1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00

Rewrite width converter to reduce resource consumption

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich 2023-08-14 16:56:54 -07:00
parent 31bac4e21f
commit e308c9559a

View File

@ -1,6 +1,6 @@
/*
Copyright (c) 2014-2018 Alex Forencich
Copyright (c) 2014-2023 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
@ -90,468 +90,235 @@ module axis_adapter #
);
// force keep width to 1 when disabled
parameter S_KEEP_WIDTH_INT = S_KEEP_ENABLE ? S_KEEP_WIDTH : 1;
parameter M_KEEP_WIDTH_INT = M_KEEP_ENABLE ? M_KEEP_WIDTH : 1;
localparam S_BYTE_LANES = S_KEEP_ENABLE ? S_KEEP_WIDTH : 1;
localparam M_BYTE_LANES = M_KEEP_ENABLE ? M_KEEP_WIDTH : 1;
// bus word sizes (must be identical)
parameter S_DATA_WORD_SIZE = S_DATA_WIDTH / S_KEEP_WIDTH_INT;
parameter M_DATA_WORD_SIZE = M_DATA_WIDTH / M_KEEP_WIDTH_INT;
// output bus is wider
parameter EXPAND_BUS = M_KEEP_WIDTH_INT > S_KEEP_WIDTH_INT;
// total data and keep widths
parameter DATA_WIDTH = EXPAND_BUS ? M_DATA_WIDTH : S_DATA_WIDTH;
parameter KEEP_WIDTH = EXPAND_BUS ? M_KEEP_WIDTH_INT : S_KEEP_WIDTH_INT;
// required number of segments in wider bus
parameter SEGMENT_COUNT = EXPAND_BUS ? (M_KEEP_WIDTH_INT / S_KEEP_WIDTH_INT) : (S_KEEP_WIDTH_INT / M_KEEP_WIDTH_INT);
parameter SEGMENT_COUNT_WIDTH = SEGMENT_COUNT == 1 ? 1 : $clog2(SEGMENT_COUNT);
// data width and keep width per segment
parameter SEGMENT_DATA_WIDTH = DATA_WIDTH / SEGMENT_COUNT;
parameter SEGMENT_KEEP_WIDTH = KEEP_WIDTH / SEGMENT_COUNT;
// bus byte sizes (must be identical)
localparam S_BYTE_SIZE = S_DATA_WIDTH / S_BYTE_LANES;
localparam M_BYTE_SIZE = M_DATA_WIDTH / M_BYTE_LANES;
// bus width assertions
initial begin
if (S_DATA_WORD_SIZE * S_KEEP_WIDTH_INT != S_DATA_WIDTH) begin
$error("Error: input data width not evenly divisble (instance %m)");
if (S_BYTE_SIZE * S_BYTE_LANES != S_DATA_WIDTH) begin
$error("Error: input data width not evenly divisible (instance %m)");
$finish;
end
if (M_DATA_WORD_SIZE * M_KEEP_WIDTH_INT != M_DATA_WIDTH) begin
$error("Error: output data width not evenly divisble (instance %m)");
if (M_BYTE_SIZE * M_BYTE_LANES != M_DATA_WIDTH) begin
$error("Error: output data width not evenly divisible (instance %m)");
$finish;
end
if (S_DATA_WORD_SIZE != M_DATA_WORD_SIZE) begin
$error("Error: word size mismatch (instance %m)");
if (S_BYTE_SIZE != M_BYTE_SIZE) begin
$error("Error: byte size mismatch (instance %m)");
$finish;
end
end
// state register
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_TRANSFER_IN = 3'd1,
STATE_TRANSFER_OUT = 3'd2;
generate
reg [2:0] state_reg = STATE_IDLE, state_next;
if (M_BYTE_LANES == S_BYTE_LANES) begin : bypass
// same width; bypass
reg [SEGMENT_COUNT_WIDTH-1:0] segment_count_reg = 0, segment_count_next;
assign s_axis_tready = m_axis_tready;
reg last_segment;
assign m_axis_tdata = s_axis_tdata;
assign m_axis_tkeep = M_KEEP_ENABLE ? s_axis_tkeep : {M_KEEP_WIDTH{1'b1}};
assign m_axis_tvalid = s_axis_tvalid;
assign m_axis_tlast = s_axis_tlast;
assign m_axis_tid = ID_ENABLE ? s_axis_tid : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? s_axis_tdest : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? s_axis_tuser : {USER_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] temp_tdata_reg = {DATA_WIDTH{1'b0}}, temp_tdata_next;
reg [KEEP_WIDTH-1:0] temp_tkeep_reg = {KEEP_WIDTH{1'b0}}, temp_tkeep_next;
reg temp_tlast_reg = 1'b0, temp_tlast_next;
reg [ID_WIDTH-1:0] temp_tid_reg = {ID_WIDTH{1'b0}}, temp_tid_next;
reg [DEST_WIDTH-1:0] temp_tdest_reg = {DEST_WIDTH{1'b0}}, temp_tdest_next;
reg [USER_WIDTH-1:0] temp_tuser_reg = {USER_WIDTH{1'b0}}, temp_tuser_next;
end else if (M_BYTE_LANES > S_BYTE_LANES) begin : upsize
// output is wider; upsize
// internal datapath
reg [M_DATA_WIDTH-1:0] m_axis_tdata_int;
reg [M_KEEP_WIDTH-1:0] m_axis_tkeep_int;
reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg [ID_WIDTH-1:0] m_axis_tid_int;
reg [DEST_WIDTH-1:0] m_axis_tdest_int;
reg [USER_WIDTH-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early;
// required number of segments in wider bus
localparam SEG_COUNT = M_BYTE_LANES / S_BYTE_LANES;
// data width and keep width per segment
localparam SEG_DATA_WIDTH = M_DATA_WIDTH / SEG_COUNT;
localparam SEG_KEEP_WIDTH = M_BYTE_LANES / SEG_COUNT;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
reg [$clog2(SEG_COUNT)-1:0] seg_reg = 0;
assign s_axis_tready = s_axis_tready_reg;
reg [S_DATA_WIDTH-1:0] s_axis_tdata_reg = {S_DATA_WIDTH{1'b0}};
reg [S_KEEP_WIDTH-1:0] s_axis_tkeep_reg = {S_KEEP_WIDTH{1'b0}};
reg s_axis_tvalid_reg = 1'b0;
reg s_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] s_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] s_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] s_axis_tuser_reg = {USER_WIDTH{1'b0}};
always @* begin
state_next = STATE_IDLE;
reg [M_DATA_WIDTH-1:0] m_axis_tdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_KEEP_WIDTH-1:0] m_axis_tkeep_reg = {M_KEEP_WIDTH{1'b0}};
reg m_axis_tvalid_reg = 1'b0;
reg m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}};
segment_count_next = segment_count_reg;
assign s_axis_tready = !s_axis_tvalid_reg;
last_segment = 0;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = M_KEEP_ENABLE ? m_axis_tkeep_reg : {M_KEEP_WIDTH{1'b1}};
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
temp_tdata_next = temp_tdata_reg;
temp_tkeep_next = temp_tkeep_reg;
temp_tlast_next = temp_tlast_reg;
temp_tid_next = temp_tid_reg;
temp_tdest_next = temp_tdest_reg;
temp_tuser_next = temp_tuser_reg;
always @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_reg && !m_axis_tready;
if (EXPAND_BUS) begin
m_axis_tdata_int = temp_tdata_reg;
m_axis_tkeep_int = temp_tkeep_reg;
m_axis_tlast_int = temp_tlast_reg;
end else begin
m_axis_tdata_int = {M_DATA_WIDTH{1'b0}};
m_axis_tkeep_int = {M_KEEP_WIDTH{1'b0}};
m_axis_tlast_int = 1'b0;
end
m_axis_tvalid_int = 1'b0;
m_axis_tid_int = temp_tid_reg;
m_axis_tdest_int = temp_tdest_reg;
m_axis_tuser_int = temp_tuser_reg;
if (!m_axis_tvalid_reg || m_axis_tready) begin
// output register empty
s_axis_tready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - no data in registers
if (SEGMENT_COUNT == 1) begin
// output and input same width - just act like a register
// accept data next cycle if output register ready next cycle
s_axis_tready_next = m_axis_tready_int_early;
// transfer through
m_axis_tdata_int = s_axis_tdata;
m_axis_tkeep_int = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1;
m_axis_tvalid_int = s_axis_tvalid;
m_axis_tlast_int = s_axis_tlast;
m_axis_tid_int = s_axis_tid;
m_axis_tdest_int = s_axis_tdest;
m_axis_tuser_int = s_axis_tuser;
state_next = STATE_IDLE;
end else if (EXPAND_BUS) begin
// output bus is wider
// accept new data
s_axis_tready_next = 1'b1;
if (s_axis_tready && s_axis_tvalid) begin
// word transfer in - store it in data register
// pass complete input word, zero-extended to temp register
temp_tdata_next = s_axis_tdata;
temp_tkeep_next = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1;
temp_tlast_next = s_axis_tlast;
temp_tid_next = s_axis_tid;
temp_tdest_next = s_axis_tdest;
temp_tuser_next = s_axis_tuser;
// first input segment complete
segment_count_next = 1;
if (s_axis_tlast) begin
// got last signal on first segment, so output it
s_axis_tready_next = 1'b0;
state_next = STATE_TRANSFER_OUT;
end else begin
// otherwise, transfer in the rest of the words
s_axis_tready_next = 1'b1;
state_next = STATE_TRANSFER_IN;
end
end else begin
state_next = STATE_IDLE;
end
if (seg_reg == 0) begin
m_axis_tdata_reg[seg_reg*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] <= s_axis_tvalid_reg ? s_axis_tdata_reg : s_axis_tdata;
m_axis_tkeep_reg <= s_axis_tvalid_reg ? s_axis_tkeep_reg : s_axis_tkeep;
end else begin
// output bus is narrower
m_axis_tdata_reg[seg_reg*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] <= s_axis_tdata;
m_axis_tkeep_reg[seg_reg*SEG_KEEP_WIDTH +: SEG_KEEP_WIDTH] <= s_axis_tkeep;
end
m_axis_tlast_reg <= s_axis_tvalid_reg ? s_axis_tlast_reg : s_axis_tlast;
m_axis_tid_reg <= s_axis_tvalid_reg ? s_axis_tid_reg : s_axis_tid;
m_axis_tdest_reg <= s_axis_tvalid_reg ? s_axis_tdest_reg : s_axis_tdest;
m_axis_tuser_reg <= s_axis_tvalid_reg ? s_axis_tuser_reg : s_axis_tuser;
// accept new data
s_axis_tready_next = 1'b1;
if (s_axis_tvalid_reg) begin
// consume data from buffer
s_axis_tvalid_reg <= 1'b0;
if (s_axis_tready && s_axis_tvalid) begin
// word transfer in - store it in data register
segment_count_next = 0;
// is this the last segment?
if (SEGMENT_COUNT == 1) begin
// last segment by counter value
last_segment = 1'b1;
end else if (S_KEEP_ENABLE && s_axis_tkeep[SEGMENT_KEEP_WIDTH-1:0] != {SEGMENT_KEEP_WIDTH{1'b1}}) begin
// last segment by tkeep fall in current segment
last_segment = 1'b1;
end else if (S_KEEP_ENABLE && s_axis_tkeep[(SEGMENT_KEEP_WIDTH*2)-1:SEGMENT_KEEP_WIDTH] == {SEGMENT_KEEP_WIDTH{1'b0}}) begin
// last segment by tkeep fall at end of current segment
last_segment = 1'b1;
end else begin
last_segment = 1'b0;
end
// pass complete input word, zero-extended to temp register
temp_tdata_next = s_axis_tdata;
temp_tkeep_next = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1;
temp_tlast_next = s_axis_tlast;
temp_tid_next = s_axis_tid;
temp_tdest_next = s_axis_tdest;
temp_tuser_next = s_axis_tuser;
// short-circuit and get first word out the door
m_axis_tdata_int = s_axis_tdata[SEGMENT_DATA_WIDTH-1:0];
m_axis_tkeep_int = s_axis_tkeep[SEGMENT_KEEP_WIDTH-1:0];
m_axis_tvalid_int = 1'b1;
m_axis_tlast_int = s_axis_tlast & last_segment;
m_axis_tid_int = s_axis_tid;
m_axis_tdest_int = s_axis_tdest;
m_axis_tuser_int = s_axis_tuser;
if (m_axis_tready_int_reg) begin
// if output register is ready for first word, then move on to the next one
segment_count_next = 1;
end
if (!last_segment || !m_axis_tready_int_reg) begin
// continue outputting words
s_axis_tready_next = 1'b0;
state_next = STATE_TRANSFER_OUT;
end else begin
state_next = STATE_IDLE;
end
if (s_axis_tlast_reg || seg_reg == SEG_COUNT-1) begin
seg_reg <= 0;
m_axis_tvalid_reg <= 1'b1;
end else begin
state_next = STATE_IDLE;
seg_reg <= seg_reg + 1;
end
end else if (s_axis_tvalid) begin
// data direct from input
if (s_axis_tlast || seg_reg == SEG_COUNT-1) begin
seg_reg <= 0;
m_axis_tvalid_reg <= 1'b1;
end else begin
seg_reg <= seg_reg + 1;
end
end
end else if (s_axis_tvalid && s_axis_tready) begin
// store input data in skid buffer
s_axis_tdata_reg <= s_axis_tdata;
s_axis_tkeep_reg <= s_axis_tkeep;
s_axis_tvalid_reg <= 1'b1;
s_axis_tlast_reg <= s_axis_tlast;
s_axis_tid_reg <= s_axis_tid;
s_axis_tdest_reg <= s_axis_tdest;
s_axis_tuser_reg <= s_axis_tuser;
end
STATE_TRANSFER_IN: begin
// transfer word to temp registers
// only used when output is wider
// accept new data
s_axis_tready_next = 1'b1;
if (s_axis_tready && s_axis_tvalid) begin
// word transfer in - store in data register
temp_tdata_next[segment_count_reg*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH] = s_axis_tdata;
temp_tkeep_next[segment_count_reg*SEGMENT_KEEP_WIDTH +: SEGMENT_KEEP_WIDTH] = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1;
temp_tlast_next = s_axis_tlast;
temp_tid_next = s_axis_tid;
temp_tdest_next = s_axis_tdest;
temp_tuser_next = s_axis_tuser;
segment_count_next = segment_count_reg + 1;
if ((segment_count_reg == SEGMENT_COUNT-1) || s_axis_tlast) begin
// terminated by counter or tlast signal, output complete word
// read input word next cycle if output will be ready
s_axis_tready_next = m_axis_tready_int_early;
state_next = STATE_TRANSFER_OUT;
end else begin
// more words to read
s_axis_tready_next = 1'b1;
state_next = STATE_TRANSFER_IN;
end
end else begin
state_next = STATE_TRANSFER_IN;
end
if (rst) begin
seg_reg <= 0;
s_axis_tvalid_reg <= 1'b0;
m_axis_tvalid_reg <= 1'b0;
end
STATE_TRANSFER_OUT: begin
// transfer word to output registers
end
if (EXPAND_BUS) begin
// output bus is wider
end else begin : downsize
// output is narrower; downsize
// do not accept new data
s_axis_tready_next = 1'b0;
// required number of segments in wider bus
localparam SEG_COUNT = S_BYTE_LANES / M_BYTE_LANES;
// data width and keep width per segment
localparam SEG_DATA_WIDTH = S_DATA_WIDTH / SEG_COUNT;
localparam SEG_KEEP_WIDTH = S_BYTE_LANES / SEG_COUNT;
// single-cycle output of entire stored word (output wider)
m_axis_tdata_int = temp_tdata_reg;
m_axis_tkeep_int = temp_tkeep_reg;
m_axis_tvalid_int = 1'b1;
m_axis_tlast_int = temp_tlast_reg;
m_axis_tid_int = temp_tid_reg;
m_axis_tdest_int = temp_tdest_reg;
m_axis_tuser_int = temp_tuser_reg;
reg [S_DATA_WIDTH-1:0] s_axis_tdata_reg = {S_DATA_WIDTH{1'b0}};
reg [S_KEEP_WIDTH-1:0] s_axis_tkeep_reg = {S_KEEP_WIDTH{1'b0}};
reg s_axis_tvalid_reg = 1'b0;
reg s_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] s_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] s_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] s_axis_tuser_reg = {USER_WIDTH{1'b0}};
if (m_axis_tready_int_reg) begin
// word transfer out
reg [M_DATA_WIDTH-1:0] m_axis_tdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_KEEP_WIDTH-1:0] m_axis_tkeep_reg = {M_KEEP_WIDTH{1'b0}};
reg m_axis_tvalid_reg = 1'b0;
reg m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}};
if (s_axis_tready && s_axis_tvalid) begin
// word transfer in
assign s_axis_tready = !s_axis_tvalid_reg;
// pass complete input word, zero-extended to temp register
temp_tdata_next = s_axis_tdata;
temp_tkeep_next = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1;
temp_tlast_next = s_axis_tlast;
temp_tid_next = s_axis_tid;
temp_tdest_next = s_axis_tdest;
temp_tuser_next = s_axis_tuser;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = M_KEEP_ENABLE ? m_axis_tkeep_reg : {M_KEEP_WIDTH{1'b1}};
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
// first input segment complete
segment_count_next = 1;
always @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_reg && !m_axis_tready;
if (s_axis_tlast) begin
// got last signal on first segment, so output it
s_axis_tready_next = 1'b0;
state_next = STATE_TRANSFER_OUT;
end else begin
// otherwise, transfer in the rest of the words
s_axis_tready_next = 1'b1;
state_next = STATE_TRANSFER_IN;
end
end else begin
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_TRANSFER_OUT;
if (!m_axis_tvalid_reg || m_axis_tready) begin
// output register empty
m_axis_tdata_reg <= s_axis_tvalid_reg ? s_axis_tdata_reg : s_axis_tdata;
m_axis_tkeep_reg <= s_axis_tvalid_reg ? s_axis_tkeep_reg : s_axis_tkeep;
m_axis_tlast_reg <= 1'b0;
m_axis_tid_reg <= s_axis_tvalid_reg ? s_axis_tid_reg : s_axis_tid;
m_axis_tdest_reg <= s_axis_tvalid_reg ? s_axis_tdest_reg : s_axis_tdest;
m_axis_tuser_reg <= s_axis_tvalid_reg ? s_axis_tuser_reg : s_axis_tuser;
if (s_axis_tvalid_reg) begin
// buffer has data; shift out from buffer
s_axis_tdata_reg <= s_axis_tdata_reg >> SEG_DATA_WIDTH;
s_axis_tkeep_reg <= s_axis_tkeep_reg >> SEG_KEEP_WIDTH;
m_axis_tvalid_reg <= 1'b1;
if ((s_axis_tkeep_reg >> SEG_KEEP_WIDTH) == 0) begin
s_axis_tvalid_reg <= 1'b0;
m_axis_tlast_reg <= s_axis_tlast_reg;
end
end else begin
// output bus is narrower
end else if (s_axis_tvalid && s_axis_tready) begin
// buffer is empty; store from input
s_axis_tdata_reg <= s_axis_tdata >> SEG_DATA_WIDTH;
s_axis_tkeep_reg <= s_axis_tkeep >> SEG_KEEP_WIDTH;
s_axis_tlast_reg <= s_axis_tlast;
s_axis_tid_reg <= s_axis_tid;
s_axis_tdest_reg <= s_axis_tdest;
s_axis_tuser_reg <= s_axis_tuser;
// do not accept new data
s_axis_tready_next = 1'b0;
m_axis_tvalid_reg <= 1'b1;
// is this the last segment?
if (segment_count_reg == SEGMENT_COUNT-1) begin
// last segment by counter value
last_segment = 1'b1;
end else if (temp_tkeep_reg[segment_count_reg*SEGMENT_KEEP_WIDTH +: SEGMENT_KEEP_WIDTH] != {SEGMENT_KEEP_WIDTH{1'b1}}) begin
// last segment by tkeep fall in current segment
last_segment = 1'b1;
end else if (temp_tkeep_reg[(segment_count_reg+1)*SEGMENT_KEEP_WIDTH +: SEGMENT_KEEP_WIDTH] == {SEGMENT_KEEP_WIDTH{1'b0}}) begin
// last segment by tkeep fall at end of current segment
last_segment = 1'b1;
if ((s_axis_tkeep >> SEG_KEEP_WIDTH) == 0) begin
s_axis_tvalid_reg <= 1'b0;
m_axis_tlast_reg <= s_axis_tlast;
end else begin
last_segment = 1'b0;
end
// output current part of stored word (output narrower)
m_axis_tdata_int = temp_tdata_reg[segment_count_reg*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH];
m_axis_tkeep_int = temp_tkeep_reg[segment_count_reg*SEGMENT_KEEP_WIDTH +: SEGMENT_KEEP_WIDTH];
m_axis_tvalid_int = 1'b1;
m_axis_tlast_int = temp_tlast_reg && last_segment;
m_axis_tid_int = temp_tid_reg;
m_axis_tdest_int = temp_tdest_reg;
m_axis_tuser_int = temp_tuser_reg;
if (m_axis_tready_int_reg) begin
// word transfer out
segment_count_next = segment_count_reg + 1;
if (last_segment) begin
// terminated by counter or tlast signal
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end else begin
// more words to write
state_next = STATE_TRANSFER_OUT;
end
end else begin
state_next = STATE_TRANSFER_OUT;
s_axis_tvalid_reg <= 1'b1;
end
end
end else if (s_axis_tvalid && s_axis_tready) begin
// store input data
s_axis_tdata_reg <= s_axis_tdata;
s_axis_tkeep_reg <= s_axis_tkeep;
s_axis_tvalid_reg <= 1'b1;
s_axis_tlast_reg <= s_axis_tlast;
s_axis_tid_reg <= s_axis_tid;
s_axis_tdest_reg <= s_axis_tdest;
s_axis_tuser_reg <= s_axis_tuser;
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
s_axis_tready_reg <= 1'b0;
end else begin
state_reg <= state_next;
s_axis_tready_reg <= s_axis_tready_next;
end
segment_count_reg <= segment_count_next;
temp_tdata_reg <= temp_tdata_next;
temp_tkeep_reg <= temp_tkeep_next;
temp_tlast_reg <= temp_tlast_next;
temp_tid_reg <= temp_tid_next;
temp_tdest_reg <= temp_tdest_next;
temp_tuser_reg <= temp_tuser_next;
end
// output datapath logic
reg [M_DATA_WIDTH-1:0] m_axis_tdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_KEEP_WIDTH-1:0] m_axis_tkeep_reg = {M_KEEP_WIDTH{1'b0}};
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}};
reg [M_DATA_WIDTH-1:0] temp_m_axis_tdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_KEEP_WIDTH-1:0] temp_m_axis_tkeep_reg = {M_KEEP_WIDTH{1'b0}};
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] temp_m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] temp_m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] temp_m_axis_tuser_reg = {USER_WIDTH{1'b0}};
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = M_KEEP_ENABLE ? m_axis_tkeep_reg : {M_KEEP_WIDTH{1'b1}};
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis_tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
if (rst) begin
s_axis_tvalid_reg <= 1'b0;
m_axis_tvalid_reg <= 1'b0;
end
end else if (m_axis_tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tid_reg <= m_axis_tid_int;
m_axis_tdest_reg <= m_axis_tdest_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tid_reg <= temp_m_axis_tid_reg;
m_axis_tdest_reg <= temp_m_axis_tdest_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tid_reg <= m_axis_tid_int;
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endgenerate
endmodule