1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00

Add TLP mux and demux modules

This commit is contained in:
Alex Forencich 2021-09-08 10:04:38 -07:00
parent 1321e8e41a
commit f566df2c66
3 changed files with 805 additions and 0 deletions

324
rtl/pcie_tlp_demux.v Normal file
View File

@ -0,0 +1,324 @@
/*
Copyright (c) 2021 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* PCIe TLP demultiplexer
*/
module pcie_tlp_demux #
(
// Output count
parameter PORTS = 2,
// TLP segment count
parameter TLP_SEG_COUNT = 1,
// TLP segment data width
parameter TLP_SEG_DATA_WIDTH = 256,
// TLP segment strobe width
parameter TLP_SEG_STRB_WIDTH = TLP_SEG_DATA_WIDTH/32,
// TLP segment header width
parameter TLP_SEG_HDR_WIDTH = 128
)
(
input wire clk,
input wire rst,
/*
* TLP input
*/
input wire [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] in_tlp_data,
input wire [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] in_tlp_strb,
input wire [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] in_tlp_hdr,
input wire [TLP_SEG_COUNT*3-1:0] in_tlp_bar_id,
input wire [TLP_SEG_COUNT*8-1:0] in_tlp_func_num,
input wire [TLP_SEG_COUNT*4-1:0] in_tlp_error,
input wire [TLP_SEG_COUNT-1:0] in_tlp_valid,
input wire [TLP_SEG_COUNT-1:0] in_tlp_sop,
input wire [TLP_SEG_COUNT-1:0] in_tlp_eop,
output wire in_tlp_ready,
/*
* TLP output
*/
output wire [PORTS*TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] out_tlp_data,
output wire [PORTS*TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] out_tlp_strb,
output wire [PORTS*TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] out_tlp_hdr,
output wire [PORTS*TLP_SEG_COUNT*3-1:0] out_tlp_bar_id,
output wire [PORTS*TLP_SEG_COUNT*8-1:0] out_tlp_func_num,
output wire [PORTS*TLP_SEG_COUNT*4-1:0] out_tlp_error,
output wire [PORTS*TLP_SEG_COUNT-1:0] out_tlp_valid,
output wire [PORTS*TLP_SEG_COUNT-1:0] out_tlp_sop,
output wire [PORTS*TLP_SEG_COUNT-1:0] out_tlp_eop,
input wire [PORTS-1:0] out_tlp_ready,
/*
* Fields
*/
output wire [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] match_tlp_hdr,
output wire [TLP_SEG_COUNT*3-1:0] match_tlp_bar_id,
output wire [TLP_SEG_COUNT*8-1:0] match_tlp_func_num,
/*
* Control
*/
input wire enable,
input wire [TLP_SEG_COUNT-1:0] drop,
input wire [TLP_SEG_COUNT*PORTS-1:0] select
);
parameter CL_PORTS = $clog2(PORTS);
// check configuration
initial begin
if (TLP_SEG_COUNT != 1) begin
$error("Error: TLP segment count must be 1 (instance %m)");
$finish;
end
if (TLP_SEG_HDR_WIDTH != 128) begin
$error("Error: TLP segment header width must be 128 (instance %m)");
$finish;
end
if (TLP_SEG_STRB_WIDTH*32 != TLP_SEG_DATA_WIDTH) begin
$error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)");
$finish;
end
end
reg [CL_PORTS-1:0] select_reg = {CL_PORTS{1'b0}}, select_ctl, select_next;
reg drop_reg = 1'b0, drop_ctl, drop_next;
reg frame_reg = 1'b0, frame_ctl, frame_next;
reg in_tlp_ready_reg = 1'b0, in_tlp_ready_next;
reg [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] temp_in_tlp_data_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] temp_in_tlp_strb_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] temp_in_tlp_hdr_reg = 0;
reg [TLP_SEG_COUNT*3-1:0] temp_in_tlp_bar_id_reg = 0;
reg [TLP_SEG_COUNT*8-1:0] temp_in_tlp_func_num_reg = 0;
reg [TLP_SEG_COUNT*4-1:0] temp_in_tlp_error_reg = 0;
reg [TLP_SEG_COUNT-1:0] temp_in_tlp_valid_reg = 1'b0;
reg [TLP_SEG_COUNT-1:0] temp_in_tlp_sop_reg = 1'b0;
reg [TLP_SEG_COUNT-1:0] temp_in_tlp_eop_reg = 1'b0;
// internal datapath
reg [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] out_tlp_data_int;
reg [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] out_tlp_strb_int;
reg [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] out_tlp_hdr_int;
reg [TLP_SEG_COUNT*3-1:0] out_tlp_bar_id_int;
reg [TLP_SEG_COUNT*8-1:0] out_tlp_func_num_int;
reg [TLP_SEG_COUNT*4-1:0] out_tlp_error_int;
reg [PORTS*TLP_SEG_COUNT-1:0] out_tlp_valid_int;
reg [TLP_SEG_COUNT-1:0] out_tlp_sop_int;
reg [TLP_SEG_COUNT-1:0] out_tlp_eop_int;
reg out_tlp_ready_int_reg = 1'b0;
wire out_tlp_ready_int_early;
assign in_tlp_ready = in_tlp_ready_reg && enable;
assign match_tlp_hdr = in_tlp_hdr;
assign match_tlp_bar_id = in_tlp_bar_id;
assign match_tlp_func_num = in_tlp_func_num;
integer i;
always @* begin
select_next = select_reg;
select_ctl = select_reg;
drop_next = drop_reg;
drop_ctl = drop_reg;
frame_next = frame_reg;
frame_ctl = frame_reg;
in_tlp_ready_next = 1'b0;
if (in_tlp_valid && in_tlp_ready) begin
// end of frame detection
if (in_tlp_eop) begin
frame_next = 1'b0;
drop_next = 1'b0;
end
end
if (!frame_reg && in_tlp_valid && in_tlp_ready) begin
// start of frame, grab select value
select_ctl = 0;
drop_ctl = 1'b1;
frame_ctl = 1'b1;
for (i = PORTS-1; i >= 0; i = i - 1) begin
if (select[i]) begin
select_ctl = i;
drop_ctl = 1'b0;
end
end
drop_ctl = drop_ctl || drop;
if (!(in_tlp_ready && in_tlp_valid && in_tlp_eop)) begin
select_next = select_ctl;
drop_next = drop_ctl;
frame_next = 1'b1;
end
end
in_tlp_ready_next = out_tlp_ready_int_early || drop_ctl;
out_tlp_data_int = in_tlp_data;
out_tlp_strb_int = in_tlp_strb;
out_tlp_hdr_int = in_tlp_hdr;
out_tlp_bar_id_int = in_tlp_bar_id;
out_tlp_func_num_int = in_tlp_func_num;
out_tlp_error_int = in_tlp_error;
out_tlp_valid_int = (in_tlp_valid && in_tlp_ready && !drop_ctl && frame_ctl) << select_ctl;
out_tlp_sop_int = in_tlp_sop;
out_tlp_eop_int = in_tlp_eop;
end
always @(posedge clk) begin
select_reg <= select_next;
drop_reg <= drop_next;
frame_reg <= frame_next;
in_tlp_ready_reg <= in_tlp_ready_next;
if (rst) begin
select_reg <= 2'd0;
drop_reg <= 1'b0;
frame_reg <= 1'b0;
in_tlp_ready_reg <= 1'b0;
end
end
// output datapath logic
reg [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] out_tlp_data_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] out_tlp_strb_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] out_tlp_hdr_reg = 0;
reg [TLP_SEG_COUNT*3-1:0] out_tlp_bar_id_reg = 0;
reg [TLP_SEG_COUNT*8-1:0] out_tlp_func_num_reg = 0;
reg [TLP_SEG_COUNT*4-1:0] out_tlp_error_reg = 0;
reg [PORTS*TLP_SEG_COUNT-1:0] out_tlp_valid_reg = 1, out_tlp_valid_next;
reg [TLP_SEG_COUNT-1:0] out_tlp_sop_reg = 0;
reg [TLP_SEG_COUNT-1:0] out_tlp_eop_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] temp_out_tlp_data_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] temp_out_tlp_strb_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] temp_out_tlp_hdr_reg = 0;
reg [TLP_SEG_COUNT*3-1:0] temp_out_tlp_bar_id_reg = 0;
reg [TLP_SEG_COUNT*8-1:0] temp_out_tlp_func_num_reg = 0;
reg [TLP_SEG_COUNT*4-1:0] temp_out_tlp_error_reg = 0;
reg [PORTS*TLP_SEG_COUNT-1:0] temp_out_tlp_valid_reg = 0, temp_out_tlp_valid_next;
reg [TLP_SEG_COUNT-1:0] temp_out_tlp_sop_reg = 0;
reg [TLP_SEG_COUNT-1:0] temp_out_tlp_eop_reg = 0;
// datapath control
reg store_int_to_output;
reg store_int_to_temp;
reg store_temp_to_output;
assign out_tlp_data = {PORTS{out_tlp_data_reg}};
assign out_tlp_strb = {PORTS{out_tlp_strb_reg}};
assign out_tlp_hdr = {PORTS{out_tlp_hdr_reg}};
assign out_tlp_bar_id = {PORTS{out_tlp_bar_id_reg}};
assign out_tlp_func_num = {PORTS{out_tlp_func_num_reg}};
assign out_tlp_error = {PORTS{out_tlp_error_reg}};
assign out_tlp_valid = out_tlp_valid_reg;
assign out_tlp_sop = {PORTS{out_tlp_sop_reg}};
assign out_tlp_eop = {PORTS{out_tlp_eop_reg}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign out_tlp_ready_int_early = (out_tlp_ready & out_tlp_valid) || (!temp_out_tlp_valid_reg && (!out_tlp_valid || !out_tlp_valid_int));
always @* begin
// transfer sink ready state to source
out_tlp_valid_next = out_tlp_valid_reg;
temp_out_tlp_valid_next = temp_out_tlp_valid_reg;
store_int_to_output = 1'b0;
store_int_to_temp = 1'b0;
store_temp_to_output = 1'b0;
if (out_tlp_ready_int_reg) begin
// input is ready
if ((out_tlp_ready & out_tlp_valid) || !out_tlp_valid) begin
// output is ready or currently not valid, transfer data to output
out_tlp_valid_next = out_tlp_valid_int;
store_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_out_tlp_valid_next = out_tlp_valid_int;
store_int_to_temp = 1'b1;
end
end else if (out_tlp_ready & out_tlp_valid) begin
// input is not ready, but output is ready
out_tlp_valid_next = temp_out_tlp_valid_reg;
temp_out_tlp_valid_next = 1'b0;
store_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
out_tlp_valid_reg <= {PORTS{1'b0}};
out_tlp_ready_int_reg <= 1'b0;
temp_out_tlp_valid_reg <= 1'b0;
end else begin
out_tlp_valid_reg <= out_tlp_valid_next;
out_tlp_ready_int_reg <= out_tlp_ready_int_early;
temp_out_tlp_valid_reg <= temp_out_tlp_valid_next;
end
// datapath
if (store_int_to_output) begin
out_tlp_data_reg <= out_tlp_data_int;
out_tlp_strb_reg <= out_tlp_strb_int;
out_tlp_hdr_reg <= out_tlp_hdr_int;
out_tlp_bar_id_reg <= out_tlp_bar_id_int;
out_tlp_func_num_reg <= out_tlp_func_num_int;
out_tlp_error_reg <= out_tlp_error_int;
out_tlp_sop_reg <= out_tlp_sop_int;
out_tlp_eop_reg <= out_tlp_eop_int;
end else if (store_temp_to_output) begin
out_tlp_data_reg <= temp_out_tlp_data_reg;
out_tlp_strb_reg <= temp_out_tlp_strb_reg;
out_tlp_hdr_reg <= temp_out_tlp_hdr_reg;
out_tlp_bar_id_reg <= temp_out_tlp_bar_id_reg;
out_tlp_func_num_reg <= temp_out_tlp_func_num_reg;
out_tlp_error_reg <= temp_out_tlp_error_reg;
out_tlp_sop_reg <= temp_out_tlp_sop_reg;
out_tlp_eop_reg <= temp_out_tlp_eop_reg;
end
if (store_int_to_temp) begin
temp_out_tlp_data_reg <= out_tlp_data_int;
temp_out_tlp_strb_reg <= out_tlp_strb_int;
temp_out_tlp_hdr_reg <= out_tlp_hdr_int;
temp_out_tlp_bar_id_reg <= out_tlp_bar_id_int;
temp_out_tlp_func_num_reg <= out_tlp_func_num_int;
temp_out_tlp_error_reg <= out_tlp_error_int;
temp_out_tlp_sop_reg <= out_tlp_sop_int;
temp_out_tlp_eop_reg <= out_tlp_eop_int;
end
end
endmodule

201
rtl/pcie_tlp_demux_bar.v Normal file
View File

@ -0,0 +1,201 @@
/*
Copyright (c) 2021 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* PCIe TLP demultiplexer (BAR ID)
*/
module pcie_tlp_demux_bar #
(
// Output count
parameter PORTS = 2,
// TLP segment count
parameter TLP_SEG_COUNT = 1,
// TLP segment data width
parameter TLP_SEG_DATA_WIDTH = 256,
// TLP segment strobe width
parameter TLP_SEG_STRB_WIDTH = TLP_SEG_DATA_WIDTH/32,
// TLP segment header width
parameter TLP_SEG_HDR_WIDTH = 128,
// Base BAR
parameter BAR_BASE = 0,
// BAR stride
parameter BAR_STRIDE = 1,
// Explicit BAR numbers (set to 0 to use base/stride)
parameter BAR_IDS = 0
)
(
input wire clk,
input wire rst,
/*
* TLP input
*/
input wire [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] in_tlp_data,
input wire [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] in_tlp_strb,
input wire [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] in_tlp_hdr,
input wire [TLP_SEG_COUNT*3-1:0] in_tlp_bar_id,
input wire [TLP_SEG_COUNT*8-1:0] in_tlp_func_num,
input wire [TLP_SEG_COUNT*4-1:0] in_tlp_error,
input wire [TLP_SEG_COUNT-1:0] in_tlp_valid,
input wire [TLP_SEG_COUNT-1:0] in_tlp_sop,
input wire [TLP_SEG_COUNT-1:0] in_tlp_eop,
output wire in_tlp_ready,
/*
* TLP output
*/
output wire [PORTS*TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] out_tlp_data,
output wire [PORTS*TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] out_tlp_strb,
output wire [PORTS*TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] out_tlp_hdr,
output wire [PORTS*TLP_SEG_COUNT*3-1:0] out_tlp_bar_id,
output wire [PORTS*TLP_SEG_COUNT*8-1:0] out_tlp_func_num,
output wire [PORTS*TLP_SEG_COUNT*4-1:0] out_tlp_error,
output wire [PORTS*TLP_SEG_COUNT-1:0] out_tlp_valid,
output wire [PORTS*TLP_SEG_COUNT-1:0] out_tlp_sop,
output wire [PORTS*TLP_SEG_COUNT-1:0] out_tlp_eop,
input wire [PORTS-1:0] out_tlp_ready,
/*
* Control
*/
input wire enable
);
// default BAR number computation
function [PORTS*3-1:0] calcBarIds(input [2:0] base, input [2:0] stride);
integer i;
reg [2:0] bar;
begin
calcBarIds = {PORTS*3{1'b0}};
bar = base;
for (i = 0; i < PORTS; i = i + 1) begin
calcBarIds[i*3 +: 3] = bar;
bar = bar + stride;
end
end
endfunction
parameter BAR_IDS_INT = BAR_IDS ? BAR_IDS : calcBarIds(BAR_BASE, BAR_STRIDE);
integer i, j;
// check configuration
initial begin
for (i = 0; i < PORTS; i = i + 1) begin
if (BAR_IDS_INT[i*3 +: 3] > 5) begin
$error("Error: BAR out of range (instance %m)");
$finish;
end
end
for (i = 0; i < PORTS; i = i + 1) begin
for (j = i+1; j < PORTS; j = j + 1) begin
if (BAR_IDS_INT[i*3 +: 3] == BAR_IDS_INT[j*3 +: 3]) begin
$display("Duplicate BAR:");
$display("%d: %d", i, BAR_IDS_INT[i*3 +: 3]);
$display("%d: %d", j, BAR_IDS_INT[j*3 +: 3]);
$error("Error: Duplicate BAR (instance %m)");
$finish;
end
end
end
end
wire [TLP_SEG_COUNT*3-1:0] match_tlp_bar_id;
wire [TLP_SEG_COUNT-1:0] drop;
wire [TLP_SEG_COUNT*PORTS-1:0] select;
generate
genvar m, n;
for (n = 0; n < TLP_SEG_COUNT; n = n + 1) begin
for (m = 0; m < PORTS; m = m + 1) begin
assign select[n*PORTS+m] = match_tlp_bar_id[n*3 +: 3] == BAR_IDS_INT[m*3 +: 3];
end
assign drop[n] = select[n*PORTS +: PORTS] == 0;
end
endgenerate
pcie_tlp_demux #(
.PORTS(PORTS),
.TLP_SEG_COUNT(TLP_SEG_COUNT),
.TLP_SEG_DATA_WIDTH(TLP_SEG_DATA_WIDTH),
.TLP_SEG_STRB_WIDTH(TLP_SEG_STRB_WIDTH),
.TLP_SEG_HDR_WIDTH(TLP_SEG_HDR_WIDTH)
)
pcie_tlp_demux_inst (
.clk(clk),
.rst(rst),
/*
* TLP input
*/
.in_tlp_data(in_tlp_data),
.in_tlp_strb(in_tlp_strb),
.in_tlp_hdr(in_tlp_hdr),
.in_tlp_bar_id(in_tlp_bar_id),
.in_tlp_func_num(in_tlp_func_num),
.in_tlp_error(in_tlp_error),
.in_tlp_valid(in_tlp_valid),
.in_tlp_sop(in_tlp_sop),
.in_tlp_eop(in_tlp_eop),
.in_tlp_ready(in_tlp_ready),
/*
* TLP output
*/
.out_tlp_data(out_tlp_data),
.out_tlp_strb(out_tlp_strb),
.out_tlp_hdr(out_tlp_hdr),
.out_tlp_bar_id(out_tlp_bar_id),
.out_tlp_func_num(out_tlp_func_num),
.out_tlp_error(out_tlp_error),
.out_tlp_valid(out_tlp_valid),
.out_tlp_sop(out_tlp_sop),
.out_tlp_eop(out_tlp_eop),
.out_tlp_ready(out_tlp_ready),
/*
* Fields
*/
.match_tlp_hdr(),
.match_tlp_bar_id(match_tlp_bar_id),
.match_tlp_func_num(),
/*
* Control
*/
.enable(enable),
.drop(drop),
.select(select)
);
endmodule

280
rtl/pcie_tlp_mux.v Normal file
View File

@ -0,0 +1,280 @@
/*
Copyright (c) 2021 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* PCIe TLP multiplexer
*/
module pcie_tlp_mux #
(
// Input count
parameter PORTS = 2,
// TLP segment count
parameter TLP_SEG_COUNT = 1,
// TLP segment data width
parameter TLP_SEG_DATA_WIDTH = 256,
// TLP segment strobe width
parameter TLP_SEG_STRB_WIDTH = TLP_SEG_DATA_WIDTH/32,
// TLP segment header width
parameter TLP_SEG_HDR_WIDTH = 128,
// select round robin arbitration
parameter ARB_TYPE_ROUND_ROBIN = 0,
// LSB priority selection
parameter ARB_LSB_HIGH_PRIORITY = 1
)
(
input wire clk,
input wire rst,
/*
* TLP input
*/
input wire [PORTS*TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] in_tlp_data,
input wire [PORTS*TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] in_tlp_strb,
input wire [PORTS*TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] in_tlp_hdr,
input wire [PORTS*TLP_SEG_COUNT*3-1:0] in_tlp_bar_id,
input wire [PORTS*TLP_SEG_COUNT*8-1:0] in_tlp_func_num,
input wire [PORTS*TLP_SEG_COUNT*4-1:0] in_tlp_error,
input wire [PORTS*TLP_SEG_COUNT-1:0] in_tlp_valid,
input wire [PORTS*TLP_SEG_COUNT-1:0] in_tlp_sop,
input wire [PORTS*TLP_SEG_COUNT-1:0] in_tlp_eop,
output wire [PORTS-1:0] in_tlp_ready,
/*
* TLP output
*/
output wire [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] out_tlp_data,
output wire [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] out_tlp_strb,
output wire [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] out_tlp_hdr,
output wire [TLP_SEG_COUNT*3-1:0] out_tlp_bar_id,
output wire [TLP_SEG_COUNT*8-1:0] out_tlp_func_num,
output wire [TLP_SEG_COUNT*4-1:0] out_tlp_error,
output wire [TLP_SEG_COUNT-1:0] out_tlp_valid,
output wire [TLP_SEG_COUNT-1:0] out_tlp_sop,
output wire [TLP_SEG_COUNT-1:0] out_tlp_eop,
input wire out_tlp_ready
);
parameter CL_PORTS = $clog2(PORTS);
// check configuration
initial begin
if (TLP_SEG_COUNT != 1) begin
$error("Error: TLP segment count must be 1 (instance %m)");
$finish;
end
if (TLP_SEG_HDR_WIDTH != 128) begin
$error("Error: TLP segment header width must be 128 (instance %m)");
$finish;
end
if (TLP_SEG_STRB_WIDTH*32 != TLP_SEG_DATA_WIDTH) begin
$error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)");
$finish;
end
end
wire [PORTS-1:0] request;
wire [PORTS-1:0] acknowledge;
wire [PORTS-1:0] grant;
wire grant_valid;
wire [CL_PORTS-1:0] grant_encoded;
// internal datapath
reg [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] out_tlp_data_int;
reg [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] out_tlp_strb_int;
reg [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] out_tlp_hdr_int;
reg [TLP_SEG_COUNT*3-1:0] out_tlp_bar_id_int;
reg [TLP_SEG_COUNT*8-1:0] out_tlp_func_num_int;
reg [TLP_SEG_COUNT*4-1:0] out_tlp_error_int;
reg [TLP_SEG_COUNT-1:0] out_tlp_valid_int;
reg [TLP_SEG_COUNT-1:0] out_tlp_sop_int;
reg [TLP_SEG_COUNT-1:0] out_tlp_eop_int;
reg out_tlp_ready_int_reg = 1'b0;
wire out_tlp_ready_int_early;
assign in_tlp_ready = (out_tlp_ready_int_reg && grant_valid) << grant_encoded;
// mux for incoming packet
wire [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] current_in_tlp_data = in_tlp_data[grant_encoded*TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH +: TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH];
wire [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] current_in_tlp_strb = in_tlp_strb[grant_encoded*TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH +: TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH];
wire [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] current_in_tlp_hdr = in_tlp_hdr[grant_encoded*TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH +: TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH];
wire [TLP_SEG_COUNT*3-1:0] current_in_tlp_bar_id = in_tlp_bar_id[grant_encoded*TLP_SEG_COUNT*3 +: TLP_SEG_COUNT*3];
wire [TLP_SEG_COUNT*8-1:0] current_in_tlp_func_num = in_tlp_func_num[grant_encoded*TLP_SEG_COUNT*8 +: TLP_SEG_COUNT*8];
wire [TLP_SEG_COUNT*4-1:0] current_in_tlp_error = in_tlp_error[grant_encoded*TLP_SEG_COUNT*4 +: TLP_SEG_COUNT*4];
wire [TLP_SEG_COUNT-1:0] current_in_tlp_valid = in_tlp_valid[grant_encoded*TLP_SEG_COUNT +: TLP_SEG_COUNT];
wire [TLP_SEG_COUNT-1:0] current_in_tlp_sop = in_tlp_sop[grant_encoded*TLP_SEG_COUNT +: TLP_SEG_COUNT];
wire [TLP_SEG_COUNT-1:0] current_in_tlp_eop = in_tlp_eop[grant_encoded*TLP_SEG_COUNT +: TLP_SEG_COUNT];
wire current_in_tlp_ready = in_tlp_ready[grant_encoded];
// arbiter instance
arbiter #(
.PORTS(PORTS),
.ARB_TYPE_ROUND_ROBIN(ARB_TYPE_ROUND_ROBIN),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.ARB_LSB_HIGH_PRIORITY(ARB_LSB_HIGH_PRIORITY)
)
arb_inst (
.clk(clk),
.rst(rst),
.request(request),
.acknowledge(acknowledge),
.grant(grant),
.grant_valid(grant_valid),
.grant_encoded(grant_encoded)
);
assign request = in_tlp_valid & ~grant;
assign acknowledge = grant & in_tlp_valid & in_tlp_ready & in_tlp_eop;
always @* begin
// pass through selected packet data
out_tlp_data_int = current_in_tlp_data;
out_tlp_strb_int = current_in_tlp_strb;
out_tlp_hdr_int = current_in_tlp_hdr;
out_tlp_bar_id_int = current_in_tlp_bar_id;
out_tlp_func_num_int = current_in_tlp_func_num;
out_tlp_error_int = current_in_tlp_error;
out_tlp_valid_int = out_tlp_ready_int_reg && grant_valid ? current_in_tlp_valid : 0;
out_tlp_sop_int = current_in_tlp_sop;
out_tlp_eop_int = current_in_tlp_eop;
end
// output datapath logic
reg [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] out_tlp_data_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] out_tlp_strb_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] out_tlp_hdr_reg = 0;
reg [TLP_SEG_COUNT*3-1:0] out_tlp_bar_id_reg = 0;
reg [TLP_SEG_COUNT*8-1:0] out_tlp_func_num_reg = 0;
reg [TLP_SEG_COUNT*4-1:0] out_tlp_error_reg = 0;
reg [TLP_SEG_COUNT-1:0] out_tlp_valid_reg = 0, out_tlp_valid_next;
reg [TLP_SEG_COUNT-1:0] out_tlp_sop_reg = 0;
reg [TLP_SEG_COUNT-1:0] out_tlp_eop_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] temp_out_tlp_data_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] temp_out_tlp_strb_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] temp_out_tlp_hdr_reg = 0;
reg [TLP_SEG_COUNT*3-1:0] temp_out_tlp_bar_id_reg = 0;
reg [TLP_SEG_COUNT*8-1:0] temp_out_tlp_func_num_reg = 0;
reg [TLP_SEG_COUNT*4-1:0] temp_out_tlp_error_reg = 0;
reg [TLP_SEG_COUNT-1:0] temp_out_tlp_valid_reg = 0, temp_out_tlp_valid_next;
reg [TLP_SEG_COUNT-1:0] temp_out_tlp_sop_reg = 0;
reg [TLP_SEG_COUNT-1:0] temp_out_tlp_eop_reg = 0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign out_tlp_data = out_tlp_data_reg;
assign out_tlp_strb = out_tlp_strb_reg;
assign out_tlp_hdr = out_tlp_hdr_reg;
assign out_tlp_bar_id = out_tlp_bar_id_reg;
assign out_tlp_func_num = out_tlp_func_num_reg;
assign out_tlp_error = out_tlp_error_reg;
assign out_tlp_valid = out_tlp_valid_reg;
assign out_tlp_sop = out_tlp_sop_reg;
assign out_tlp_eop = out_tlp_eop_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign out_tlp_ready_int_early = out_tlp_ready || (!temp_out_tlp_valid_reg && (!out_tlp_valid_reg || !out_tlp_valid_int));
always @* begin
// transfer sink ready state to source
out_tlp_valid_next = out_tlp_valid_reg;
temp_out_tlp_valid_next = temp_out_tlp_valid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (out_tlp_ready_int_reg) begin
// input is ready
if (out_tlp_ready || !out_tlp_valid_reg) begin
// output is ready or currently not valid, transfer data to output
out_tlp_valid_next = out_tlp_valid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_out_tlp_valid_next = out_tlp_valid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (out_tlp_ready) begin
// input is not ready, but output is ready
out_tlp_valid_next = temp_out_tlp_valid_reg;
temp_out_tlp_valid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
out_tlp_valid_reg <= 1'b0;
out_tlp_ready_int_reg <= 1'b0;
temp_out_tlp_valid_reg <= 1'b0;
end else begin
out_tlp_valid_reg <= out_tlp_valid_next;
out_tlp_ready_int_reg <= out_tlp_ready_int_early;
temp_out_tlp_valid_reg <= temp_out_tlp_valid_next;
end
// datapath
if (store_axis_int_to_output) begin
out_tlp_data_reg <= out_tlp_data_int;
out_tlp_strb_reg <= out_tlp_strb_int;
out_tlp_hdr_reg <= out_tlp_hdr_int;
out_tlp_bar_id_reg <= out_tlp_bar_id_int;
out_tlp_func_num_reg <= out_tlp_func_num_int;
out_tlp_error_reg <= out_tlp_error_int;
out_tlp_sop_reg <= out_tlp_sop_int;
out_tlp_eop_reg <= out_tlp_eop_int;
end else if (store_axis_temp_to_output) begin
out_tlp_data_reg <= temp_out_tlp_data_reg;
out_tlp_strb_reg <= temp_out_tlp_strb_reg;
out_tlp_hdr_reg <= temp_out_tlp_hdr_reg;
out_tlp_bar_id_reg <= temp_out_tlp_bar_id_reg;
out_tlp_func_num_reg <= temp_out_tlp_func_num_reg;
out_tlp_error_reg <= temp_out_tlp_error_reg;
out_tlp_sop_reg <= temp_out_tlp_sop_reg;
out_tlp_eop_reg <= temp_out_tlp_eop_reg;
end
if (store_axis_int_to_temp) begin
temp_out_tlp_data_reg <= out_tlp_data_int;
temp_out_tlp_strb_reg <= out_tlp_strb_int;
temp_out_tlp_hdr_reg <= out_tlp_hdr_int;
temp_out_tlp_bar_id_reg <= out_tlp_bar_id_int;
temp_out_tlp_func_num_reg <= out_tlp_func_num_int;
temp_out_tlp_error_reg <= out_tlp_error_int;
temp_out_tlp_sop_reg <= out_tlp_sop_int;
temp_out_tlp_eop_reg <= out_tlp_eop_int;
end
end
endmodule