
current_test,
xgmii_rxd,
xgmii_rxc
);
$to_myhdl(
output_axis_tdata,
output_axis_tkeep,
output_axis_tvalid,
output_axis_tlast,
output_axis_tuser,
error_bad_frame,
error_bad_fcs
);
// dump file
$dumpfile("test_axis_xgmii_rx_32.lxt");
$dumpvars(0, test_axis_xgmii_rx_32);
end
axis_xgmii_rx_32
UUT (
.clk(clk),
.rst(rst),
.xgmii_rxd(xgmii_rxd),
.xgmii_rxc(xgmii_rxc),
.output_axis_tdata(output_axis_tdata),
.output_axis_tkeep(output_axis_tkeep),
.output_axis_tvalid(output_axis_tvalid),
.output_axis_tlast(output_axis_tlast),
.output_axis_tuser(output_axis_tuser),
.error_bad_frame(error_bad_frame),
.error_bad_fcs(error_bad_fcs)
);
endmodule

402
tb/test_axis_xgmii_rx_64.py Executable file
View File

@ -0,0 +1,402 @@
#!/usr/bin/env python
"""
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from myhdl import *
import os
import axis_ep
import eth_ep
import xgmii_ep
module = 'axis_xgmii_rx_64'
testbench = 'test_%s' % module
srcs = []
srcs.append("../rtl/%s.v" % module)
srcs.append("../rtl/lfsr.v")
srcs.append("%s.v" % testbench)
src = ' '.join(srcs)
build_cmd = "iverilog -o %s.vvp %s" % (testbench, src)
def bench():
# Parameters
# Inputs
clk = Signal(bool(0))
rst = Signal(bool(0))
current_test = Signal(intbv(0)[8:])
xgmii_rxd = Signal(intbv(0x0707070707070707)[64:])
xgmii_rxc = Signal(intbv(0xff)[8:])
# Outputs
output_axis_tdata = Signal(intbv(0)[64:])
output_axis_tkeep = Signal(intbv(0)[8:])
output_axis_tvalid = Signal(bool(0))
output_axis_tlast = Signal(bool(0))
output_axis_tuser = Signal(bool(0))
error_bad_frame = Signal(bool(0))
error_bad_fcs = Signal(bool(0))
# sources and sinks
source = xgmii_ep.XGMIISource()
source_logic = source.create_logic(
clk,
rst,
txd=xgmii_rxd,
txc=xgmii_rxc,
name='source'
)
sink = axis_ep.AXIStreamSink()
sink_logic = sink.create_logic(
clk,
rst,
tdata=output_axis_tdata,
tkeep=output_axis_tkeep,
tvalid=output_axis_tvalid,
tlast=output_axis_tlast,
tuser=output_axis_tuser,
name='sink'
)
# DUT
if os.system(build_cmd):
raise Exception("Error running build command")
dut = Cosimulation(
"vvp -m myhdl %s.vvp -lxt2" % testbench,
clk=clk,
rst=rst,
current_test=current_test,
xgmii_rxd=xgmii_rxd,
xgmii_rxc=xgmii_rxc,
output_axis_tdata=output_axis_tdata,
output_axis_tkeep=output_axis_tkeep,
output_axis_tvalid=output_axis_tvalid,
output_axis_tlast=output_axis_tlast,
output_axis_tuser=output_axis_tuser,
error_bad_frame=error_bad_frame,
error_bad_fcs=error_bad_fcs
)
@always(delay(4))
def clkgen():
clk.next = not clk
error_bad_frame_asserted = Signal(bool(0))
error_bad_fcs_asserted = Signal(bool(0))
@always(clk.posedge)
def monitor():
if (error_bad_frame):
error_bad_frame_asserted.next = 1
if (error_bad_fcs):
error_bad_fcs_asserted.next = 1
@instance
def check():
yield delay(100)
yield clk.posedge
rst.next = 1
yield clk.posedge
rst.next = 0
yield clk.posedge
yield delay(100)
yield clk.posedge
# testbench stimulus
for payload_len in list(range(1,18))+list(range(64,82)):
yield clk.posedge
print("test 1: test packet, length %d" % payload_len)
current_test.next = 1
test_frame = eth_ep.EthFrame()
test_frame.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame.eth_src_mac = 0x5A5152535455
test_frame.eth_type = 0x8000
test_frame.payload = bytearray(range(payload_len))
test_frame.update_fcs()
axis_frame = test_frame.build_axis_fcs()
xgmii_frame = xgmii_ep.XGMIIFrame(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame))
source.send(xgmii_frame)
yield sink.wait()
rx_frame = sink.recv()
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis(rx_frame)
eth_frame.update_fcs()
assert eth_frame == test_frame
assert sink.empty()
yield delay(100)
yield clk.posedge
print("test 2: back-to-back packets, length %d" % payload_len)
current_test.next = 2
test_frame1 = eth_ep.EthFrame()
test_frame1.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame1.eth_src_mac = 0x5A5152535455
test_frame1.eth_type = 0x8000
test_frame1.payload = bytearray(range(payload_len))
test_frame1.update_fcs()
test_frame2 = eth_ep.EthFrame()
test_frame2.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame2.eth_src_mac = 0x5A5152535455
test_frame2.eth_type = 0x8000
test_frame2.payload = bytearray(range(payload_len))
test_frame2.update_fcs()
axis_frame1 = test_frame1.build_axis_fcs()
axis_frame2 = test_frame2.build_axis_fcs()
xgmii_frame1 = xgmii_ep.XGMIIFrame(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame1))
xgmii_frame2 = xgmii_ep.XGMIIFrame(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame2))
source.send(xgmii_frame1)
source.send(xgmii_frame2)
yield sink.wait()
rx_frame = sink.recv()
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis(rx_frame)
eth_frame.update_fcs()
assert eth_frame == test_frame1
yield sink.wait()
rx_frame = sink.recv()
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis(rx_frame)
eth_frame.update_fcs()
assert eth_frame == test_frame2
assert sink.empty()
yield delay(100)
yield clk.posedge
print("test 3: truncated frame, length %d" % payload_len)
current_test.next = 3
test_frame1 = eth_ep.EthFrame()
test_frame1.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame1.eth_src_mac = 0x5A5152535455
test_frame1.eth_type = 0x8000
test_frame1.payload = bytearray(range(payload_len))
test_frame1.update_fcs()
test_frame2 = eth_ep.EthFrame()
test_frame2.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame2.eth_src_mac = 0x5A5152535455
test_frame2.eth_type = 0x8000
test_frame2.payload = bytearray(range(payload_len))
test_frame2.update_fcs()
axis_frame1 = test_frame1.build_axis_fcs()
axis_frame2 = test_frame2.build_axis_fcs()
axis_frame1.data = axis_frame1.data[:-1]
error_bad_frame_asserted.next = 0
error_bad_fcs_asserted.next = 0
xgmii_frame1 = xgmii_ep.XGMIIFrame(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame1))
xgmii_frame2 = xgmii_ep.XGMIIFrame(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame2))
source.send(xgmii_frame1)
source.send(xgmii_frame2)
yield sink.wait()
rx_frame = sink.recv()
assert error_bad_frame_asserted
assert error_bad_fcs_asserted
assert rx_frame.user[-1]
yield sink.wait()
rx_frame = sink.recv()
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis(rx_frame)
eth_frame.update_fcs()
assert eth_frame == test_frame2
assert sink.empty()
yield delay(100)
yield clk.posedge
print("test 4: errored frame, length %d" % payload_len)
current_test.next = 4
test_frame1 = eth_ep.EthFrame()
test_frame1.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame1.eth_src_mac = 0x5A5152535455
test_frame1.eth_type = 0x8000
test_frame1.payload = bytearray(range(payload_len))
test_frame1.update_fcs()
test_frame2 = eth_ep.EthFrame()
test_frame2.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame2.eth_src_mac = 0x5A5152535455
test_frame2.eth_type = 0x8000
test_frame2.payload = bytearray(range(payload_len))
test_frame2.update_fcs()
axis_frame1 = test_frame1.build_axis_fcs()
axis_frame2 = test_frame2.build_axis_fcs()
error_bad_frame_asserted.next = 0
error_bad_fcs_asserted.next = 0
xgmii_frame1 = xgmii_ep.XGMIIFrame(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame1))
xgmii_frame2 = xgmii_ep.XGMIIFrame(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame2))
xgmii_frame1.error = 1
source.send(xgmii_frame1)
source.send(xgmii_frame2)
yield sink.wait()
rx_frame = sink.recv()
assert error_bad_frame_asserted
assert not error_bad_fcs_asserted
assert rx_frame.last_cycle_user
yield sink.wait()
rx_frame = sink.recv()
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis(rx_frame)
eth_frame.update_fcs()
assert eth_frame == test_frame2
assert sink.empty()
yield delay(100)
for payload_len in list(range(46,54)):
yield clk.posedge
print("test 5: test stream, length %d" % payload_len)
current_test.next = 5
for i in range(10):
test_frame = eth_ep.EthFrame()
test_frame.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame.eth_src_mac = 0x5A5152535455
test_frame.eth_type = 0x8000
test_frame.payload = bytearray(range(payload_len))
test_frame.update_fcs()
axis_frame = test_frame.build_axis_fcs()
source.send(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame))
for i in range(10):
yield sink.wait()
rx_frame = sink.recv()
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis(rx_frame)
eth_frame.update_fcs()
assert eth_frame == test_frame
yield delay(100)
yield clk.posedge
print("test 6: Ensure 0xfb in FCS in lane 4 is not detected as start code in lane 0")
current_test.next = 6
test_frame = eth_ep.EthFrame()
test_frame.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame.eth_src_mac = 0x5A5152535455
test_frame.eth_type = 0x806f
test_frame.payload = bytearray(range(60))
test_frame.update_fcs()
axis_frame = test_frame.build_axis_fcs()
error_bad_frame_asserted.next = 0
error_bad_fcs_asserted.next = 0
xgmii_frame = xgmii_ep.XGMIIFrame(b'\x55\x55\x55\x55\x55\x55\x55\xD5'+bytearray(axis_frame))
source.send(xgmii_frame)
yield sink.wait()
rx_frame = sink.recv()
assert not error_bad_frame_asserted
assert not error_bad_fcs_asserted
assert not rx_frame.last_cycle_user
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis(rx_frame)
eth_frame.update_fcs()
assert eth_frame == test_frame
assert sink.empty()
yield delay(100)
raise StopSimulation
return instances()
def test_bench():
sim = Simulation(bench())
sim.run()
if __name__ == '__main__':
print("Running test...")
test_bench()

View File

@ -0,0 +1,92 @@
/*
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Testbench for axis_xgmii_rx_64
*/
module test_axis_xgmii_rx_64;
// Parameters
// Inputs
reg clk = 0;
reg rst = 0;
reg [7:0] current_test = 0;
reg [63:0] xgmii_rxd = 64'h0707070707070707;
reg [7:0] xgmii_rxc = 8'hff;
// Outputs
wire [63:0] output_axis_tdata;
wire [7:0] output_axis_tkeep;
wire output_axis_tvalid;
wire output_axis_tlast;
wire output_axis_tuser;
wire error_bad_frame;
wire error_bad_fcs;
initial begin
// myhdl integration
$from_myhdl(
clk,
rst,
current_test,
xgmii_rxd,
xgmii_rxc
);
$to_myhdl(
output_axis_tdata,
output_axis_tkeep,
output_axis_tvalid,
output_axis_tlast,
output_axis_tuser,
error_bad_frame,
error_bad_fcs
);
// dump file
$dumpfile("test_axis_xgmii_rx_64.lxt");
$dumpvars(0, test_axis_xgmii_rx_64);
end
axis_xgmii_rx_64
UUT (
.clk(clk),
.rst(rst),
.xgmii_rxd(xgmii_rxd),
.xgmii_rxc(xgmii_rxc),
.output_axis_tdata(output_axis_tdata),
.output_axis_tkeep(output_axis_tkeep),
.output_axis_tvalid(output_axis_tvalid),
.output_axis_tlast(output_axis_tlast),
.output_axis_tuser(output_axis_tuser),
.error_bad_frame(error_bad_frame),
.error_bad_fcs(error_bad_fcs)
);
endmodule

340
tb/test_axis_xgmii_tx_32.py Executable file
View File

@ -0,0 +1,340 @@
#!/usr/bin/env python
"""
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from myhdl import *
import os
import axis_ep
import eth_ep
import xgmii_ep
module = 'axis_xgmii_tx_32'
testbench = 'test_%s' % module
srcs = []
srcs.append("../rtl/%s.v" % module)
srcs.append("../rtl/lfsr.v")
srcs.append("%s.v" % testbench)
src = ' '.join(srcs)
build_cmd = "iverilog -o %s.vvp %s" % (testbench, src)
def bench():
# Parameters
ENABLE_PADDING = 1
MIN_FRAME_LENGTH = 64
# Inputs
clk = Signal(bool(0))
rst = Signal(bool(0))
current_test = Signal(intbv(0)[4:])
input_axis_tdata = Signal(intbv(0)[32:])
input_axis_tkeep = Signal(intbv(0)[4:])
input_axis_tvalid = Signal(bool(0))
input_axis_tlast = Signal(bool(0))
input_axis_tuser = Signal(bool(0))
ifg_delay = Signal(intbv(0)[8:])
# Outputs
input_axis_tready = Signal(bool(0))
xgmii_txd = Signal(intbv(0x07070707)[32:])
xgmii_txc = Signal(intbv(0xf)[4:])
# sources and sinks
source_pause = Signal(bool(0))
source = axis_ep.AXIStreamSource()
source_logic = source.create_logic(
clk,
rst,
tdata=input_axis_tdata,
tkeep=input_axis_tkeep,
tvalid=input_axis_tvalid,
tready=input_axis_tready,
tlast=input_axis_tlast,
tuser=input_axis_tuser,
pause=source_pause,
name='source'
)
sink = xgmii_ep.XGMIISink()
sink_logic = sink.create_logic(
clk,
rst,
rxd=xgmii_txd,
rxc=xgmii_txc,
name='sink'
)
# DUT
if os.system(build_cmd):
raise Exception("Error running build command")
dut = Cosimulation(
"vvp -m myhdl %s.vvp -lxt2" % testbench,
clk=clk,
rst=rst,
current_test=current_test,
input_axis_tdata=input_axis_tdata,
input_axis_tkeep=input_axis_tkeep,
input_axis_tvalid=input_axis_tvalid,
input_axis_tready=input_axis_tready,
input_axis_tlast=input_axis_tlast,
input_axis_tuser=input_axis_tuser,
xgmii_txd=xgmii_txd,
xgmii_txc=xgmii_txc,
ifg_delay=ifg_delay
)
@always(delay(4))
def clkgen():
clk.next = not clk
@instance
def check():
yield delay(100)
yield clk.posedge
rst.next = 1
yield clk.posedge
rst.next = 0
yield clk.posedge
yield delay(100)
yield clk.posedge
ifg_delay.next = 12
# testbench stimulus
for payload_len in list(range(1,18))+list(range(40,58)):
yield clk.posedge
print("test 1: test packet, length %d" % payload_len)
current_test.next = 1
test_frame = eth_ep.EthFrame()
test_frame.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame.eth_src_mac = 0x5A5152535455
test_frame.eth_type = 0x8000
test_frame.payload = bytearray(range(payload_len))
test_frame.update_fcs()
axis_frame = test_frame.build_axis()
source.send(axis_frame)
yield sink.wait()
rx_frame = sink.recv()
assert rx_frame.data[0:8] == bytearray(b'\x55\x55\x55\x55\x55\x55\x55\xD5')
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis_fcs(rx_frame.data[8:])
print(hex(eth_frame.eth_fcs))
print(hex(eth_frame.calc_fcs()))
assert len(eth_frame.payload.data) == max(payload_len, 46)
assert eth_frame.eth_fcs == eth_frame.calc_fcs()
assert eth_frame.eth_dest_mac == test_frame.eth_dest_mac
assert eth_frame.eth_src_mac == test_frame.eth_src_mac
assert eth_frame.eth_type == test_frame.eth_type
assert eth_frame.payload.data.index(test_frame.payload.data) == 0
assert sink.empty()
yield delay(100)
yield clk.posedge
print("test 2: back-to-back packets, length %d" % payload_len)
current_test.next = 2
test_frame1 = eth_ep.EthFrame()
test_frame1.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame1.eth_src_mac = 0x5A5152535455
test_frame1.eth_type = 0x8000
test_frame1.payload = bytearray(range(payload_len))
test_frame1.update_fcs()
test_frame2 = eth_ep.EthFrame()
test_frame2.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame2.eth_src_mac = 0x5A5152535455
test_frame2.eth_type = 0x8000
test_frame2.payload = bytearray(range(payload_len))
test_frame2.update_fcs()
axis_frame1 = test_frame1.build_axis()
axis_frame2 = test_frame2.build_axis()
source.send(axis_frame1)
source.send(axis_frame2)
yield sink.wait()
rx_frame = sink.recv()
assert rx_frame.data[0:8] == bytearray(b'\x55\x55\x55\x55\x55\x55\x55\xD5')
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis_fcs(rx_frame.data[8:])
print(hex(eth_frame.eth_fcs))
print(hex(eth_frame.calc_fcs()))
assert len(eth_frame.payload.data) == max(payload_len, 46)
assert eth_frame.eth_fcs == eth_frame.calc_fcs()
assert eth_frame.eth_dest_mac == test_frame1.eth_dest_mac
assert eth_frame.eth_src_mac == test_frame1.eth_src_mac
assert eth_frame.eth_type == test_frame1.eth_type
assert eth_frame.payload.data.index(test_frame1.payload.data) == 0
yield sink.wait()
rx_frame = sink.recv()
assert rx_frame.data[0:8] == bytearray(b'\x55\x55\x55\x55\x55\x55\x55\xD5')
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis_fcs(rx_frame.data[8:])
print(hex(eth_frame.eth_fcs))
print(hex(eth_frame.calc_fcs()))
assert len(eth_frame.payload.data) == max(payload_len, 46)
assert eth_frame.eth_fcs == eth_frame.calc_fcs()
assert eth_frame.eth_dest_mac == test_frame2.eth_dest_mac
assert eth_frame.eth_src_mac == test_frame2.eth_src_mac
assert eth_frame.eth_type == test_frame2.eth_type
assert eth_frame.payload.data.index(test_frame2.payload.data) == 0
assert sink.empty()
yield delay(100)
yield clk.posedge
print("test 3: tuser assert, length %d" % payload_len)
current_test.next = 3
test_frame1 = eth_ep.EthFrame()
test_frame1.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame1.eth_src_mac = 0x5A5152535455
test_frame1.eth_type = 0x8000
test_frame1.payload = bytearray(range(payload_len))
test_frame1.update_fcs()
test_frame2 = eth_ep.EthFrame()
test_frame2.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame2.eth_src_mac = 0x5A5152535455
test_frame2.eth_type = 0x8000
test_frame2.payload = bytearray(range(payload_len))
test_frame2.update_fcs()
axis_frame1 = test_frame1.build_axis()
axis_frame2 = test_frame2.build_axis()
axis_frame1.last_cycle_user = 1
source.send(axis_frame1)
source.send(axis_frame2)
yield sink.wait()
rx_frame = sink.recv()
assert rx_frame.data[0:8] == bytearray(b'\x55\x55\x55\x55\x55\x55\x55\xD5')
assert rx_frame.error[-1]
# bad packet
yield sink.wait()
rx_frame = sink.recv()
assert rx_frame.data[0:8] == bytearray(b'\x55\x55\x55\x55\x55\x55\x55\xD5')
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis_fcs(rx_frame.data[8:])
print(hex(eth_frame.eth_fcs))
print(hex(eth_frame.calc_fcs()))
assert len(eth_frame.payload.data) == max(payload_len, 46)
assert eth_frame.eth_fcs == eth_frame.calc_fcs()
assert eth_frame.eth_dest_mac == test_frame2.eth_dest_mac
assert eth_frame.eth_src_mac == test_frame2.eth_src_mac
assert eth_frame.eth_type == test_frame2.eth_type
assert eth_frame.payload.data.index(test_frame2.payload.data) == 0
assert sink.empty()
yield delay(100)
for payload_len in list(range(46,54)):
yield clk.posedge
print("test 4: test stream, length %d" % payload_len)
current_test.next = 4
for i in range(10):
test_frame = eth_ep.EthFrame()
test_frame.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame.eth_src_mac = 0x5A5152535455
test_frame.eth_type = 0x8000
test_frame.payload = bytearray(range(payload_len))
test_frame.update_fcs()
axis_frame = test_frame.build_axis()
source.send(axis_frame)
for i in range(10):
yield sink.wait()
rx_frame = sink.recv()
assert rx_frame.data[0:8] == bytearray(b'\x55\x55\x55\x55\x55\x55\x55\xD5')
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis_fcs(rx_frame.data[8:])
assert len(eth_frame.payload.data) == max(payload_len, 46)
assert eth_frame.eth_fcs == eth_frame.calc_fcs()
assert eth_frame.eth_dest_mac == test_frame.eth_dest_mac
assert eth_frame.eth_src_mac == test_frame.eth_src_mac
assert eth_frame.eth_type == test_frame.eth_type
assert eth_frame.payload.data.index(test_frame.payload.data) == 0
yield delay(100)
raise StopSimulation
return instances()
def test_bench():
sim = Simulation(bench())
sim.run()
if __name__ == '__main__':
print("Running test...")
test_bench()

View File

@ -0,0 +1,97 @@
/*
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Testbench for axis_xgmii_tx_32
*/
module test_axis_xgmii_tx_32;
// Parameters
parameter ENABLE_PADDING = 1;
parameter MIN_FRAME_LENGTH = 64;
// Inputs
reg clk = 0;
reg rst = 0;
reg [3:0] current_test = 0;
reg [31:0] input_axis_tdata = 0;
reg [3:0] input_axis_tkeep = 0;
reg input_axis_tvalid = 0;
reg input_axis_tlast = 0;
reg input_axis_tuser = 0;
reg [7:0] ifg_delay = 0;
// Outputs
wire input_axis_tready;
wire [31:0] xgmii_txd;
wire [3:0] xgmii_txc;
initial begin
// myhdl integration
$from_myhdl(
clk,
rst,
current_test,
input_axis_tdata,
input_axis_tkeep,
input_axis_tvalid,
input_axis_tlast,
input_axis_tuser,
ifg_delay
);
$to_myhdl(
input_axis_tready,
xgmii_txd,
xgmii_txc
);
// dump file
$dumpfile("test_axis_xgmii_tx_32.lxt");
$dumpvars(0, test_axis_xgmii_tx_32);
end
axis_xgmii_tx_32 #(
.ENABLE_PADDING(ENABLE_PADDING),
.MIN_FRAME_LENGTH(MIN_FRAME_LENGTH)
)
UUT (
.clk(clk),
.rst(rst),
.input_axis_tdata(input_axis_tdata),
.input_axis_tkeep(input_axis_tkeep),
.input_axis_tvalid(input_axis_tvalid),
.input_axis_tready(input_axis_tready),
.input_axis_tlast(input_axis_tlast),
.input_axis_tuser(input_axis_tuser),
.xgmii_txd(xgmii_txd),
.xgmii_txc(xgmii_txc),
.ifg_delay(ifg_delay)
);
endmodule

340
tb/test_axis_xgmii_tx_64.py Executable file
View File

@ -0,0 +1,340 @@
#!/usr/bin/env python
"""
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from myhdl import *
import os
import axis_ep
import eth_ep
import xgmii_ep
module = 'axis_xgmii_tx_64'
testbench = 'test_%s' % module
srcs = []
srcs.append("../rtl/%s.v" % module)
srcs.append("../rtl/lfsr.v")
srcs.append("%s.v" % testbench)
src = ' '.join(srcs)
build_cmd = "iverilog -o %s.vvp %s" % (testbench, src)
def bench():
# Parameters
ENABLE_PADDING = 1
MIN_FRAME_LENGTH = 64
# Inputs
clk = Signal(bool(0))
rst = Signal(bool(0))
current_test = Signal(intbv(0)[8:])
input_axis_tdata = Signal(intbv(0)[64:])
input_axis_tkeep = Signal(intbv(0)[8:])
input_axis_tvalid = Signal(bool(0))
input_axis_tlast = Signal(bool(0))
input_axis_tuser = Signal(bool(0))
ifg_delay = Signal(intbv(0)[8:])
# Outputs
input_axis_tready = Signal(bool(0))
xgmii_txd = Signal(intbv(0x0707070707070707)[64:])
xgmii_txc = Signal(intbv(0xff)[8:])
# sources and sinks
source_pause = Signal(bool(0))
source = axis_ep.AXIStreamSource()
source_logic = source.create_logic(
clk,
rst,
tdata=input_axis_tdata,
tkeep=input_axis_tkeep,
tvalid=input_axis_tvalid,
tready=input_axis_tready,
tlast=input_axis_tlast,
tuser=input_axis_tuser,
pause=source_pause,
name='source'
)
sink = xgmii_ep.XGMIISink()
sink_logic = sink.create_logic(
clk,
rst,
rxd=xgmii_txd,
rxc=xgmii_txc,
name='sink'
)
# DUT
if os.system(build_cmd):
raise Exception("Error running build command")
dut = Cosimulation(
"vvp -m myhdl %s.vvp -lxt2" % testbench,
clk=clk,
rst=rst,
current_test=current_test,
input_axis_tdata=input_axis_tdata,
input_axis_tkeep=input_axis_tkeep,
input_axis_tvalid=input_axis_tvalid,
input_axis_tready=input_axis_tready,
input_axis_tlast=input_axis_tlast,
input_axis_tuser=input_axis_tuser,
xgmii_txd=xgmii_txd,
xgmii_txc=xgmii_txc,
ifg_delay=ifg_delay
)
@always(delay(4))
def clkgen():
clk.next = not clk
@instance
def check():
yield delay(100)
yield clk.posedge
rst.next = 1
yield clk.posedge
rst.next = 0
yield clk.posedge
yield delay(100)
yield clk.posedge
ifg_delay.next = 12
# testbench stimulus
for payload_len in list(range(1,18))+list(range(40,58)):
yield clk.posedge
print("test 1: test packet, length %d" % payload_len)
current_test.next = 1
test_frame = eth_ep.EthFrame()
test_frame.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame.eth_src_mac = 0x5A5152535455
test_frame.eth_type = 0x8000
test_frame.payload = bytearray(range(payload_len))
test_frame.update_fcs()
axis_frame = test_frame.build_axis()
source.send(axis_frame)
yield sink.wait()
rx_frame = sink.recv()
assert rx_frame.data[0:8] == bytearray(b'\x55\x55\x55\x55\x55\x55\x55\xD5')
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis_fcs(rx_frame.data[8:])
print(hex(eth_frame.eth_fcs))
print(hex(eth_frame.calc_fcs()))
assert len(eth_frame.payload.data) == max(payload_len, 46)
assert eth_frame.eth_fcs == eth_frame.calc_fcs()
assert eth_frame.eth_dest_mac == test_frame.eth_dest_mac
assert eth_frame.eth_src_mac == test_frame.eth_src_mac
assert eth_frame.eth_type == test_frame.eth_type
assert eth_frame.payload.data.index(test_frame.payload.data) == 0
assert sink.empty()
yield delay(100)
yield clk.posedge
print("test 2: back-to-back packets, length %d" % payload_len)
current_test.next = 2
test_frame1 = eth_ep.EthFrame()
test_frame1.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame1.eth_src_mac = 0x5A5152535455
test_frame1.eth_type = 0x8000
test_frame1.payload = bytearray(range(payload_len))
test_frame1.update_fcs()
test_frame2 = eth_ep.EthFrame()
test_frame2.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame2.eth_src_mac = 0x5A5152535455
test_frame2.eth_type = 0x8000
test_frame2.payload = bytearray(range(payload_len))
test_frame2.update_fcs()
axis_frame1 = test_frame1.build_axis()
axis_frame2 = test_frame2.build_axis()
source.send(axis_frame1)
source.send(axis_frame2)
yield sink.wait()
rx_frame = sink.recv()
assert rx_frame.data[0:8] == bytearray(b'\x55\x55\x55\x55\x55\x55\x55\xD5')
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis_fcs(rx_frame.data[8:])
print(hex(eth_frame.eth_fcs))
print(hex(eth_frame.calc_fcs()))
assert len(eth_frame.payload.data) == max(payload_len, 46)
assert eth_frame.eth_fcs == eth_frame.calc_fcs()
assert eth_frame.eth_dest_mac == test_frame1.eth_dest_mac
assert eth_frame.eth_src_mac == test_frame1.eth_src_mac
assert eth_frame.eth_type == test_frame1.eth_type
assert eth_frame.payload.data.index(test_frame1.payload.data) == 0
yield sink.wait()
rx_frame = sink.recv()
assert rx_frame.data[0:8] == bytearray(b'\x55\x55\x55\x55\x55\x55\x55\xD5')
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis_fcs(rx_frame.data[8:])
print(hex(eth_frame.eth_fcs))
print(hex(eth_frame.calc_fcs()))
assert len(eth_frame.payload.data) == max(payload_len, 46)
assert eth_frame.eth_fcs == eth_frame.calc_fcs()
assert eth_frame.eth_dest_mac == test_frame2.eth_dest_mac
assert eth_frame.eth_src_mac == test_frame2.eth_src_mac
assert eth_frame.eth_type == test_frame2.eth_type
assert eth_frame.payload.data.index(test_frame2.payload.data) == 0
assert sink.empty()
yield delay(100)
yield clk.posedge
print("test 3: tuser assert, length %d" % payload_len)
current_test.next = 3
test_frame1 = eth_ep.EthFrame()
test_frame1.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame1.eth_src_mac = 0x5A5152535455
test_frame1.eth_type = 0x8000
test_frame1.payload = bytearray(range(payload_len))
test_frame1.update_fcs()
test_frame2 = eth_ep.EthFrame()
test_frame2.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame2.eth_src_mac = 0x5A5152535455
test_frame2.eth_type = 0x8000
test_frame2.payload = bytearray(range(payload_len))
test_frame2.update_fcs()
axis_frame1 = test_frame1.build_axis()
axis_frame2 = test_frame2.build_axis()
axis_frame1.last_cycle_user = 1
source.send(axis_frame1)
source.send(axis_frame2)
yield sink.wait()
rx_frame = sink.recv()
assert rx_frame.data[0:8] == bytearray(b'\x55\x55\x55\x55\x55\x55\x55\xD5')
assert rx_frame.error[-1]
# bad packet
yield sink.wait()
rx_frame = sink.recv()
assert rx_frame.data[0:8] == bytearray(b'\x55\x55\x55\x55\x55\x55\x55\xD5')
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis_fcs(rx_frame.data[8:])
print(hex(eth_frame.eth_fcs))
print(hex(eth_frame.calc_fcs()))
assert len(eth_frame.payload.data) == max(payload_len, 46)
assert eth_frame.eth_fcs == eth_frame.calc_fcs()
assert eth_frame.eth_dest_mac == test_frame2.eth_dest_mac
assert eth_frame.eth_src_mac == test_frame2.eth_src_mac
assert eth_frame.eth_type == test_frame2.eth_type
assert eth_frame.payload.data.index(test_frame2.payload.data) == 0
assert sink.empty()
yield delay(100)
for payload_len in list(range(46,54)):
yield clk.posedge
print("test 4: test stream, length %d" % payload_len)
current_test.next = 4
for i in range(10):
test_frame = eth_ep.EthFrame()
test_frame.eth_dest_mac = 0xDAD1D2D3D4D5
test_frame.eth_src_mac = 0x5A5152535455
test_frame.eth_type = 0x8000
test_frame.payload = bytearray(range(payload_len))
test_frame.update_fcs()
axis_frame = test_frame.build_axis()
source.send(axis_frame)
for i in range(10):
yield sink.wait()
rx_frame = sink.recv()
assert rx_frame.data[0:8] == bytearray(b'\x55\x55\x55\x55\x55\x55\x55\xD5')
eth_frame = eth_ep.EthFrame()
eth_frame.parse_axis_fcs(rx_frame.data[8:])
assert len(eth_frame.payload.data) == max(payload_len, 46)
assert eth_frame.eth_fcs == eth_frame.calc_fcs()
assert eth_frame.eth_dest_mac == test_frame.eth_dest_mac
assert eth_frame.eth_src_mac == test_frame.eth_src_mac
assert eth_frame.eth_type == test_frame.eth_type
assert eth_frame.payload.data.index(test_frame.payload.data) == 0
yield delay(100)
raise StopSimulation
return instances()
def test_bench():
sim = Simulation(bench())
sim.run()
if __name__ == '__main__':
print("Running test...")
test_bench()

View File

@ -0,0 +1,97 @@
/*
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Testbench for axis_xgmii_tx_64
*/
module test_axis_xgmii_tx_64;
// Parameters
parameter ENABLE_PADDING = 1;
parameter MIN_FRAME_LENGTH = 64;
// Inputs
reg clk = 0;
reg rst = 0;
reg [7:0] current_test = 0;
reg [63:0] input_axis_tdata = 0;
reg [7:0] input_axis_tkeep = 0;
reg input_axis_tvalid = 0;
reg input_axis_tlast = 0;
reg input_axis_tuser = 0;
reg [7:0] ifg_delay = 0;
// Outputs
wire input_axis_tready;
wire [63:0] xgmii_txd;
wire [7:0] xgmii_txc;
initial begin
// myhdl integration
$from_myhdl(
clk,
rst,
current_test,
input_axis_tdata,
input_axis_tkeep,
input_axis_tvalid,
input_axis_tlast,
input_axis_tuser,
ifg_delay
);
$to_myhdl(
input_axis_tready,
xgmii_txd,
xgmii_txc
);
// dump file
$dumpfile("test_axis_xgmii_tx_64.lxt");
$dumpvars(0, test_axis_xgmii_tx_64);
end
axis_xgmii_tx_64 #(
.ENABLE_PADDING(ENABLE_PADDING),
.MIN_FRAME_LENGTH(MIN_FRAME_LENGTH)
)
UUT (
.clk(clk),
.rst(rst),
.input_axis_tdata(input_axis_tdata),
.input_axis_tkeep(input_axis_tkeep),
.input_axis_tvalid(input_axis_tvalid),
.input_axis_tready(input_axis_tready),
.input_axis_tlast(input_axis_tlast),
.input_axis_tuser(input_axis_tuser),
.xgmii_txd(xgmii_txd),
.xgmii_txc(xgmii_txc),
.ifg_delay(ifg_delay)
);
endmodule