mirror of
https://github.com/corundum/corundum.git
synced 2025-01-30 08:32:52 +08:00
merged changes in pcie
This commit is contained in:
commit
fb241ae992
@ -1 +1 @@
|
||||
../../common/driver/
|
||||
../../common/driver/example/
|
@ -1 +1 @@
|
||||
../../common/driver/
|
||||
../../common/driver/example/
|
@ -1 +1 @@
|
||||
../../common/driver/
|
||||
../../common/driver/example/
|
@ -1 +1 @@
|
||||
../../common/driver/
|
||||
../../common/driver/example/
|
@ -1 +1 @@
|
||||
../../common/driver/
|
||||
../../common/driver/example/
|
@ -1 +1 @@
|
||||
../../common/driver/
|
||||
../../common/driver/example/
|
@ -1 +1 @@
|
||||
../../common/driver/
|
||||
../../common/driver/example/
|
@ -1 +1 @@
|
||||
../../common/driver/
|
||||
../../common/driver/example/
|
@ -1 +1 @@
|
||||
../../common/driver/
|
||||
../../common/driver/example/
|
@ -1 +1 @@
|
||||
../../common/driver/
|
||||
../../common/driver/example/
|
@ -1 +1 @@
|
||||
../../common/driver/
|
||||
../../common/driver/example/
|
@ -1 +1 @@
|
||||
../../common/driver/
|
||||
../../common/driver/example/
|
308
fpga/lib/pcie/rtl/dma_if_desc_mux.v
Normal file
308
fpga/lib/pcie/rtl/dma_if_desc_mux.v
Normal file
@ -0,0 +1,308 @@
|
||||
/*
|
||||
|
||||
Copyright (c) 2019-2021 Alex Forencich
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
|
||||
*/
|
||||
|
||||
// Language: Verilog 2001
|
||||
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
/*
|
||||
* DMA interface descriptor mux
|
||||
*/
|
||||
module dma_if_desc_mux #
|
||||
(
|
||||
// Number of ports
|
||||
parameter PORTS = 2,
|
||||
// Extend RAM select signal
|
||||
parameter EXTEND_RAM_SEL = 0,
|
||||
// Input RAM segment select width
|
||||
parameter S_RAM_SEL_WIDTH = 2,
|
||||
// Output RAM segment select width
|
||||
// Additional bits required for response routing
|
||||
parameter M_RAM_SEL_WIDTH = S_RAM_SEL_WIDTH+(EXTEND_RAM_SEL ? $clog2(PORTS) : 0),
|
||||
// RAM address width
|
||||
parameter RAM_ADDR_WIDTH = 16,
|
||||
// DMA address width
|
||||
parameter DMA_ADDR_WIDTH = 64,
|
||||
// Length field width
|
||||
parameter LEN_WIDTH = 16,
|
||||
// Input tag field width
|
||||
parameter S_TAG_WIDTH = 8,
|
||||
// Output tag field width (towards DMA interface module)
|
||||
// Additional bits required for response routing
|
||||
parameter M_TAG_WIDTH = S_TAG_WIDTH+$clog2(PORTS),
|
||||
// select round robin arbitration
|
||||
parameter ARB_TYPE_ROUND_ROBIN = 0,
|
||||
// LSB priority selection
|
||||
parameter ARB_LSB_HIGH_PRIORITY = 1
|
||||
)
|
||||
(
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
|
||||
/*
|
||||
* Read descriptor output (to DMA interface)
|
||||
*/
|
||||
output wire [DMA_ADDR_WIDTH-1:0] m_axis_desc_dma_addr,
|
||||
output wire [M_RAM_SEL_WIDTH-1:0] m_axis_desc_ram_sel,
|
||||
output wire [RAM_ADDR_WIDTH-1:0] m_axis_desc_ram_addr,
|
||||
output wire [LEN_WIDTH-1:0] m_axis_desc_len,
|
||||
output wire [M_TAG_WIDTH-1:0] m_axis_desc_tag,
|
||||
output wire m_axis_desc_valid,
|
||||
input wire m_axis_desc_ready,
|
||||
|
||||
/*
|
||||
* Read descriptor status input (from DMA interface)
|
||||
*/
|
||||
input wire [M_TAG_WIDTH-1:0] s_axis_desc_status_tag,
|
||||
input wire [3:0] s_axis_desc_status_error,
|
||||
input wire s_axis_desc_status_valid,
|
||||
|
||||
/*
|
||||
* Read descriptor input
|
||||
*/
|
||||
input wire [PORTS*DMA_ADDR_WIDTH-1:0] s_axis_desc_dma_addr,
|
||||
input wire [PORTS*S_RAM_SEL_WIDTH-1:0] s_axis_desc_ram_sel,
|
||||
input wire [PORTS*RAM_ADDR_WIDTH-1:0] s_axis_desc_ram_addr,
|
||||
input wire [PORTS*LEN_WIDTH-1:0] s_axis_desc_len,
|
||||
input wire [PORTS*S_TAG_WIDTH-1:0] s_axis_desc_tag,
|
||||
input wire [PORTS-1:0] s_axis_desc_valid,
|
||||
output wire [PORTS-1:0] s_axis_desc_ready,
|
||||
|
||||
/*
|
||||
* Read descriptor status output
|
||||
*/
|
||||
output wire [PORTS*S_TAG_WIDTH-1:0] m_axis_desc_status_tag,
|
||||
output wire [PORTS*4-1:0] m_axis_desc_status_error,
|
||||
output wire [PORTS-1:0] m_axis_desc_status_valid
|
||||
);
|
||||
|
||||
parameter CL_PORTS = $clog2(PORTS);
|
||||
|
||||
parameter S_RAM_SEL_WIDTH_INT = S_RAM_SEL_WIDTH > 0 ? S_RAM_SEL_WIDTH : 1;
|
||||
|
||||
parameter FIFO_ADDR_WIDTH = 5;
|
||||
|
||||
// check configuration
|
||||
initial begin
|
||||
if (M_TAG_WIDTH < S_TAG_WIDTH+$clog2(PORTS)) begin
|
||||
$error("Error: M_TAG_WIDTH must be at least $clog2(PORTS) larger than S_TAG_WIDTH (instance %m)");
|
||||
$finish;
|
||||
end
|
||||
|
||||
if (EXTEND_RAM_SEL) begin
|
||||
if (M_RAM_SEL_WIDTH < S_RAM_SEL_WIDTH+$clog2(PORTS)) begin
|
||||
$error("Error: M_RAM_SEL_WIDTH must be at least $clog2(PORTS) larger than S_RAM_SEL_WIDTH (instance %m)");
|
||||
$finish;
|
||||
end
|
||||
end else begin
|
||||
if (M_RAM_SEL_WIDTH < S_RAM_SEL_WIDTH) begin
|
||||
$error("Error: M_RAM_SEL_WIDTH must be no smaller than S_RAM_SEL_WIDTH (instance %m)");
|
||||
$finish;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// descriptor mux
|
||||
wire [PORTS-1:0] request;
|
||||
wire [PORTS-1:0] acknowledge;
|
||||
wire [PORTS-1:0] grant;
|
||||
wire grant_valid;
|
||||
wire [CL_PORTS-1:0] grant_encoded;
|
||||
|
||||
// internal datapath
|
||||
reg [DMA_ADDR_WIDTH-1:0] m_axis_desc_dma_addr_int;
|
||||
reg [M_RAM_SEL_WIDTH-1:0] m_axis_desc_ram_sel_int;
|
||||
reg [RAM_ADDR_WIDTH-1:0] m_axis_desc_ram_addr_int;
|
||||
reg [LEN_WIDTH-1:0] m_axis_desc_len_int;
|
||||
reg [M_TAG_WIDTH-1:0] m_axis_desc_tag_int;
|
||||
reg m_axis_desc_valid_int;
|
||||
reg m_axis_desc_ready_int_reg = 1'b0;
|
||||
wire m_axis_desc_ready_int_early;
|
||||
|
||||
assign s_axis_desc_ready = (m_axis_desc_ready_int_reg && grant_valid) << grant_encoded;
|
||||
|
||||
// mux for incoming packet
|
||||
wire [DMA_ADDR_WIDTH-1:0] current_s_desc_dma_addr = s_axis_desc_dma_addr[grant_encoded*DMA_ADDR_WIDTH +: DMA_ADDR_WIDTH];
|
||||
wire [S_RAM_SEL_WIDTH-1:0] current_s_desc_ram_sel = s_axis_desc_ram_sel[grant_encoded*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
|
||||
wire [RAM_ADDR_WIDTH-1:0] current_s_desc_ram_addr = s_axis_desc_ram_addr[grant_encoded*RAM_ADDR_WIDTH +: RAM_ADDR_WIDTH];
|
||||
wire [LEN_WIDTH-1:0] current_s_desc_len = s_axis_desc_len[grant_encoded*LEN_WIDTH +: LEN_WIDTH];
|
||||
wire [S_TAG_WIDTH-1:0] current_s_desc_tag = s_axis_desc_tag[grant_encoded*S_TAG_WIDTH +: S_TAG_WIDTH];
|
||||
wire current_s_desc_valid = s_axis_desc_valid[grant_encoded];
|
||||
wire current_s_desc_ready = s_axis_desc_ready[grant_encoded];
|
||||
|
||||
// arbiter instance
|
||||
arbiter #(
|
||||
.PORTS(PORTS),
|
||||
.ARB_TYPE_ROUND_ROBIN(ARB_TYPE_ROUND_ROBIN),
|
||||
.ARB_BLOCK(1),
|
||||
.ARB_BLOCK_ACK(1),
|
||||
.ARB_LSB_HIGH_PRIORITY(ARB_LSB_HIGH_PRIORITY)
|
||||
)
|
||||
arb_inst (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
.request(request),
|
||||
.acknowledge(acknowledge),
|
||||
.grant(grant),
|
||||
.grant_valid(grant_valid),
|
||||
.grant_encoded(grant_encoded)
|
||||
);
|
||||
|
||||
assign request = s_axis_desc_valid & ~grant;
|
||||
assign acknowledge = grant & s_axis_desc_valid & s_axis_desc_ready;
|
||||
|
||||
always @* begin
|
||||
// pass through selected packet data
|
||||
m_axis_desc_dma_addr_int = current_s_desc_dma_addr;
|
||||
if (S_RAM_SEL_WIDTH > 0) begin
|
||||
m_axis_desc_ram_sel_int = {grant_encoded, current_s_desc_ram_sel};
|
||||
end else begin
|
||||
m_axis_desc_ram_sel_int = grant_encoded;
|
||||
end
|
||||
m_axis_desc_ram_addr_int = current_s_desc_ram_addr;
|
||||
m_axis_desc_len_int = current_s_desc_len;
|
||||
m_axis_desc_tag_int = {grant_encoded, current_s_desc_tag};
|
||||
m_axis_desc_valid_int = current_s_desc_valid && m_axis_desc_ready_int_reg && grant_valid;
|
||||
end
|
||||
|
||||
// output datapath logic
|
||||
reg [DMA_ADDR_WIDTH-1:0] m_axis_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
|
||||
reg [M_RAM_SEL_WIDTH-1:0] m_axis_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
|
||||
reg [RAM_ADDR_WIDTH-1:0] m_axis_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
|
||||
reg [LEN_WIDTH-1:0] m_axis_desc_len_reg = {LEN_WIDTH{1'b0}};
|
||||
reg [M_TAG_WIDTH-1:0] m_axis_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
|
||||
reg m_axis_desc_valid_reg = 1'b0, m_axis_desc_valid_next;
|
||||
|
||||
reg [DMA_ADDR_WIDTH-1:0] temp_m_axis_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
|
||||
reg [M_RAM_SEL_WIDTH-1:0] temp_m_axis_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
|
||||
reg [RAM_ADDR_WIDTH-1:0] temp_m_axis_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
|
||||
reg [LEN_WIDTH-1:0] temp_m_axis_desc_len_reg = {LEN_WIDTH{1'b0}};
|
||||
reg [M_TAG_WIDTH-1:0] temp_m_axis_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
|
||||
reg temp_m_axis_desc_valid_reg = 1'b0, temp_m_axis_desc_valid_next;
|
||||
|
||||
// datapath control
|
||||
reg store_axis_int_to_output;
|
||||
reg store_axis_int_to_temp;
|
||||
reg store_axis_temp_to_output;
|
||||
|
||||
assign m_axis_desc_dma_addr = m_axis_desc_dma_addr_reg;
|
||||
assign m_axis_desc_ram_sel = m_axis_desc_ram_sel_reg;
|
||||
assign m_axis_desc_ram_addr = m_axis_desc_ram_addr_reg;
|
||||
assign m_axis_desc_len = m_axis_desc_len_reg;
|
||||
assign m_axis_desc_tag = m_axis_desc_tag_reg;
|
||||
assign m_axis_desc_valid = m_axis_desc_valid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
assign m_axis_desc_ready_int_early = m_axis_desc_ready || (!temp_m_axis_desc_valid_reg && (!m_axis_desc_valid_reg || !m_axis_desc_valid_int));
|
||||
|
||||
always @* begin
|
||||
// transfer sink ready state to source
|
||||
m_axis_desc_valid_next = m_axis_desc_valid_reg;
|
||||
temp_m_axis_desc_valid_next = temp_m_axis_desc_valid_reg;
|
||||
|
||||
store_axis_int_to_output = 1'b0;
|
||||
store_axis_int_to_temp = 1'b0;
|
||||
store_axis_temp_to_output = 1'b0;
|
||||
|
||||
if (m_axis_desc_ready_int_reg) begin
|
||||
// input is ready
|
||||
if (m_axis_desc_ready || !m_axis_desc_valid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
m_axis_desc_valid_next = m_axis_desc_valid_int;
|
||||
store_axis_int_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_m_axis_desc_valid_next = m_axis_desc_valid_int;
|
||||
store_axis_int_to_temp = 1'b1;
|
||||
end
|
||||
end else if (m_axis_desc_ready) begin
|
||||
// input is not ready, but output is ready
|
||||
m_axis_desc_valid_next = temp_m_axis_desc_valid_reg;
|
||||
temp_m_axis_desc_valid_next = 1'b0;
|
||||
store_axis_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
m_axis_desc_valid_reg <= 1'b0;
|
||||
m_axis_desc_ready_int_reg <= 1'b0;
|
||||
temp_m_axis_desc_valid_reg <= 1'b0;
|
||||
end else begin
|
||||
m_axis_desc_valid_reg <= m_axis_desc_valid_next;
|
||||
m_axis_desc_ready_int_reg <= m_axis_desc_ready_int_early;
|
||||
temp_m_axis_desc_valid_reg <= temp_m_axis_desc_valid_next;
|
||||
end
|
||||
|
||||
// datapath
|
||||
if (store_axis_int_to_output) begin
|
||||
m_axis_desc_dma_addr_reg <= m_axis_desc_dma_addr_int;
|
||||
m_axis_desc_ram_sel_reg <= m_axis_desc_ram_sel_int;
|
||||
m_axis_desc_ram_addr_reg <= m_axis_desc_ram_addr_int;
|
||||
m_axis_desc_len_reg <= m_axis_desc_len_int;
|
||||
m_axis_desc_tag_reg <= m_axis_desc_tag_int;
|
||||
end else if (store_axis_temp_to_output) begin
|
||||
m_axis_desc_dma_addr_reg <= temp_m_axis_desc_dma_addr_reg;
|
||||
m_axis_desc_ram_sel_reg <= temp_m_axis_desc_ram_sel_reg;
|
||||
m_axis_desc_ram_addr_reg <= temp_m_axis_desc_ram_addr_reg;
|
||||
m_axis_desc_len_reg <= temp_m_axis_desc_len_reg;
|
||||
m_axis_desc_tag_reg <= temp_m_axis_desc_tag_reg;
|
||||
end
|
||||
|
||||
if (store_axis_int_to_temp) begin
|
||||
temp_m_axis_desc_dma_addr_reg <= m_axis_desc_dma_addr_int;
|
||||
temp_m_axis_desc_ram_sel_reg <= m_axis_desc_ram_sel_int;
|
||||
temp_m_axis_desc_ram_addr_reg <= m_axis_desc_ram_addr_int;
|
||||
temp_m_axis_desc_len_reg <= m_axis_desc_len_int;
|
||||
temp_m_axis_desc_tag_reg <= m_axis_desc_tag_int;
|
||||
end
|
||||
end
|
||||
|
||||
// descriptor status demux
|
||||
reg [S_TAG_WIDTH-1:0] m_axis_desc_status_tag_reg = {S_TAG_WIDTH{1'b0}}, m_axis_desc_status_tag_next;
|
||||
reg [5:0] m_axis_desc_status_error_reg = 6'd0, m_axis_desc_status_error_next;
|
||||
reg [PORTS-1:0] m_axis_desc_status_valid_reg = {PORTS{1'b0}}, m_axis_desc_status_valid_next;
|
||||
|
||||
assign m_axis_desc_status_tag = {PORTS{m_axis_desc_status_tag_reg}};
|
||||
assign m_axis_desc_status_error = {PORTS{m_axis_desc_status_error_reg}};
|
||||
assign m_axis_desc_status_valid = m_axis_desc_status_valid_reg;
|
||||
|
||||
always @* begin
|
||||
m_axis_desc_status_tag_next = s_axis_desc_status_tag;
|
||||
m_axis_desc_status_error_next = s_axis_desc_status_error;
|
||||
m_axis_desc_status_valid_next = s_axis_desc_status_valid << (PORTS > 1 ? s_axis_desc_status_tag[S_TAG_WIDTH+CL_PORTS-1:S_TAG_WIDTH] : 0);
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
m_axis_desc_status_valid_reg <= {PORTS{1'b0}};
|
||||
end else begin
|
||||
m_axis_desc_status_valid_reg <= m_axis_desc_status_valid_next;
|
||||
end
|
||||
|
||||
m_axis_desc_status_tag_reg <= m_axis_desc_status_tag_next;
|
||||
m_axis_desc_status_error_reg <= m_axis_desc_status_error_next;
|
||||
end
|
||||
|
||||
endmodule
|
@ -157,7 +157,7 @@ module dma_if_mux #
|
||||
input wire [SEG_COUNT-1:0] if_ram_rd_resp_ready,
|
||||
|
||||
/*
|
||||
* RAM interface
|
||||
* RAM interface (towards RAM)
|
||||
*/
|
||||
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_wr_cmd_sel,
|
||||
output wire [PORTS*SEG_COUNT*SEG_BE_WIDTH-1:0] ram_wr_cmd_be,
|
||||
@ -243,7 +243,7 @@ dma_if_mux_rd_inst (
|
||||
.if_ram_wr_done(if_ram_wr_done),
|
||||
|
||||
/*
|
||||
* RAM interface
|
||||
* RAM interface (towards RAM)
|
||||
*/
|
||||
.ram_wr_cmd_sel(ram_wr_cmd_sel),
|
||||
.ram_wr_cmd_be(ram_wr_cmd_be),
|
||||
@ -322,7 +322,7 @@ dma_if_mux_wr_inst (
|
||||
.if_ram_rd_resp_ready(if_ram_rd_resp_ready),
|
||||
|
||||
/*
|
||||
* RAM interface
|
||||
* RAM interface (towards RAM)
|
||||
*/
|
||||
.ram_rd_cmd_sel(ram_rd_cmd_sel),
|
||||
.ram_rd_cmd_addr(ram_rd_cmd_addr),
|
||||
|
@ -114,7 +114,7 @@ module dma_if_mux_rd #
|
||||
output wire [SEG_COUNT-1:0] if_ram_wr_done,
|
||||
|
||||
/*
|
||||
* RAM interface
|
||||
* RAM interface (towards RAM)
|
||||
*/
|
||||
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_wr_cmd_sel,
|
||||
output wire [PORTS*SEG_COUNT*SEG_BE_WIDTH-1:0] ram_wr_cmd_be,
|
||||
@ -125,429 +125,94 @@ module dma_if_mux_rd #
|
||||
input wire [PORTS*SEG_COUNT-1:0] ram_wr_done
|
||||
);
|
||||
|
||||
parameter CL_PORTS = $clog2(PORTS);
|
||||
|
||||
parameter S_RAM_SEL_WIDTH_INT = S_RAM_SEL_WIDTH > 0 ? S_RAM_SEL_WIDTH : 1;
|
||||
|
||||
parameter FIFO_ADDR_WIDTH = 5;
|
||||
|
||||
// check configuration
|
||||
initial begin
|
||||
if (M_TAG_WIDTH < S_TAG_WIDTH+$clog2(PORTS)) begin
|
||||
$error("Error: M_TAG_WIDTH must be at least $clog2(PORTS) larger than S_TAG_WIDTH (instance %m)");
|
||||
$finish;
|
||||
end
|
||||
|
||||
if (M_RAM_SEL_WIDTH < S_RAM_SEL_WIDTH+$clog2(PORTS)) begin
|
||||
$error("Error: M_RAM_SEL_WIDTH must be at least $clog2(PORTS) larger than S_RAM_SEL_WIDTH (instance %m)");
|
||||
$finish;
|
||||
end
|
||||
end
|
||||
|
||||
// descriptor mux
|
||||
wire [PORTS-1:0] request;
|
||||
wire [PORTS-1:0] acknowledge;
|
||||
wire [PORTS-1:0] grant;
|
||||
wire grant_valid;
|
||||
wire [CL_PORTS-1:0] grant_encoded;
|
||||
|
||||
// internal datapath
|
||||
reg [DMA_ADDR_WIDTH-1:0] m_axis_read_desc_dma_addr_int;
|
||||
reg [M_RAM_SEL_WIDTH-1:0] m_axis_read_desc_ram_sel_int;
|
||||
reg [RAM_ADDR_WIDTH-1:0] m_axis_read_desc_ram_addr_int;
|
||||
reg [LEN_WIDTH-1:0] m_axis_read_desc_len_int;
|
||||
reg [M_TAG_WIDTH-1:0] m_axis_read_desc_tag_int;
|
||||
reg m_axis_read_desc_valid_int;
|
||||
reg m_axis_read_desc_ready_int_reg = 1'b0;
|
||||
wire m_axis_read_desc_ready_int_early;
|
||||
|
||||
assign s_axis_read_desc_ready = (m_axis_read_desc_ready_int_reg && grant_valid) << grant_encoded;
|
||||
|
||||
// mux for incoming packet
|
||||
wire [DMA_ADDR_WIDTH-1:0] current_s_desc_dma_addr = s_axis_read_desc_dma_addr[grant_encoded*DMA_ADDR_WIDTH +: DMA_ADDR_WIDTH];
|
||||
wire [S_RAM_SEL_WIDTH-1:0] current_s_desc_ram_sel = s_axis_read_desc_ram_sel[grant_encoded*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
|
||||
wire [RAM_ADDR_WIDTH-1:0] current_s_desc_ram_addr = s_axis_read_desc_ram_addr[grant_encoded*RAM_ADDR_WIDTH +: RAM_ADDR_WIDTH];
|
||||
wire [LEN_WIDTH-1:0] current_s_desc_len = s_axis_read_desc_len[grant_encoded*LEN_WIDTH +: LEN_WIDTH];
|
||||
wire [S_TAG_WIDTH-1:0] current_s_desc_tag = s_axis_read_desc_tag[grant_encoded*S_TAG_WIDTH +: S_TAG_WIDTH];
|
||||
wire current_s_desc_valid = s_axis_read_desc_valid[grant_encoded];
|
||||
wire current_s_desc_ready = s_axis_read_desc_ready[grant_encoded];
|
||||
|
||||
// arbiter instance
|
||||
arbiter #(
|
||||
dma_if_desc_mux #(
|
||||
.PORTS(PORTS),
|
||||
.EXTEND_RAM_SEL(1),
|
||||
.S_RAM_SEL_WIDTH(S_RAM_SEL_WIDTH),
|
||||
.M_RAM_SEL_WIDTH(M_RAM_SEL_WIDTH),
|
||||
.RAM_ADDR_WIDTH(RAM_ADDR_WIDTH),
|
||||
.DMA_ADDR_WIDTH(DMA_ADDR_WIDTH),
|
||||
.LEN_WIDTH(LEN_WIDTH),
|
||||
.S_TAG_WIDTH(S_TAG_WIDTH),
|
||||
.M_TAG_WIDTH(M_TAG_WIDTH),
|
||||
.ARB_TYPE_ROUND_ROBIN(ARB_TYPE_ROUND_ROBIN),
|
||||
.ARB_BLOCK(1),
|
||||
.ARB_BLOCK_ACK(1),
|
||||
.ARB_LSB_HIGH_PRIORITY(ARB_LSB_HIGH_PRIORITY)
|
||||
)
|
||||
arb_inst (
|
||||
dma_if_desc_mux_inst (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
.request(request),
|
||||
.acknowledge(acknowledge),
|
||||
.grant(grant),
|
||||
.grant_valid(grant_valid),
|
||||
.grant_encoded(grant_encoded)
|
||||
|
||||
/*
|
||||
* Read descriptor output (to DMA interface)
|
||||
*/
|
||||
.m_axis_desc_dma_addr(m_axis_read_desc_dma_addr),
|
||||
.m_axis_desc_ram_sel(m_axis_read_desc_ram_sel),
|
||||
.m_axis_desc_ram_addr(m_axis_read_desc_ram_addr),
|
||||
.m_axis_desc_len(m_axis_read_desc_len),
|
||||
.m_axis_desc_tag(m_axis_read_desc_tag),
|
||||
.m_axis_desc_valid(m_axis_read_desc_valid),
|
||||
.m_axis_desc_ready(m_axis_read_desc_ready),
|
||||
|
||||
/*
|
||||
* Read descriptor status input (from DMA interface)
|
||||
*/
|
||||
.s_axis_desc_status_tag(s_axis_read_desc_status_tag),
|
||||
.s_axis_desc_status_error(s_axis_read_desc_status_error),
|
||||
.s_axis_desc_status_valid(s_axis_read_desc_status_valid),
|
||||
|
||||
/*
|
||||
* Read descriptor input
|
||||
*/
|
||||
.s_axis_desc_dma_addr(s_axis_read_desc_dma_addr),
|
||||
.s_axis_desc_ram_sel(s_axis_read_desc_ram_sel),
|
||||
.s_axis_desc_ram_addr(s_axis_read_desc_ram_addr),
|
||||
.s_axis_desc_len(s_axis_read_desc_len),
|
||||
.s_axis_desc_tag(s_axis_read_desc_tag),
|
||||
.s_axis_desc_valid(s_axis_read_desc_valid),
|
||||
.s_axis_desc_ready(s_axis_read_desc_ready),
|
||||
|
||||
/*
|
||||
* Read descriptor status output
|
||||
*/
|
||||
.m_axis_desc_status_tag(m_axis_read_desc_status_tag),
|
||||
.m_axis_desc_status_error(m_axis_read_desc_status_error),
|
||||
.m_axis_desc_status_valid(m_axis_read_desc_status_valid)
|
||||
);
|
||||
|
||||
assign request = s_axis_read_desc_valid & ~grant;
|
||||
assign acknowledge = grant & s_axis_read_desc_valid & s_axis_read_desc_ready;
|
||||
dma_ram_demux_wr #(
|
||||
.PORTS(PORTS),
|
||||
.SEG_COUNT(SEG_COUNT),
|
||||
.SEG_DATA_WIDTH(SEG_DATA_WIDTH),
|
||||
.SEG_ADDR_WIDTH(SEG_ADDR_WIDTH),
|
||||
.SEG_BE_WIDTH(SEG_BE_WIDTH),
|
||||
.S_RAM_SEL_WIDTH(S_RAM_SEL_WIDTH),
|
||||
.M_RAM_SEL_WIDTH(M_RAM_SEL_WIDTH)
|
||||
)
|
||||
dma_ram_demux_inst (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
|
||||
always @* begin
|
||||
// pass through selected packet data
|
||||
m_axis_read_desc_dma_addr_int = current_s_desc_dma_addr;
|
||||
if (S_RAM_SEL_WIDTH > 0) begin
|
||||
m_axis_read_desc_ram_sel_int = {grant_encoded, current_s_desc_ram_sel};
|
||||
end else begin
|
||||
m_axis_read_desc_ram_sel_int = grant_encoded;
|
||||
end
|
||||
m_axis_read_desc_ram_addr_int = current_s_desc_ram_addr;
|
||||
m_axis_read_desc_len_int = current_s_desc_len;
|
||||
m_axis_read_desc_tag_int = {grant_encoded, current_s_desc_tag};
|
||||
m_axis_read_desc_valid_int = current_s_desc_valid && m_axis_read_desc_ready_int_reg && grant_valid;
|
||||
end
|
||||
/*
|
||||
* RAM interface (from DMA client/interface)
|
||||
*/
|
||||
.ctrl_wr_cmd_sel(if_ram_wr_cmd_sel),
|
||||
.ctrl_wr_cmd_be(if_ram_wr_cmd_be),
|
||||
.ctrl_wr_cmd_addr(if_ram_wr_cmd_addr),
|
||||
.ctrl_wr_cmd_data(if_ram_wr_cmd_data),
|
||||
.ctrl_wr_cmd_valid(if_ram_wr_cmd_valid),
|
||||
.ctrl_wr_cmd_ready(if_ram_wr_cmd_ready),
|
||||
.ctrl_wr_done(if_ram_wr_done),
|
||||
|
||||
// output datapath logic
|
||||
reg [DMA_ADDR_WIDTH-1:0] m_axis_read_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
|
||||
reg [M_RAM_SEL_WIDTH-1:0] m_axis_read_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
|
||||
reg [RAM_ADDR_WIDTH-1:0] m_axis_read_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
|
||||
reg [LEN_WIDTH-1:0] m_axis_read_desc_len_reg = {LEN_WIDTH{1'b0}};
|
||||
reg [M_TAG_WIDTH-1:0] m_axis_read_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
|
||||
reg m_axis_read_desc_valid_reg = 1'b0, m_axis_read_desc_valid_next;
|
||||
|
||||
reg [DMA_ADDR_WIDTH-1:0] temp_m_axis_read_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
|
||||
reg [M_RAM_SEL_WIDTH-1:0] temp_m_axis_read_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
|
||||
reg [RAM_ADDR_WIDTH-1:0] temp_m_axis_read_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
|
||||
reg [LEN_WIDTH-1:0] temp_m_axis_read_desc_len_reg = {LEN_WIDTH{1'b0}};
|
||||
reg [M_TAG_WIDTH-1:0] temp_m_axis_read_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
|
||||
reg temp_m_axis_read_desc_valid_reg = 1'b0, temp_m_axis_read_desc_valid_next;
|
||||
|
||||
// datapath control
|
||||
reg store_axis_int_to_output;
|
||||
reg store_axis_int_to_temp;
|
||||
reg store_axis_temp_to_output;
|
||||
|
||||
assign m_axis_read_desc_dma_addr = m_axis_read_desc_dma_addr_reg;
|
||||
assign m_axis_read_desc_ram_sel = m_axis_read_desc_ram_sel_reg;
|
||||
assign m_axis_read_desc_ram_addr = m_axis_read_desc_ram_addr_reg;
|
||||
assign m_axis_read_desc_len = m_axis_read_desc_len_reg;
|
||||
assign m_axis_read_desc_tag = m_axis_read_desc_tag_reg;
|
||||
assign m_axis_read_desc_valid = m_axis_read_desc_valid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
assign m_axis_read_desc_ready_int_early = m_axis_read_desc_ready || (!temp_m_axis_read_desc_valid_reg && (!m_axis_read_desc_valid_reg || !m_axis_read_desc_valid_int));
|
||||
|
||||
always @* begin
|
||||
// transfer sink ready state to source
|
||||
m_axis_read_desc_valid_next = m_axis_read_desc_valid_reg;
|
||||
temp_m_axis_read_desc_valid_next = temp_m_axis_read_desc_valid_reg;
|
||||
|
||||
store_axis_int_to_output = 1'b0;
|
||||
store_axis_int_to_temp = 1'b0;
|
||||
store_axis_temp_to_output = 1'b0;
|
||||
|
||||
if (m_axis_read_desc_ready_int_reg) begin
|
||||
// input is ready
|
||||
if (m_axis_read_desc_ready || !m_axis_read_desc_valid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
m_axis_read_desc_valid_next = m_axis_read_desc_valid_int;
|
||||
store_axis_int_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_m_axis_read_desc_valid_next = m_axis_read_desc_valid_int;
|
||||
store_axis_int_to_temp = 1'b1;
|
||||
end
|
||||
end else if (m_axis_read_desc_ready) begin
|
||||
// input is not ready, but output is ready
|
||||
m_axis_read_desc_valid_next = temp_m_axis_read_desc_valid_reg;
|
||||
temp_m_axis_read_desc_valid_next = 1'b0;
|
||||
store_axis_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
m_axis_read_desc_valid_reg <= 1'b0;
|
||||
m_axis_read_desc_ready_int_reg <= 1'b0;
|
||||
temp_m_axis_read_desc_valid_reg <= 1'b0;
|
||||
end else begin
|
||||
m_axis_read_desc_valid_reg <= m_axis_read_desc_valid_next;
|
||||
m_axis_read_desc_ready_int_reg <= m_axis_read_desc_ready_int_early;
|
||||
temp_m_axis_read_desc_valid_reg <= temp_m_axis_read_desc_valid_next;
|
||||
end
|
||||
|
||||
// datapath
|
||||
if (store_axis_int_to_output) begin
|
||||
m_axis_read_desc_dma_addr_reg <= m_axis_read_desc_dma_addr_int;
|
||||
m_axis_read_desc_ram_sel_reg <= m_axis_read_desc_ram_sel_int;
|
||||
m_axis_read_desc_ram_addr_reg <= m_axis_read_desc_ram_addr_int;
|
||||
m_axis_read_desc_len_reg <= m_axis_read_desc_len_int;
|
||||
m_axis_read_desc_tag_reg <= m_axis_read_desc_tag_int;
|
||||
end else if (store_axis_temp_to_output) begin
|
||||
m_axis_read_desc_dma_addr_reg <= temp_m_axis_read_desc_dma_addr_reg;
|
||||
m_axis_read_desc_ram_sel_reg <= temp_m_axis_read_desc_ram_sel_reg;
|
||||
m_axis_read_desc_ram_addr_reg <= temp_m_axis_read_desc_ram_addr_reg;
|
||||
m_axis_read_desc_len_reg <= temp_m_axis_read_desc_len_reg;
|
||||
m_axis_read_desc_tag_reg <= temp_m_axis_read_desc_tag_reg;
|
||||
end
|
||||
|
||||
if (store_axis_int_to_temp) begin
|
||||
temp_m_axis_read_desc_dma_addr_reg <= m_axis_read_desc_dma_addr_int;
|
||||
temp_m_axis_read_desc_ram_sel_reg <= m_axis_read_desc_ram_sel_int;
|
||||
temp_m_axis_read_desc_ram_addr_reg <= m_axis_read_desc_ram_addr_int;
|
||||
temp_m_axis_read_desc_len_reg <= m_axis_read_desc_len_int;
|
||||
temp_m_axis_read_desc_tag_reg <= m_axis_read_desc_tag_int;
|
||||
end
|
||||
end
|
||||
|
||||
// descriptor status demux
|
||||
reg [S_TAG_WIDTH-1:0] m_axis_read_desc_status_tag_reg = {S_TAG_WIDTH{1'b0}}, m_axis_read_desc_status_tag_next;
|
||||
reg [5:0] m_axis_read_desc_status_error_reg = 6'd0, m_axis_read_desc_status_error_next;
|
||||
reg [PORTS-1:0] m_axis_read_desc_status_valid_reg = {PORTS{1'b0}}, m_axis_read_desc_status_valid_next;
|
||||
|
||||
assign m_axis_read_desc_status_tag = {PORTS{m_axis_read_desc_status_tag_reg}};
|
||||
assign m_axis_read_desc_status_error = {PORTS{m_axis_read_desc_status_error_reg}};
|
||||
assign m_axis_read_desc_status_valid = m_axis_read_desc_status_valid_reg;
|
||||
|
||||
always @* begin
|
||||
m_axis_read_desc_status_tag_next = s_axis_read_desc_status_tag;
|
||||
m_axis_read_desc_status_error_next = s_axis_read_desc_status_error;
|
||||
m_axis_read_desc_status_valid_next = s_axis_read_desc_status_valid << (PORTS > 1 ? s_axis_read_desc_status_tag[S_TAG_WIDTH+CL_PORTS-1:S_TAG_WIDTH] : 0);
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
m_axis_read_desc_status_valid_reg <= {PORTS{1'b0}};
|
||||
end else begin
|
||||
m_axis_read_desc_status_valid_reg <= m_axis_read_desc_status_valid_next;
|
||||
end
|
||||
|
||||
m_axis_read_desc_status_tag_reg <= m_axis_read_desc_status_tag_next;
|
||||
m_axis_read_desc_status_error_reg <= m_axis_read_desc_status_error_next;
|
||||
end
|
||||
|
||||
generate
|
||||
|
||||
genvar n, p;
|
||||
|
||||
for (n = 0; n < SEG_COUNT; n = n + 1) begin
|
||||
|
||||
// FIFO to maintain response ordering
|
||||
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_wr_ptr_reg = 0;
|
||||
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_rd_ptr_reg = 0;
|
||||
reg [CL_PORTS-1:0] fifo_sel[(2**FIFO_ADDR_WIDTH)-1:0];
|
||||
|
||||
wire fifo_empty = fifo_wr_ptr_reg == fifo_rd_ptr_reg;
|
||||
wire fifo_full = fifo_wr_ptr_reg == (fifo_rd_ptr_reg ^ (1 << FIFO_ADDR_WIDTH));
|
||||
|
||||
integer i;
|
||||
|
||||
initial begin
|
||||
for (i = 0; i < 2**FIFO_ADDR_WIDTH; i = i + 1) begin
|
||||
fifo_sel[i] = 0;
|
||||
end
|
||||
end
|
||||
|
||||
// RAM write command demux
|
||||
|
||||
wire [M_RAM_SEL_WIDTH-1:0] seg_if_ram_wr_cmd_sel = if_ram_wr_cmd_sel[M_RAM_SEL_WIDTH*n +: M_RAM_SEL_WIDTH];
|
||||
wire [SEG_BE_WIDTH-1:0] seg_if_ram_wr_cmd_be = if_ram_wr_cmd_be[SEG_BE_WIDTH*n +: SEG_BE_WIDTH];
|
||||
wire [SEG_ADDR_WIDTH-1:0] seg_if_ram_wr_cmd_addr = if_ram_wr_cmd_addr[SEG_ADDR_WIDTH*n +: SEG_ADDR_WIDTH];
|
||||
wire [SEG_DATA_WIDTH-1:0] seg_if_ram_wr_cmd_data = if_ram_wr_cmd_data[SEG_DATA_WIDTH*n +: SEG_DATA_WIDTH];
|
||||
wire seg_if_ram_wr_cmd_valid = if_ram_wr_cmd_valid[n];
|
||||
wire seg_if_ram_wr_cmd_ready;
|
||||
|
||||
assign if_ram_wr_cmd_ready[n] = seg_if_ram_wr_cmd_ready;
|
||||
|
||||
wire [PORTS*S_RAM_SEL_WIDTH-1:0] seg_ram_wr_cmd_sel;
|
||||
wire [PORTS*SEG_BE_WIDTH-1:0] seg_ram_wr_cmd_be;
|
||||
wire [PORTS*SEG_ADDR_WIDTH-1:0] seg_ram_wr_cmd_addr;
|
||||
wire [PORTS*SEG_DATA_WIDTH-1:0] seg_ram_wr_cmd_data;
|
||||
wire [PORTS-1:0] seg_ram_wr_cmd_valid;
|
||||
wire [PORTS-1:0] seg_ram_wr_cmd_ready;
|
||||
|
||||
for (p = 0; p < PORTS; p = p + 1) begin
|
||||
assign ram_wr_cmd_sel[(p*SEG_COUNT+n)*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT] = seg_ram_wr_cmd_sel[p*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
|
||||
assign ram_wr_cmd_be[(p*SEG_COUNT+n)*SEG_BE_WIDTH +: SEG_BE_WIDTH] = seg_ram_wr_cmd_be[p*SEG_BE_WIDTH +: SEG_BE_WIDTH];
|
||||
assign ram_wr_cmd_addr[(p*SEG_COUNT+n)*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = seg_ram_wr_cmd_addr[p*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH];
|
||||
assign ram_wr_cmd_data[(p*SEG_COUNT+n)*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = seg_ram_wr_cmd_data[p*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
|
||||
assign ram_wr_cmd_valid[p*SEG_COUNT+n] = seg_ram_wr_cmd_valid[p];
|
||||
assign seg_ram_wr_cmd_ready[p] = ram_wr_cmd_ready[p*SEG_COUNT+n];
|
||||
end
|
||||
|
||||
// internal datapath
|
||||
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_wr_cmd_sel_int;
|
||||
reg [SEG_BE_WIDTH-1:0] seg_ram_wr_cmd_be_int;
|
||||
reg [SEG_ADDR_WIDTH-1:0] seg_ram_wr_cmd_addr_int;
|
||||
reg [SEG_DATA_WIDTH-1:0] seg_ram_wr_cmd_data_int;
|
||||
reg [PORTS-1:0] seg_ram_wr_cmd_valid_int;
|
||||
reg seg_ram_wr_cmd_ready_int_reg = 1'b0;
|
||||
wire seg_ram_wr_cmd_ready_int_early;
|
||||
|
||||
assign seg_if_ram_wr_cmd_ready = seg_ram_wr_cmd_ready_int_reg && !fifo_full;
|
||||
|
||||
wire [CL_PORTS-1:0] select_cmd = PORTS > 1 ? (seg_if_ram_wr_cmd_sel >> (M_RAM_SEL_WIDTH - CL_PORTS)) : 0;
|
||||
|
||||
always @* begin
|
||||
seg_ram_wr_cmd_sel_int = seg_if_ram_wr_cmd_sel;
|
||||
seg_ram_wr_cmd_be_int = seg_if_ram_wr_cmd_be;
|
||||
seg_ram_wr_cmd_addr_int = seg_if_ram_wr_cmd_addr;
|
||||
seg_ram_wr_cmd_data_int = seg_if_ram_wr_cmd_data;
|
||||
seg_ram_wr_cmd_valid_int = (seg_if_ram_wr_cmd_valid && seg_if_ram_wr_cmd_ready) << select_cmd;
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (seg_if_ram_wr_cmd_valid && seg_if_ram_wr_cmd_ready) begin
|
||||
fifo_sel[fifo_wr_ptr_reg[FIFO_ADDR_WIDTH-1:0]] <= select_cmd;
|
||||
fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
fifo_wr_ptr_reg <= 0;
|
||||
end
|
||||
end
|
||||
|
||||
// output datapath logic
|
||||
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_wr_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
|
||||
reg [SEG_BE_WIDTH-1:0] seg_ram_wr_cmd_be_reg = {SEG_BE_WIDTH{1'b0}};
|
||||
reg [SEG_ADDR_WIDTH-1:0] seg_ram_wr_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
|
||||
reg [SEG_DATA_WIDTH-1:0] seg_ram_wr_cmd_data_reg = {SEG_DATA_WIDTH{1'b0}};
|
||||
reg [PORTS-1:0] seg_ram_wr_cmd_valid_reg = {PORTS{1'b0}}, seg_ram_wr_cmd_valid_next;
|
||||
|
||||
reg [S_RAM_SEL_WIDTH-1:0] temp_seg_ram_wr_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
|
||||
reg [SEG_BE_WIDTH-1:0] temp_seg_ram_wr_cmd_be_reg = {SEG_BE_WIDTH{1'b0}};
|
||||
reg [SEG_ADDR_WIDTH-1:0] temp_seg_ram_wr_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
|
||||
reg [SEG_DATA_WIDTH-1:0] temp_seg_ram_wr_cmd_data_reg = {SEG_DATA_WIDTH{1'b0}};
|
||||
reg [PORTS-1:0] temp_seg_ram_wr_cmd_valid_reg = {PORTS{1'b0}}, temp_seg_ram_wr_cmd_valid_next;
|
||||
|
||||
// datapath control
|
||||
reg store_axis_resp_int_to_output;
|
||||
reg store_axis_resp_int_to_temp;
|
||||
reg store_axis_resp_temp_to_output;
|
||||
|
||||
assign seg_ram_wr_cmd_sel = {PORTS{seg_ram_wr_cmd_sel_reg}};
|
||||
assign seg_ram_wr_cmd_be = {PORTS{seg_ram_wr_cmd_be_reg}};
|
||||
assign seg_ram_wr_cmd_addr = {PORTS{seg_ram_wr_cmd_addr_reg}};
|
||||
assign seg_ram_wr_cmd_data = {PORTS{seg_ram_wr_cmd_data_reg}};
|
||||
assign seg_ram_wr_cmd_valid = seg_ram_wr_cmd_valid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
assign seg_ram_wr_cmd_ready_int_early = (seg_ram_wr_cmd_ready & seg_ram_wr_cmd_valid_reg) || (!temp_seg_ram_wr_cmd_valid_reg && (!seg_ram_wr_cmd_valid_reg || !seg_ram_wr_cmd_valid_int));
|
||||
|
||||
always @* begin
|
||||
// transfer sink ready state to source
|
||||
seg_ram_wr_cmd_valid_next = seg_ram_wr_cmd_valid_reg;
|
||||
temp_seg_ram_wr_cmd_valid_next = temp_seg_ram_wr_cmd_valid_reg;
|
||||
|
||||
store_axis_resp_int_to_output = 1'b0;
|
||||
store_axis_resp_int_to_temp = 1'b0;
|
||||
store_axis_resp_temp_to_output = 1'b0;
|
||||
|
||||
if (seg_ram_wr_cmd_ready_int_reg) begin
|
||||
// input is ready
|
||||
if ((seg_ram_wr_cmd_ready & seg_ram_wr_cmd_valid_reg) || !seg_ram_wr_cmd_valid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
seg_ram_wr_cmd_valid_next = seg_ram_wr_cmd_valid_int;
|
||||
store_axis_resp_int_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_seg_ram_wr_cmd_valid_next = seg_ram_wr_cmd_valid_int;
|
||||
store_axis_resp_int_to_temp = 1'b1;
|
||||
end
|
||||
end else if (seg_ram_wr_cmd_ready & seg_ram_wr_cmd_valid_reg) begin
|
||||
// input is not ready, but output is ready
|
||||
seg_ram_wr_cmd_valid_next = temp_seg_ram_wr_cmd_valid_reg;
|
||||
temp_seg_ram_wr_cmd_valid_next = {PORTS{1'b0}};
|
||||
store_axis_resp_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
seg_ram_wr_cmd_valid_reg <= {PORTS{1'b0}};
|
||||
seg_ram_wr_cmd_ready_int_reg <= 1'b0;
|
||||
temp_seg_ram_wr_cmd_valid_reg <= {PORTS{1'b0}};
|
||||
end else begin
|
||||
seg_ram_wr_cmd_valid_reg <= seg_ram_wr_cmd_valid_next;
|
||||
seg_ram_wr_cmd_ready_int_reg <= seg_ram_wr_cmd_ready_int_early;
|
||||
temp_seg_ram_wr_cmd_valid_reg <= temp_seg_ram_wr_cmd_valid_next;
|
||||
end
|
||||
|
||||
// datapath
|
||||
if (store_axis_resp_int_to_output) begin
|
||||
seg_ram_wr_cmd_sel_reg <= seg_ram_wr_cmd_sel_int;
|
||||
seg_ram_wr_cmd_be_reg <= seg_ram_wr_cmd_be_int;
|
||||
seg_ram_wr_cmd_addr_reg <= seg_ram_wr_cmd_addr_int;
|
||||
seg_ram_wr_cmd_data_reg <= seg_ram_wr_cmd_data_int;
|
||||
end else if (store_axis_resp_temp_to_output) begin
|
||||
seg_ram_wr_cmd_sel_reg <= temp_seg_ram_wr_cmd_sel_reg;
|
||||
seg_ram_wr_cmd_be_reg <= temp_seg_ram_wr_cmd_be_reg;
|
||||
seg_ram_wr_cmd_addr_reg <= temp_seg_ram_wr_cmd_addr_reg;
|
||||
seg_ram_wr_cmd_data_reg <= temp_seg_ram_wr_cmd_data_reg;
|
||||
end
|
||||
|
||||
if (store_axis_resp_int_to_temp) begin
|
||||
temp_seg_ram_wr_cmd_sel_reg <= seg_ram_wr_cmd_sel_int;
|
||||
temp_seg_ram_wr_cmd_be_reg <= seg_ram_wr_cmd_be_int;
|
||||
temp_seg_ram_wr_cmd_addr_reg <= seg_ram_wr_cmd_addr_int;
|
||||
temp_seg_ram_wr_cmd_data_reg <= seg_ram_wr_cmd_data_int;
|
||||
end
|
||||
end
|
||||
|
||||
// RAM write done mux
|
||||
|
||||
wire [PORTS-1:0] seg_ram_wr_done;
|
||||
wire [PORTS-1:0] seg_ram_wr_done_sel;
|
||||
wire seg_if_ram_wr_done;
|
||||
|
||||
for (p = 0; p < PORTS; p = p + 1) begin
|
||||
assign seg_ram_wr_done[p] = ram_wr_done[p*SEG_COUNT+n];
|
||||
end
|
||||
|
||||
assign if_ram_wr_done[n] = seg_if_ram_wr_done;
|
||||
|
||||
wire [CL_PORTS-1:0] select_resp = fifo_sel[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]];
|
||||
|
||||
for (p = 0; p < PORTS; p = p + 1) begin
|
||||
reg [FIFO_ADDR_WIDTH+1-1:0] done_count_reg = 0;
|
||||
reg done_reg = 1'b0;
|
||||
|
||||
assign seg_ram_wr_done_sel[p] = done_reg;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (select_resp == p && (done_count_reg != 0 || seg_ram_wr_done[p])) begin
|
||||
done_reg <= 1'b1;
|
||||
if (!seg_ram_wr_done[p]) begin
|
||||
done_count_reg <= done_count_reg - 1;
|
||||
end
|
||||
end else begin
|
||||
done_reg <= 1'b0;
|
||||
if (seg_ram_wr_done[p]) begin
|
||||
done_count_reg <= done_count_reg + 1;
|
||||
end
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
done_count_reg <= 0;
|
||||
done_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
assign seg_if_ram_wr_done = seg_ram_wr_done_sel != 0;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (seg_if_ram_wr_done && !fifo_empty) begin
|
||||
fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
fifo_rd_ptr_reg <= 0;
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
endgenerate
|
||||
/*
|
||||
* RAM interface (towards RAM)
|
||||
*/
|
||||
.ram_wr_cmd_sel(ram_wr_cmd_sel),
|
||||
.ram_wr_cmd_be(ram_wr_cmd_be),
|
||||
.ram_wr_cmd_addr(ram_wr_cmd_addr),
|
||||
.ram_wr_cmd_data(ram_wr_cmd_data),
|
||||
.ram_wr_cmd_valid(ram_wr_cmd_valid),
|
||||
.ram_wr_cmd_ready(ram_wr_cmd_ready),
|
||||
.ram_wr_done(ram_wr_done)
|
||||
);
|
||||
|
||||
endmodule
|
||||
|
@ -114,7 +114,7 @@ module dma_if_mux_wr #
|
||||
input wire [SEG_COUNT-1:0] if_ram_rd_resp_ready,
|
||||
|
||||
/*
|
||||
* RAM interface
|
||||
* RAM interface (towards RAM)
|
||||
*/
|
||||
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_rd_cmd_sel,
|
||||
output wire [PORTS*SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr,
|
||||
@ -125,447 +125,93 @@ module dma_if_mux_wr #
|
||||
output wire [PORTS*SEG_COUNT-1:0] ram_rd_resp_ready
|
||||
);
|
||||
|
||||
parameter CL_PORTS = $clog2(PORTS);
|
||||
|
||||
parameter S_RAM_SEL_WIDTH_INT = S_RAM_SEL_WIDTH > 0 ? S_RAM_SEL_WIDTH : 1;
|
||||
|
||||
parameter FIFO_ADDR_WIDTH = 5;
|
||||
parameter OUTPUT_FIFO_ADDR_WIDTH = 5;
|
||||
|
||||
// check configuration
|
||||
initial begin
|
||||
if (M_TAG_WIDTH < S_TAG_WIDTH+$clog2(PORTS)) begin
|
||||
$error("Error: M_TAG_WIDTH must be at least $clog2(PORTS) larger than S_TAG_WIDTH (instance %m)");
|
||||
$finish;
|
||||
end
|
||||
|
||||
if (M_RAM_SEL_WIDTH < S_RAM_SEL_WIDTH+$clog2(PORTS)) begin
|
||||
$error("Error: M_RAM_SEL_WIDTH must be at least $clog2(PORTS) larger than S_RAM_SEL_WIDTH (instance %m)");
|
||||
$finish;
|
||||
end
|
||||
end
|
||||
|
||||
// descriptor mux
|
||||
wire [PORTS-1:0] request;
|
||||
wire [PORTS-1:0] acknowledge;
|
||||
wire [PORTS-1:0] grant;
|
||||
wire grant_valid;
|
||||
wire [CL_PORTS-1:0] grant_encoded;
|
||||
|
||||
// internal datapath
|
||||
reg [DMA_ADDR_WIDTH-1:0] m_axis_write_desc_dma_addr_int;
|
||||
reg [M_RAM_SEL_WIDTH-1:0] m_axis_write_desc_ram_sel_int;
|
||||
reg [RAM_ADDR_WIDTH-1:0] m_axis_write_desc_ram_addr_int;
|
||||
reg [LEN_WIDTH-1:0] m_axis_write_desc_len_int;
|
||||
reg [M_TAG_WIDTH-1:0] m_axis_write_desc_tag_int;
|
||||
reg m_axis_write_desc_valid_int;
|
||||
reg m_axis_write_desc_ready_int_reg = 1'b0;
|
||||
wire m_axis_write_desc_ready_int_early;
|
||||
|
||||
assign s_axis_write_desc_ready = (m_axis_write_desc_ready_int_reg && grant_valid) << grant_encoded;
|
||||
|
||||
// mux for incoming packet
|
||||
wire [DMA_ADDR_WIDTH-1:0] current_s_desc_dma_addr = s_axis_write_desc_dma_addr[grant_encoded*DMA_ADDR_WIDTH +: DMA_ADDR_WIDTH];
|
||||
wire [S_RAM_SEL_WIDTH-1:0] current_s_desc_ram_sel = s_axis_write_desc_ram_sel[grant_encoded*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
|
||||
wire [RAM_ADDR_WIDTH-1:0] current_s_desc_ram_addr = s_axis_write_desc_ram_addr[grant_encoded*RAM_ADDR_WIDTH +: RAM_ADDR_WIDTH];
|
||||
wire [LEN_WIDTH-1:0] current_s_desc_len = s_axis_write_desc_len[grant_encoded*LEN_WIDTH +: LEN_WIDTH];
|
||||
wire [S_TAG_WIDTH-1:0] current_s_desc_tag = s_axis_write_desc_tag[grant_encoded*S_TAG_WIDTH +: S_TAG_WIDTH];
|
||||
wire current_s_desc_valid = s_axis_write_desc_valid[grant_encoded];
|
||||
wire current_s_desc_ready = s_axis_write_desc_ready[grant_encoded];
|
||||
|
||||
// arbiter instance
|
||||
arbiter #(
|
||||
dma_if_desc_mux #(
|
||||
.PORTS(PORTS),
|
||||
.EXTEND_RAM_SEL(1),
|
||||
.S_RAM_SEL_WIDTH(S_RAM_SEL_WIDTH),
|
||||
.M_RAM_SEL_WIDTH(M_RAM_SEL_WIDTH),
|
||||
.RAM_ADDR_WIDTH(RAM_ADDR_WIDTH),
|
||||
.DMA_ADDR_WIDTH(DMA_ADDR_WIDTH),
|
||||
.LEN_WIDTH(LEN_WIDTH),
|
||||
.S_TAG_WIDTH(S_TAG_WIDTH),
|
||||
.M_TAG_WIDTH(M_TAG_WIDTH),
|
||||
.ARB_TYPE_ROUND_ROBIN(ARB_TYPE_ROUND_ROBIN),
|
||||
.ARB_BLOCK(1),
|
||||
.ARB_BLOCK_ACK(1),
|
||||
.ARB_LSB_HIGH_PRIORITY(ARB_LSB_HIGH_PRIORITY)
|
||||
)
|
||||
arb_inst (
|
||||
dma_if_desc_mux_inst (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
.request(request),
|
||||
.acknowledge(acknowledge),
|
||||
.grant(grant),
|
||||
.grant_valid(grant_valid),
|
||||
.grant_encoded(grant_encoded)
|
||||
|
||||
/*
|
||||
* Read descriptor output (to DMA interface)
|
||||
*/
|
||||
.m_axis_desc_dma_addr(m_axis_write_desc_dma_addr),
|
||||
.m_axis_desc_ram_sel(m_axis_write_desc_ram_sel),
|
||||
.m_axis_desc_ram_addr(m_axis_write_desc_ram_addr),
|
||||
.m_axis_desc_len(m_axis_write_desc_len),
|
||||
.m_axis_desc_tag(m_axis_write_desc_tag),
|
||||
.m_axis_desc_valid(m_axis_write_desc_valid),
|
||||
.m_axis_desc_ready(m_axis_write_desc_ready),
|
||||
|
||||
/*
|
||||
* Read descriptor status input (from DMA interface)
|
||||
*/
|
||||
.s_axis_desc_status_tag(s_axis_write_desc_status_tag),
|
||||
.s_axis_desc_status_error(s_axis_write_desc_status_error),
|
||||
.s_axis_desc_status_valid(s_axis_write_desc_status_valid),
|
||||
|
||||
/*
|
||||
* Read descriptor input
|
||||
*/
|
||||
.s_axis_desc_dma_addr(s_axis_write_desc_dma_addr),
|
||||
.s_axis_desc_ram_sel(s_axis_write_desc_ram_sel),
|
||||
.s_axis_desc_ram_addr(s_axis_write_desc_ram_addr),
|
||||
.s_axis_desc_len(s_axis_write_desc_len),
|
||||
.s_axis_desc_tag(s_axis_write_desc_tag),
|
||||
.s_axis_desc_valid(s_axis_write_desc_valid),
|
||||
.s_axis_desc_ready(s_axis_write_desc_ready),
|
||||
|
||||
/*
|
||||
* Read descriptor status output
|
||||
*/
|
||||
.m_axis_desc_status_tag(m_axis_write_desc_status_tag),
|
||||
.m_axis_desc_status_error(m_axis_write_desc_status_error),
|
||||
.m_axis_desc_status_valid(m_axis_write_desc_status_valid)
|
||||
);
|
||||
|
||||
assign request = s_axis_write_desc_valid & ~grant;
|
||||
assign acknowledge = grant & s_axis_write_desc_valid & s_axis_write_desc_ready;
|
||||
|
||||
always @* begin
|
||||
// pass through selected packet data
|
||||
m_axis_write_desc_dma_addr_int = current_s_desc_dma_addr;
|
||||
if (S_RAM_SEL_WIDTH > 0) begin
|
||||
m_axis_write_desc_ram_sel_int = {grant_encoded, current_s_desc_ram_sel};
|
||||
end else begin
|
||||
m_axis_write_desc_ram_sel_int = grant_encoded;
|
||||
end
|
||||
m_axis_write_desc_ram_addr_int = current_s_desc_ram_addr;
|
||||
m_axis_write_desc_len_int = current_s_desc_len;
|
||||
m_axis_write_desc_tag_int = {grant_encoded, current_s_desc_tag};
|
||||
m_axis_write_desc_valid_int = current_s_desc_valid && m_axis_write_desc_ready_int_reg && grant_valid;
|
||||
end
|
||||
|
||||
// output datapath logic
|
||||
reg [DMA_ADDR_WIDTH-1:0] m_axis_write_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
|
||||
reg [M_RAM_SEL_WIDTH-1:0] m_axis_write_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
|
||||
reg [RAM_ADDR_WIDTH-1:0] m_axis_write_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
|
||||
reg [LEN_WIDTH-1:0] m_axis_write_desc_len_reg = {LEN_WIDTH{1'b0}};
|
||||
reg [M_TAG_WIDTH-1:0] m_axis_write_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
|
||||
reg m_axis_write_desc_valid_reg = 1'b0, m_axis_write_desc_valid_next;
|
||||
|
||||
reg [DMA_ADDR_WIDTH-1:0] temp_m_axis_write_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
|
||||
reg [M_RAM_SEL_WIDTH-1:0] temp_m_axis_write_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
|
||||
reg [RAM_ADDR_WIDTH-1:0] temp_m_axis_write_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
|
||||
reg [LEN_WIDTH-1:0] temp_m_axis_write_desc_len_reg = {LEN_WIDTH{1'b0}};
|
||||
reg [M_TAG_WIDTH-1:0] temp_m_axis_write_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
|
||||
reg temp_m_axis_write_desc_valid_reg = 1'b0, temp_m_axis_write_desc_valid_next;
|
||||
|
||||
// datapath control
|
||||
reg store_axis_int_to_output;
|
||||
reg store_axis_int_to_temp;
|
||||
reg store_axis_temp_to_output;
|
||||
|
||||
assign m_axis_write_desc_dma_addr = m_axis_write_desc_dma_addr_reg;
|
||||
assign m_axis_write_desc_ram_addr = m_axis_write_desc_ram_addr_reg;
|
||||
assign m_axis_write_desc_ram_sel = m_axis_write_desc_ram_sel_reg;
|
||||
assign m_axis_write_desc_len = m_axis_write_desc_len_reg;
|
||||
assign m_axis_write_desc_tag = m_axis_write_desc_tag_reg;
|
||||
assign m_axis_write_desc_valid = m_axis_write_desc_valid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
assign m_axis_write_desc_ready_int_early = m_axis_write_desc_ready || (!temp_m_axis_write_desc_valid_reg && (!m_axis_write_desc_valid_reg || !m_axis_write_desc_valid_int));
|
||||
|
||||
always @* begin
|
||||
// transfer sink ready state to source
|
||||
m_axis_write_desc_valid_next = m_axis_write_desc_valid_reg;
|
||||
temp_m_axis_write_desc_valid_next = temp_m_axis_write_desc_valid_reg;
|
||||
|
||||
store_axis_int_to_output = 1'b0;
|
||||
store_axis_int_to_temp = 1'b0;
|
||||
store_axis_temp_to_output = 1'b0;
|
||||
|
||||
if (m_axis_write_desc_ready_int_reg) begin
|
||||
// input is ready
|
||||
if (m_axis_write_desc_ready || !m_axis_write_desc_valid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
m_axis_write_desc_valid_next = m_axis_write_desc_valid_int;
|
||||
store_axis_int_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_m_axis_write_desc_valid_next = m_axis_write_desc_valid_int;
|
||||
store_axis_int_to_temp = 1'b1;
|
||||
end
|
||||
end else if (m_axis_write_desc_ready) begin
|
||||
// input is not ready, but output is ready
|
||||
m_axis_write_desc_valid_next = temp_m_axis_write_desc_valid_reg;
|
||||
temp_m_axis_write_desc_valid_next = 1'b0;
|
||||
store_axis_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
m_axis_write_desc_valid_reg <= 1'b0;
|
||||
m_axis_write_desc_ready_int_reg <= 1'b0;
|
||||
temp_m_axis_write_desc_valid_reg <= 1'b0;
|
||||
end else begin
|
||||
m_axis_write_desc_valid_reg <= m_axis_write_desc_valid_next;
|
||||
m_axis_write_desc_ready_int_reg <= m_axis_write_desc_ready_int_early;
|
||||
temp_m_axis_write_desc_valid_reg <= temp_m_axis_write_desc_valid_next;
|
||||
end
|
||||
|
||||
// datapath
|
||||
if (store_axis_int_to_output) begin
|
||||
m_axis_write_desc_dma_addr_reg <= m_axis_write_desc_dma_addr_int;
|
||||
m_axis_write_desc_ram_sel_reg <= m_axis_write_desc_ram_sel_int;
|
||||
m_axis_write_desc_ram_addr_reg <= m_axis_write_desc_ram_addr_int;
|
||||
m_axis_write_desc_len_reg <= m_axis_write_desc_len_int;
|
||||
m_axis_write_desc_tag_reg <= m_axis_write_desc_tag_int;
|
||||
end else if (store_axis_temp_to_output) begin
|
||||
m_axis_write_desc_dma_addr_reg <= temp_m_axis_write_desc_dma_addr_reg;
|
||||
m_axis_write_desc_ram_sel_reg <= temp_m_axis_write_desc_ram_sel_reg;
|
||||
m_axis_write_desc_ram_addr_reg <= temp_m_axis_write_desc_ram_addr_reg;
|
||||
m_axis_write_desc_len_reg <= temp_m_axis_write_desc_len_reg;
|
||||
m_axis_write_desc_tag_reg <= temp_m_axis_write_desc_tag_reg;
|
||||
end
|
||||
|
||||
if (store_axis_int_to_temp) begin
|
||||
temp_m_axis_write_desc_dma_addr_reg <= m_axis_write_desc_dma_addr_int;
|
||||
temp_m_axis_write_desc_ram_sel_reg <= m_axis_write_desc_ram_sel_int;
|
||||
temp_m_axis_write_desc_ram_addr_reg <= m_axis_write_desc_ram_addr_int;
|
||||
temp_m_axis_write_desc_len_reg <= m_axis_write_desc_len_int;
|
||||
temp_m_axis_write_desc_tag_reg <= m_axis_write_desc_tag_int;
|
||||
end
|
||||
end
|
||||
|
||||
// descriptor status demux
|
||||
reg [S_TAG_WIDTH-1:0] m_axis_write_desc_status_tag_reg = {S_TAG_WIDTH{1'b0}}, m_axis_write_desc_status_tag_next;
|
||||
reg [5:0] m_axis_write_desc_status_error_reg = 6'd0, m_axis_write_desc_status_error_next;
|
||||
reg [PORTS-1:0] m_axis_write_desc_status_valid_reg = {PORTS{1'b0}}, m_axis_write_desc_status_valid_next;
|
||||
|
||||
assign m_axis_write_desc_status_tag = {PORTS{m_axis_write_desc_status_tag_reg}};
|
||||
assign m_axis_write_desc_status_error = {PORTS{m_axis_write_desc_status_error_reg}};
|
||||
assign m_axis_write_desc_status_valid = m_axis_write_desc_status_valid_reg;
|
||||
|
||||
always @* begin
|
||||
m_axis_write_desc_status_tag_next = s_axis_write_desc_status_tag;
|
||||
m_axis_write_desc_status_error_next = s_axis_write_desc_status_error;
|
||||
m_axis_write_desc_status_valid_next = s_axis_write_desc_status_valid << (PORTS > 1 ? s_axis_write_desc_status_tag[S_TAG_WIDTH+CL_PORTS-1:S_TAG_WIDTH] : 0);
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
m_axis_write_desc_status_valid_reg <= {PORTS{1'b0}};
|
||||
end else begin
|
||||
m_axis_write_desc_status_valid_reg <= m_axis_write_desc_status_valid_next;
|
||||
end
|
||||
|
||||
m_axis_write_desc_status_tag_reg <= m_axis_write_desc_status_tag_next;
|
||||
m_axis_write_desc_status_error_reg <= m_axis_write_desc_status_error_next;
|
||||
end
|
||||
|
||||
generate
|
||||
|
||||
genvar n, p;
|
||||
|
||||
for (n = 0; n < SEG_COUNT; n = n + 1) begin
|
||||
|
||||
// FIFO to maintain response ordering
|
||||
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_wr_ptr_reg = 0;
|
||||
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_rd_ptr_reg = 0;
|
||||
reg [CL_PORTS-1:0] fifo_sel[(2**FIFO_ADDR_WIDTH)-1:0];
|
||||
|
||||
wire fifo_empty = fifo_wr_ptr_reg == fifo_rd_ptr_reg;
|
||||
wire fifo_full = fifo_wr_ptr_reg == (fifo_rd_ptr_reg ^ (1 << FIFO_ADDR_WIDTH));
|
||||
|
||||
integer i;
|
||||
|
||||
initial begin
|
||||
for (i = 0; i < 2**FIFO_ADDR_WIDTH; i = i + 1) begin
|
||||
fifo_sel[i] = 0;
|
||||
end
|
||||
end
|
||||
|
||||
// RAM read command demux
|
||||
|
||||
wire [M_RAM_SEL_WIDTH-1:0] seg_if_ram_rd_cmd_sel = if_ram_rd_cmd_sel[M_RAM_SEL_WIDTH*n +: M_RAM_SEL_WIDTH];
|
||||
wire [SEG_ADDR_WIDTH-1:0] seg_if_ram_rd_cmd_addr = if_ram_rd_cmd_addr[SEG_ADDR_WIDTH*n +: SEG_ADDR_WIDTH];
|
||||
wire seg_if_ram_rd_cmd_valid = if_ram_rd_cmd_valid[n];
|
||||
wire seg_if_ram_rd_cmd_ready;
|
||||
|
||||
assign if_ram_rd_cmd_ready[n] = seg_if_ram_rd_cmd_ready;
|
||||
|
||||
wire [PORTS*S_RAM_SEL_WIDTH-1:0] seg_ram_rd_cmd_sel;
|
||||
wire [PORTS*SEG_ADDR_WIDTH-1:0] seg_ram_rd_cmd_addr;
|
||||
wire [PORTS-1:0] seg_ram_rd_cmd_valid;
|
||||
wire [PORTS-1:0] seg_ram_rd_cmd_ready;
|
||||
|
||||
for (p = 0; p < PORTS; p = p + 1) begin
|
||||
assign ram_rd_cmd_sel[(p*SEG_COUNT+n)*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT] = seg_ram_rd_cmd_sel[p*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
|
||||
assign ram_rd_cmd_addr[(p*SEG_COUNT+n)*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = seg_ram_rd_cmd_addr[p*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH];
|
||||
assign ram_rd_cmd_valid[p*SEG_COUNT+n] = seg_ram_rd_cmd_valid[p];
|
||||
assign seg_ram_rd_cmd_ready[p] = ram_rd_cmd_ready[p*SEG_COUNT+n];
|
||||
end
|
||||
|
||||
// internal datapath
|
||||
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_rd_cmd_sel_int;
|
||||
reg [SEG_ADDR_WIDTH-1:0] seg_ram_rd_cmd_addr_int;
|
||||
reg [PORTS-1:0] seg_ram_rd_cmd_valid_int;
|
||||
reg seg_ram_rd_cmd_ready_int_reg = 1'b0;
|
||||
wire seg_ram_rd_cmd_ready_int_early;
|
||||
|
||||
assign seg_if_ram_rd_cmd_ready = seg_ram_rd_cmd_ready_int_reg && !fifo_full;
|
||||
|
||||
wire [CL_PORTS-1:0] select_cmd = PORTS > 1 ? (seg_if_ram_rd_cmd_sel >> (M_RAM_SEL_WIDTH - CL_PORTS)) : 0;
|
||||
|
||||
always @* begin
|
||||
seg_ram_rd_cmd_sel_int = seg_if_ram_rd_cmd_sel;
|
||||
seg_ram_rd_cmd_addr_int = seg_if_ram_rd_cmd_addr;
|
||||
seg_ram_rd_cmd_valid_int = (seg_if_ram_rd_cmd_valid && seg_if_ram_rd_cmd_ready) << select_cmd;
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (seg_if_ram_rd_cmd_valid && seg_if_ram_rd_cmd_ready) begin
|
||||
fifo_sel[fifo_wr_ptr_reg[FIFO_ADDR_WIDTH-1:0]] <= select_cmd;
|
||||
fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
fifo_wr_ptr_reg <= 0;
|
||||
end
|
||||
end
|
||||
|
||||
// output datapath logic
|
||||
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_rd_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
|
||||
reg [SEG_ADDR_WIDTH-1:0] seg_ram_rd_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
|
||||
reg [PORTS-1:0] seg_ram_rd_cmd_valid_reg = {PORTS{1'b0}}, seg_ram_rd_cmd_valid_next;
|
||||
|
||||
reg [S_RAM_SEL_WIDTH-1:0] temp_seg_ram_rd_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
|
||||
reg [SEG_ADDR_WIDTH-1:0] temp_seg_ram_rd_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
|
||||
reg [PORTS-1:0] temp_seg_ram_rd_cmd_valid_reg = {PORTS{1'b0}}, temp_seg_ram_rd_cmd_valid_next;
|
||||
|
||||
// datapath control
|
||||
reg store_axis_resp_int_to_output;
|
||||
reg store_axis_resp_int_to_temp;
|
||||
reg store_axis_resp_temp_to_output;
|
||||
|
||||
assign seg_ram_rd_cmd_sel = {PORTS{seg_ram_rd_cmd_sel_reg}};
|
||||
assign seg_ram_rd_cmd_addr = {PORTS{seg_ram_rd_cmd_addr_reg}};
|
||||
assign seg_ram_rd_cmd_valid = seg_ram_rd_cmd_valid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
assign seg_ram_rd_cmd_ready_int_early = (seg_ram_rd_cmd_ready & seg_ram_rd_cmd_valid_reg) || (!temp_seg_ram_rd_cmd_valid_reg && (!seg_ram_rd_cmd_valid_reg || !seg_ram_rd_cmd_valid_int));
|
||||
|
||||
always @* begin
|
||||
// transfer sink ready state to source
|
||||
seg_ram_rd_cmd_valid_next = seg_ram_rd_cmd_valid_reg;
|
||||
temp_seg_ram_rd_cmd_valid_next = temp_seg_ram_rd_cmd_valid_reg;
|
||||
|
||||
store_axis_resp_int_to_output = 1'b0;
|
||||
store_axis_resp_int_to_temp = 1'b0;
|
||||
store_axis_resp_temp_to_output = 1'b0;
|
||||
|
||||
if (seg_ram_rd_cmd_ready_int_reg) begin
|
||||
// input is ready
|
||||
if ((seg_ram_rd_cmd_ready & seg_ram_rd_cmd_valid_reg) || !seg_ram_rd_cmd_valid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
seg_ram_rd_cmd_valid_next = seg_ram_rd_cmd_valid_int;
|
||||
store_axis_resp_int_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_seg_ram_rd_cmd_valid_next = seg_ram_rd_cmd_valid_int;
|
||||
store_axis_resp_int_to_temp = 1'b1;
|
||||
end
|
||||
end else if (seg_ram_rd_cmd_ready & seg_ram_rd_cmd_valid_reg) begin
|
||||
// input is not ready, but output is ready
|
||||
seg_ram_rd_cmd_valid_next = temp_seg_ram_rd_cmd_valid_reg;
|
||||
temp_seg_ram_rd_cmd_valid_next = {PORTS{1'b0}};
|
||||
store_axis_resp_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
seg_ram_rd_cmd_valid_reg <= {PORTS{1'b0}};
|
||||
seg_ram_rd_cmd_ready_int_reg <= 1'b0;
|
||||
temp_seg_ram_rd_cmd_valid_reg <= {PORTS{1'b0}};
|
||||
end else begin
|
||||
seg_ram_rd_cmd_valid_reg <= seg_ram_rd_cmd_valid_next;
|
||||
seg_ram_rd_cmd_ready_int_reg <= seg_ram_rd_cmd_ready_int_early;
|
||||
temp_seg_ram_rd_cmd_valid_reg <= temp_seg_ram_rd_cmd_valid_next;
|
||||
end
|
||||
|
||||
// datapath
|
||||
if (store_axis_resp_int_to_output) begin
|
||||
seg_ram_rd_cmd_sel_reg <= seg_ram_rd_cmd_sel_int;
|
||||
seg_ram_rd_cmd_addr_reg <= seg_ram_rd_cmd_addr_int;
|
||||
end else if (store_axis_resp_temp_to_output) begin
|
||||
seg_ram_rd_cmd_sel_reg <= temp_seg_ram_rd_cmd_sel_reg;
|
||||
seg_ram_rd_cmd_addr_reg <= temp_seg_ram_rd_cmd_addr_reg;
|
||||
end
|
||||
|
||||
if (store_axis_resp_int_to_temp) begin
|
||||
temp_seg_ram_rd_cmd_sel_reg <= seg_ram_rd_cmd_sel_int;
|
||||
temp_seg_ram_rd_cmd_addr_reg <= seg_ram_rd_cmd_addr_int;
|
||||
end
|
||||
end
|
||||
|
||||
// RAM read response mux
|
||||
|
||||
wire [PORTS*SEG_DATA_WIDTH-1:0] seg_ram_rd_resp_data;
|
||||
wire [PORTS-1:0] seg_ram_rd_resp_valid;
|
||||
wire [PORTS-1:0] seg_ram_rd_resp_ready;
|
||||
|
||||
for (p = 0; p < PORTS; p = p + 1) begin
|
||||
assign seg_ram_rd_resp_data[p*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = ram_rd_resp_data[(p*SEG_COUNT+n)*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
|
||||
assign seg_ram_rd_resp_valid[p] = ram_rd_resp_valid[p*SEG_COUNT+n];
|
||||
assign ram_rd_resp_ready[p*SEG_COUNT+n] = seg_ram_rd_resp_ready[p];
|
||||
end
|
||||
|
||||
wire [SEG_DATA_WIDTH-1:0] seg_if_ram_rd_resp_data;
|
||||
wire seg_if_ram_rd_resp_valid;
|
||||
wire seg_if_ram_rd_resp_ready = if_ram_rd_resp_ready[n];
|
||||
|
||||
assign if_ram_rd_resp_data[n*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = seg_if_ram_rd_resp_data;
|
||||
assign if_ram_rd_resp_valid[n] = seg_if_ram_rd_resp_valid;
|
||||
|
||||
// internal datapath
|
||||
reg [SEG_DATA_WIDTH-1:0] seg_if_ram_rd_resp_data_int;
|
||||
reg seg_if_ram_rd_resp_valid_int;
|
||||
wire seg_if_ram_rd_resp_ready_int;
|
||||
|
||||
wire [CL_PORTS-1:0] select_resp = fifo_sel[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]];
|
||||
|
||||
assign seg_ram_rd_resp_ready = (seg_if_ram_rd_resp_ready_int && !fifo_empty) << select_resp;
|
||||
|
||||
// mux for incoming packet
|
||||
wire [SEG_DATA_WIDTH-1:0] current_resp_data = seg_ram_rd_resp_data[select_resp*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
|
||||
wire current_resp_valid = seg_ram_rd_resp_valid[select_resp];
|
||||
wire current_resp_ready = seg_ram_rd_resp_ready[select_resp];
|
||||
|
||||
always @* begin
|
||||
// pass through selected packet data
|
||||
seg_if_ram_rd_resp_data_int = current_resp_data;
|
||||
seg_if_ram_rd_resp_valid_int = current_resp_valid && seg_if_ram_rd_resp_ready_int && !fifo_empty;
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (current_resp_valid && seg_if_ram_rd_resp_ready_int && !fifo_empty) begin
|
||||
fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
fifo_rd_ptr_reg <= 0;
|
||||
end
|
||||
end
|
||||
|
||||
// output datapath logic
|
||||
reg [SEG_DATA_WIDTH-1:0] seg_if_ram_rd_resp_data_reg = {SEG_DATA_WIDTH{1'b0}};
|
||||
reg seg_if_ram_rd_resp_valid_reg = 1'b0;
|
||||
|
||||
reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_wr_ptr_reg = 0;
|
||||
reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_rd_ptr_reg = 0;
|
||||
reg out_fifo_half_full_reg = 1'b0;
|
||||
|
||||
wire out_fifo_full = out_fifo_wr_ptr_reg == (out_fifo_rd_ptr_reg ^ {1'b1, {OUTPUT_FIFO_ADDR_WIDTH{1'b0}}});
|
||||
wire out_fifo_empty = out_fifo_wr_ptr_reg == out_fifo_rd_ptr_reg;
|
||||
|
||||
(* ram_style = "distributed" *)
|
||||
reg [SEG_DATA_WIDTH-1:0] out_fifo_rd_resp_data[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
|
||||
|
||||
assign seg_if_ram_rd_resp_ready_int = !out_fifo_half_full_reg;
|
||||
|
||||
assign seg_if_ram_rd_resp_data = seg_if_ram_rd_resp_data_reg;
|
||||
assign seg_if_ram_rd_resp_valid = seg_if_ram_rd_resp_valid_reg;
|
||||
|
||||
always @(posedge clk) begin
|
||||
seg_if_ram_rd_resp_valid_reg <= seg_if_ram_rd_resp_valid_reg && !seg_if_ram_rd_resp_ready;
|
||||
|
||||
out_fifo_half_full_reg <= $unsigned(out_fifo_wr_ptr_reg - out_fifo_rd_ptr_reg) >= 2**(OUTPUT_FIFO_ADDR_WIDTH-1);
|
||||
|
||||
if (!out_fifo_full && seg_if_ram_rd_resp_valid_int) begin
|
||||
out_fifo_rd_resp_data[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= seg_if_ram_rd_resp_data_int;
|
||||
out_fifo_wr_ptr_reg <= out_fifo_wr_ptr_reg + 1;
|
||||
end
|
||||
|
||||
if (!out_fifo_empty && (!seg_if_ram_rd_resp_valid_reg || seg_if_ram_rd_resp_ready)) begin
|
||||
seg_if_ram_rd_resp_data_reg <= out_fifo_rd_resp_data[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
|
||||
seg_if_ram_rd_resp_valid_reg <= 1'b1;
|
||||
out_fifo_rd_ptr_reg <= out_fifo_rd_ptr_reg + 1;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
out_fifo_wr_ptr_reg <= 0;
|
||||
out_fifo_rd_ptr_reg <= 0;
|
||||
seg_if_ram_rd_resp_valid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
endgenerate
|
||||
dma_ram_demux_rd #(
|
||||
.PORTS(PORTS),
|
||||
.SEG_COUNT(SEG_COUNT),
|
||||
.SEG_DATA_WIDTH(SEG_DATA_WIDTH),
|
||||
.SEG_ADDR_WIDTH(SEG_ADDR_WIDTH),
|
||||
.S_RAM_SEL_WIDTH(S_RAM_SEL_WIDTH),
|
||||
.M_RAM_SEL_WIDTH(M_RAM_SEL_WIDTH)
|
||||
)
|
||||
dma_ram_demux_inst (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
|
||||
/*
|
||||
* RAM interface (from DMA client/interface)
|
||||
*/
|
||||
.ctrl_rd_cmd_sel(if_ram_rd_cmd_sel),
|
||||
.ctrl_rd_cmd_addr(if_ram_rd_cmd_addr),
|
||||
.ctrl_rd_cmd_valid(if_ram_rd_cmd_valid),
|
||||
.ctrl_rd_cmd_ready(if_ram_rd_cmd_ready),
|
||||
.ctrl_rd_resp_data(if_ram_rd_resp_data),
|
||||
.ctrl_rd_resp_valid(if_ram_rd_resp_valid),
|
||||
.ctrl_rd_resp_ready(if_ram_rd_resp_ready),
|
||||
|
||||
/*
|
||||
* RAM interface (towards RAM)
|
||||
*/
|
||||
.ram_rd_cmd_sel(ram_rd_cmd_sel),
|
||||
.ram_rd_cmd_addr(ram_rd_cmd_addr),
|
||||
.ram_rd_cmd_valid(ram_rd_cmd_valid),
|
||||
.ram_rd_cmd_ready(ram_rd_cmd_ready),
|
||||
.ram_rd_resp_data(ram_rd_resp_data),
|
||||
.ram_rd_resp_valid(ram_rd_resp_valid),
|
||||
.ram_rd_resp_ready(ram_rd_resp_ready)
|
||||
);
|
||||
|
||||
endmodule
|
||||
|
162
fpga/lib/pcie/rtl/dma_ram_demux.v
Normal file
162
fpga/lib/pcie/rtl/dma_ram_demux.v
Normal file
@ -0,0 +1,162 @@
|
||||
/*
|
||||
|
||||
Copyright (c) 2019-2021 Alex Forencich
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
|
||||
*/
|
||||
|
||||
// Language: Verilog 2001
|
||||
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
/*
|
||||
* DMA RAM demux
|
||||
*/
|
||||
module dma_ram_demux #
|
||||
(
|
||||
// Number of ports
|
||||
parameter PORTS = 2,
|
||||
// RAM segment count
|
||||
parameter SEG_COUNT = 2,
|
||||
// RAM segment data width
|
||||
parameter SEG_DATA_WIDTH = 64,
|
||||
// RAM segment address width
|
||||
parameter SEG_ADDR_WIDTH = 8,
|
||||
// RAM segment byte enable width
|
||||
parameter SEG_BE_WIDTH = SEG_DATA_WIDTH/8,
|
||||
// Input RAM segment select width
|
||||
parameter S_RAM_SEL_WIDTH = 2,
|
||||
// Output RAM segment select width
|
||||
// Additional bits required for response routing
|
||||
parameter M_RAM_SEL_WIDTH = S_RAM_SEL_WIDTH+$clog2(PORTS)
|
||||
)
|
||||
(
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
|
||||
/*
|
||||
* RAM interface (from DMA client/interface)
|
||||
*/
|
||||
input wire [SEG_COUNT*M_RAM_SEL_WIDTH-1:0] ctrl_wr_cmd_sel,
|
||||
input wire [SEG_COUNT*SEG_BE_WIDTH-1:0] ctrl_wr_cmd_be,
|
||||
input wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ctrl_wr_cmd_addr,
|
||||
input wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] ctrl_wr_cmd_data,
|
||||
input wire [SEG_COUNT-1:0] ctrl_wr_cmd_valid,
|
||||
output wire [SEG_COUNT-1:0] ctrl_wr_cmd_ready,
|
||||
output wire [SEG_COUNT-1:0] ctrl_wr_done,
|
||||
input wire [SEG_COUNT*M_RAM_SEL_WIDTH-1:0] ctrl_rd_cmd_sel,
|
||||
input wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ctrl_rd_cmd_addr,
|
||||
input wire [SEG_COUNT-1:0] ctrl_rd_cmd_valid,
|
||||
output wire [SEG_COUNT-1:0] ctrl_rd_cmd_ready,
|
||||
output wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] ctrl_rd_resp_data,
|
||||
output wire [SEG_COUNT-1:0] ctrl_rd_resp_valid,
|
||||
input wire [SEG_COUNT-1:0] ctrl_rd_resp_ready,
|
||||
|
||||
/*
|
||||
* RAM interface (towards RAM)
|
||||
*/
|
||||
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_wr_cmd_sel,
|
||||
output wire [PORTS*SEG_COUNT*SEG_BE_WIDTH-1:0] ram_wr_cmd_be,
|
||||
output wire [PORTS*SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_wr_cmd_addr,
|
||||
output wire [PORTS*SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_wr_cmd_data,
|
||||
output wire [PORTS*SEG_COUNT-1:0] ram_wr_cmd_valid,
|
||||
input wire [PORTS*SEG_COUNT-1:0] ram_wr_cmd_ready,
|
||||
input wire [PORTS*SEG_COUNT-1:0] ram_wr_done,
|
||||
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_rd_cmd_sel,
|
||||
output wire [PORTS*SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr,
|
||||
output wire [PORTS*SEG_COUNT-1:0] ram_rd_cmd_valid,
|
||||
input wire [PORTS*SEG_COUNT-1:0] ram_rd_cmd_ready,
|
||||
input wire [PORTS*SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_rd_resp_data,
|
||||
input wire [PORTS*SEG_COUNT-1:0] ram_rd_resp_valid,
|
||||
output wire [PORTS*SEG_COUNT-1:0] ram_rd_resp_ready
|
||||
);
|
||||
|
||||
dma_ram_demux_wr #(
|
||||
.PORTS(PORTS),
|
||||
.SEG_COUNT(SEG_COUNT),
|
||||
.SEG_DATA_WIDTH(SEG_DATA_WIDTH),
|
||||
.SEG_ADDR_WIDTH(SEG_ADDR_WIDTH),
|
||||
.SEG_BE_WIDTH(SEG_BE_WIDTH),
|
||||
.S_RAM_SEL_WIDTH(S_RAM_SEL_WIDTH),
|
||||
.M_RAM_SEL_WIDTH(M_RAM_SEL_WIDTH)
|
||||
)
|
||||
dma_ram_demux_wr_inst (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
|
||||
/*
|
||||
* RAM interface (from DMA client/interface)
|
||||
*/
|
||||
.ctrl_wr_cmd_sel(ctrl_wr_cmd_sel),
|
||||
.ctrl_wr_cmd_be(ctrl_wr_cmd_be),
|
||||
.ctrl_wr_cmd_addr(ctrl_wr_cmd_addr),
|
||||
.ctrl_wr_cmd_data(ctrl_wr_cmd_data),
|
||||
.ctrl_wr_cmd_valid(ctrl_wr_cmd_valid),
|
||||
.ctrl_wr_cmd_ready(ctrl_wr_cmd_ready),
|
||||
.ctrl_wr_done(ctrl_wr_done),
|
||||
|
||||
/*
|
||||
* RAM interface (towards RAM)
|
||||
*/
|
||||
.ram_wr_cmd_sel(ram_wr_cmd_sel),
|
||||
.ram_wr_cmd_be(ram_wr_cmd_be),
|
||||
.ram_wr_cmd_addr(ram_wr_cmd_addr),
|
||||
.ram_wr_cmd_data(ram_wr_cmd_data),
|
||||
.ram_wr_cmd_valid(ram_wr_cmd_valid),
|
||||
.ram_wr_cmd_ready(ram_wr_cmd_ready),
|
||||
.ram_wr_done(ram_wr_done)
|
||||
);
|
||||
|
||||
dma_ram_demux_rd #(
|
||||
.PORTS(PORTS),
|
||||
.SEG_COUNT(SEG_COUNT),
|
||||
.SEG_DATA_WIDTH(SEG_DATA_WIDTH),
|
||||
.SEG_ADDR_WIDTH(SEG_ADDR_WIDTH),
|
||||
.S_RAM_SEL_WIDTH(S_RAM_SEL_WIDTH),
|
||||
.M_RAM_SEL_WIDTH(M_RAM_SEL_WIDTH)
|
||||
)
|
||||
dma_ram_demux_rd_inst (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
|
||||
/*
|
||||
* RAM interface (from DMA client/interface)
|
||||
*/
|
||||
.ctrl_rd_cmd_sel(ctrl_rd_cmd_sel),
|
||||
.ctrl_rd_cmd_addr(ctrl_rd_cmd_addr),
|
||||
.ctrl_rd_cmd_valid(ctrl_rd_cmd_valid),
|
||||
.ctrl_rd_cmd_ready(ctrl_rd_cmd_ready),
|
||||
.ctrl_rd_resp_data(ctrl_rd_resp_data),
|
||||
.ctrl_rd_resp_valid(ctrl_rd_resp_valid),
|
||||
.ctrl_rd_resp_ready(ctrl_rd_resp_ready),
|
||||
|
||||
/*
|
||||
* RAM interface (towards RAM)
|
||||
*/
|
||||
.ram_rd_cmd_sel(ram_rd_cmd_sel),
|
||||
.ram_rd_cmd_addr(ram_rd_cmd_addr),
|
||||
.ram_rd_cmd_valid(ram_rd_cmd_valid),
|
||||
.ram_rd_cmd_ready(ram_rd_cmd_ready),
|
||||
.ram_rd_resp_data(ram_rd_resp_data),
|
||||
.ram_rd_resp_valid(ram_rd_resp_valid),
|
||||
.ram_rd_resp_ready(ram_rd_resp_ready)
|
||||
);
|
||||
|
||||
endmodule
|
331
fpga/lib/pcie/rtl/dma_ram_demux_rd.v
Normal file
331
fpga/lib/pcie/rtl/dma_ram_demux_rd.v
Normal file
@ -0,0 +1,331 @@
|
||||
/*
|
||||
|
||||
Copyright (c) 2019-2021 Alex Forencich
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
|
||||
*/
|
||||
|
||||
// Language: Verilog 2001
|
||||
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
/*
|
||||
* DMA RAM demux (read)
|
||||
*/
|
||||
module dma_ram_demux_rd #
|
||||
(
|
||||
// Number of ports
|
||||
parameter PORTS = 2,
|
||||
// RAM segment count
|
||||
parameter SEG_COUNT = 2,
|
||||
// RAM segment data width
|
||||
parameter SEG_DATA_WIDTH = 64,
|
||||
// RAM segment address width
|
||||
parameter SEG_ADDR_WIDTH = 8,
|
||||
// Input RAM segment select width
|
||||
parameter S_RAM_SEL_WIDTH = 2,
|
||||
// Output RAM segment select width
|
||||
// Additional bits required for response routing
|
||||
parameter M_RAM_SEL_WIDTH = S_RAM_SEL_WIDTH+$clog2(PORTS)
|
||||
)
|
||||
(
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
|
||||
/*
|
||||
* RAM interface (from DMA client/interface)
|
||||
*/
|
||||
input wire [SEG_COUNT*M_RAM_SEL_WIDTH-1:0] ctrl_rd_cmd_sel,
|
||||
input wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ctrl_rd_cmd_addr,
|
||||
input wire [SEG_COUNT-1:0] ctrl_rd_cmd_valid,
|
||||
output wire [SEG_COUNT-1:0] ctrl_rd_cmd_ready,
|
||||
output wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] ctrl_rd_resp_data,
|
||||
output wire [SEG_COUNT-1:0] ctrl_rd_resp_valid,
|
||||
input wire [SEG_COUNT-1:0] ctrl_rd_resp_ready,
|
||||
|
||||
/*
|
||||
* RAM interface (towards RAM)
|
||||
*/
|
||||
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_rd_cmd_sel,
|
||||
output wire [PORTS*SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr,
|
||||
output wire [PORTS*SEG_COUNT-1:0] ram_rd_cmd_valid,
|
||||
input wire [PORTS*SEG_COUNT-1:0] ram_rd_cmd_ready,
|
||||
input wire [PORTS*SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_rd_resp_data,
|
||||
input wire [PORTS*SEG_COUNT-1:0] ram_rd_resp_valid,
|
||||
output wire [PORTS*SEG_COUNT-1:0] ram_rd_resp_ready
|
||||
);
|
||||
|
||||
parameter CL_PORTS = $clog2(PORTS);
|
||||
|
||||
parameter S_RAM_SEL_WIDTH_INT = S_RAM_SEL_WIDTH > 0 ? S_RAM_SEL_WIDTH : 1;
|
||||
|
||||
parameter FIFO_ADDR_WIDTH = 5;
|
||||
parameter OUTPUT_FIFO_ADDR_WIDTH = 5;
|
||||
|
||||
// check configuration
|
||||
initial begin
|
||||
if (M_RAM_SEL_WIDTH < S_RAM_SEL_WIDTH+$clog2(PORTS)) begin
|
||||
$error("Error: M_RAM_SEL_WIDTH must be at least $clog2(PORTS) larger than S_RAM_SEL_WIDTH (instance %m)");
|
||||
$finish;
|
||||
end
|
||||
end
|
||||
|
||||
generate
|
||||
|
||||
genvar n, p;
|
||||
|
||||
for (n = 0; n < SEG_COUNT; n = n + 1) begin
|
||||
|
||||
// FIFO to maintain response ordering
|
||||
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_wr_ptr_reg = 0;
|
||||
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_rd_ptr_reg = 0;
|
||||
reg [CL_PORTS-1:0] fifo_sel[(2**FIFO_ADDR_WIDTH)-1:0];
|
||||
|
||||
wire fifo_empty = fifo_wr_ptr_reg == fifo_rd_ptr_reg;
|
||||
wire fifo_full = fifo_wr_ptr_reg == (fifo_rd_ptr_reg ^ (1 << FIFO_ADDR_WIDTH));
|
||||
|
||||
integer i;
|
||||
|
||||
initial begin
|
||||
for (i = 0; i < 2**FIFO_ADDR_WIDTH; i = i + 1) begin
|
||||
fifo_sel[i] = 0;
|
||||
end
|
||||
end
|
||||
|
||||
// RAM read command demux
|
||||
|
||||
wire [M_RAM_SEL_WIDTH-1:0] seg_ctrl_rd_cmd_sel = ctrl_rd_cmd_sel[M_RAM_SEL_WIDTH*n +: M_RAM_SEL_WIDTH];
|
||||
wire [SEG_ADDR_WIDTH-1:0] seg_ctrl_rd_cmd_addr = ctrl_rd_cmd_addr[SEG_ADDR_WIDTH*n +: SEG_ADDR_WIDTH];
|
||||
wire seg_ctrl_rd_cmd_valid = ctrl_rd_cmd_valid[n];
|
||||
wire seg_ctrl_rd_cmd_ready;
|
||||
|
||||
assign ctrl_rd_cmd_ready[n] = seg_ctrl_rd_cmd_ready;
|
||||
|
||||
wire [PORTS*S_RAM_SEL_WIDTH-1:0] seg_ram_rd_cmd_sel;
|
||||
wire [PORTS*SEG_ADDR_WIDTH-1:0] seg_ram_rd_cmd_addr;
|
||||
wire [PORTS-1:0] seg_ram_rd_cmd_valid;
|
||||
wire [PORTS-1:0] seg_ram_rd_cmd_ready;
|
||||
|
||||
for (p = 0; p < PORTS; p = p + 1) begin
|
||||
assign ram_rd_cmd_sel[(p*SEG_COUNT+n)*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT] = seg_ram_rd_cmd_sel[p*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
|
||||
assign ram_rd_cmd_addr[(p*SEG_COUNT+n)*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = seg_ram_rd_cmd_addr[p*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH];
|
||||
assign ram_rd_cmd_valid[p*SEG_COUNT+n] = seg_ram_rd_cmd_valid[p];
|
||||
assign seg_ram_rd_cmd_ready[p] = ram_rd_cmd_ready[p*SEG_COUNT+n];
|
||||
end
|
||||
|
||||
// internal datapath
|
||||
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_rd_cmd_sel_int;
|
||||
reg [SEG_ADDR_WIDTH-1:0] seg_ram_rd_cmd_addr_int;
|
||||
reg [PORTS-1:0] seg_ram_rd_cmd_valid_int;
|
||||
reg seg_ram_rd_cmd_ready_int_reg = 1'b0;
|
||||
wire seg_ram_rd_cmd_ready_int_early;
|
||||
|
||||
assign seg_ctrl_rd_cmd_ready = seg_ram_rd_cmd_ready_int_reg && !fifo_full;
|
||||
|
||||
wire [CL_PORTS-1:0] select_cmd = PORTS > 1 ? (seg_ctrl_rd_cmd_sel >> (M_RAM_SEL_WIDTH - CL_PORTS)) : 0;
|
||||
|
||||
always @* begin
|
||||
seg_ram_rd_cmd_sel_int = seg_ctrl_rd_cmd_sel;
|
||||
seg_ram_rd_cmd_addr_int = seg_ctrl_rd_cmd_addr;
|
||||
seg_ram_rd_cmd_valid_int = (seg_ctrl_rd_cmd_valid && seg_ctrl_rd_cmd_ready) << select_cmd;
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (seg_ctrl_rd_cmd_valid && seg_ctrl_rd_cmd_ready) begin
|
||||
fifo_sel[fifo_wr_ptr_reg[FIFO_ADDR_WIDTH-1:0]] <= select_cmd;
|
||||
fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
fifo_wr_ptr_reg <= 0;
|
||||
end
|
||||
end
|
||||
|
||||
// output datapath logic
|
||||
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_rd_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
|
||||
reg [SEG_ADDR_WIDTH-1:0] seg_ram_rd_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
|
||||
reg [PORTS-1:0] seg_ram_rd_cmd_valid_reg = {PORTS{1'b0}}, seg_ram_rd_cmd_valid_next;
|
||||
|
||||
reg [S_RAM_SEL_WIDTH-1:0] temp_seg_ram_rd_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
|
||||
reg [SEG_ADDR_WIDTH-1:0] temp_seg_ram_rd_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
|
||||
reg [PORTS-1:0] temp_seg_ram_rd_cmd_valid_reg = {PORTS{1'b0}}, temp_seg_ram_rd_cmd_valid_next;
|
||||
|
||||
// datapath control
|
||||
reg store_axis_resp_int_to_output;
|
||||
reg store_axis_resp_int_to_temp;
|
||||
reg store_axis_resp_temp_to_output;
|
||||
|
||||
assign seg_ram_rd_cmd_sel = {PORTS{seg_ram_rd_cmd_sel_reg}};
|
||||
assign seg_ram_rd_cmd_addr = {PORTS{seg_ram_rd_cmd_addr_reg}};
|
||||
assign seg_ram_rd_cmd_valid = seg_ram_rd_cmd_valid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
assign seg_ram_rd_cmd_ready_int_early = (seg_ram_rd_cmd_ready & seg_ram_rd_cmd_valid_reg) || (!temp_seg_ram_rd_cmd_valid_reg && (!seg_ram_rd_cmd_valid_reg || !seg_ram_rd_cmd_valid_int));
|
||||
|
||||
always @* begin
|
||||
// transfer sink ready state to source
|
||||
seg_ram_rd_cmd_valid_next = seg_ram_rd_cmd_valid_reg;
|
||||
temp_seg_ram_rd_cmd_valid_next = temp_seg_ram_rd_cmd_valid_reg;
|
||||
|
||||
store_axis_resp_int_to_output = 1'b0;
|
||||
store_axis_resp_int_to_temp = 1'b0;
|
||||
store_axis_resp_temp_to_output = 1'b0;
|
||||
|
||||
if (seg_ram_rd_cmd_ready_int_reg) begin
|
||||
// input is ready
|
||||
if ((seg_ram_rd_cmd_ready & seg_ram_rd_cmd_valid_reg) || !seg_ram_rd_cmd_valid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
seg_ram_rd_cmd_valid_next = seg_ram_rd_cmd_valid_int;
|
||||
store_axis_resp_int_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_seg_ram_rd_cmd_valid_next = seg_ram_rd_cmd_valid_int;
|
||||
store_axis_resp_int_to_temp = 1'b1;
|
||||
end
|
||||
end else if (seg_ram_rd_cmd_ready & seg_ram_rd_cmd_valid_reg) begin
|
||||
// input is not ready, but output is ready
|
||||
seg_ram_rd_cmd_valid_next = temp_seg_ram_rd_cmd_valid_reg;
|
||||
temp_seg_ram_rd_cmd_valid_next = {PORTS{1'b0}};
|
||||
store_axis_resp_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
seg_ram_rd_cmd_valid_reg <= {PORTS{1'b0}};
|
||||
seg_ram_rd_cmd_ready_int_reg <= 1'b0;
|
||||
temp_seg_ram_rd_cmd_valid_reg <= {PORTS{1'b0}};
|
||||
end else begin
|
||||
seg_ram_rd_cmd_valid_reg <= seg_ram_rd_cmd_valid_next;
|
||||
seg_ram_rd_cmd_ready_int_reg <= seg_ram_rd_cmd_ready_int_early;
|
||||
temp_seg_ram_rd_cmd_valid_reg <= temp_seg_ram_rd_cmd_valid_next;
|
||||
end
|
||||
|
||||
// datapath
|
||||
if (store_axis_resp_int_to_output) begin
|
||||
seg_ram_rd_cmd_sel_reg <= seg_ram_rd_cmd_sel_int;
|
||||
seg_ram_rd_cmd_addr_reg <= seg_ram_rd_cmd_addr_int;
|
||||
end else if (store_axis_resp_temp_to_output) begin
|
||||
seg_ram_rd_cmd_sel_reg <= temp_seg_ram_rd_cmd_sel_reg;
|
||||
seg_ram_rd_cmd_addr_reg <= temp_seg_ram_rd_cmd_addr_reg;
|
||||
end
|
||||
|
||||
if (store_axis_resp_int_to_temp) begin
|
||||
temp_seg_ram_rd_cmd_sel_reg <= seg_ram_rd_cmd_sel_int;
|
||||
temp_seg_ram_rd_cmd_addr_reg <= seg_ram_rd_cmd_addr_int;
|
||||
end
|
||||
end
|
||||
|
||||
// RAM read response mux
|
||||
|
||||
wire [PORTS*SEG_DATA_WIDTH-1:0] seg_ram_rd_resp_data;
|
||||
wire [PORTS-1:0] seg_ram_rd_resp_valid;
|
||||
wire [PORTS-1:0] seg_ram_rd_resp_ready;
|
||||
|
||||
for (p = 0; p < PORTS; p = p + 1) begin
|
||||
assign seg_ram_rd_resp_data[p*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = ram_rd_resp_data[(p*SEG_COUNT+n)*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
|
||||
assign seg_ram_rd_resp_valid[p] = ram_rd_resp_valid[p*SEG_COUNT+n];
|
||||
assign ram_rd_resp_ready[p*SEG_COUNT+n] = seg_ram_rd_resp_ready[p];
|
||||
end
|
||||
|
||||
wire [SEG_DATA_WIDTH-1:0] seg_ctrl_rd_resp_data;
|
||||
wire seg_ctrl_rd_resp_valid;
|
||||
wire seg_ctrl_rd_resp_ready = ctrl_rd_resp_ready[n];
|
||||
|
||||
assign ctrl_rd_resp_data[n*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = seg_ctrl_rd_resp_data;
|
||||
assign ctrl_rd_resp_valid[n] = seg_ctrl_rd_resp_valid;
|
||||
|
||||
// internal datapath
|
||||
reg [SEG_DATA_WIDTH-1:0] seg_ctrl_rd_resp_data_int;
|
||||
reg seg_ctrl_rd_resp_valid_int;
|
||||
wire seg_ctrl_rd_resp_ready_int;
|
||||
|
||||
wire [CL_PORTS-1:0] select_resp = fifo_sel[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]];
|
||||
|
||||
assign seg_ram_rd_resp_ready = (seg_ctrl_rd_resp_ready_int && !fifo_empty) << select_resp;
|
||||
|
||||
// mux for incoming packet
|
||||
wire [SEG_DATA_WIDTH-1:0] current_resp_data = seg_ram_rd_resp_data[select_resp*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
|
||||
wire current_resp_valid = seg_ram_rd_resp_valid[select_resp];
|
||||
wire current_resp_ready = seg_ram_rd_resp_ready[select_resp];
|
||||
|
||||
always @* begin
|
||||
// pass through selected packet data
|
||||
seg_ctrl_rd_resp_data_int = current_resp_data;
|
||||
seg_ctrl_rd_resp_valid_int = current_resp_valid && seg_ctrl_rd_resp_ready_int && !fifo_empty;
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (current_resp_valid && seg_ctrl_rd_resp_ready_int && !fifo_empty) begin
|
||||
fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
fifo_rd_ptr_reg <= 0;
|
||||
end
|
||||
end
|
||||
|
||||
// output datapath logic
|
||||
reg [SEG_DATA_WIDTH-1:0] seg_ctrl_rd_resp_data_reg = {SEG_DATA_WIDTH{1'b0}};
|
||||
reg seg_ctrl_rd_resp_valid_reg = 1'b0;
|
||||
|
||||
reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_wr_ptr_reg = 0;
|
||||
reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_rd_ptr_reg = 0;
|
||||
reg out_fifo_half_full_reg = 1'b0;
|
||||
|
||||
wire out_fifo_full = out_fifo_wr_ptr_reg == (out_fifo_rd_ptr_reg ^ {1'b1, {OUTPUT_FIFO_ADDR_WIDTH{1'b0}}});
|
||||
wire out_fifo_empty = out_fifo_wr_ptr_reg == out_fifo_rd_ptr_reg;
|
||||
|
||||
(* ram_style = "distributed" *)
|
||||
reg [SEG_DATA_WIDTH-1:0] out_fifo_rd_resp_data[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
|
||||
|
||||
assign seg_ctrl_rd_resp_ready_int = !out_fifo_half_full_reg;
|
||||
|
||||
assign seg_ctrl_rd_resp_data = seg_ctrl_rd_resp_data_reg;
|
||||
assign seg_ctrl_rd_resp_valid = seg_ctrl_rd_resp_valid_reg;
|
||||
|
||||
always @(posedge clk) begin
|
||||
seg_ctrl_rd_resp_valid_reg <= seg_ctrl_rd_resp_valid_reg && !seg_ctrl_rd_resp_ready;
|
||||
|
||||
out_fifo_half_full_reg <= $unsigned(out_fifo_wr_ptr_reg - out_fifo_rd_ptr_reg) >= 2**(OUTPUT_FIFO_ADDR_WIDTH-1);
|
||||
|
||||
if (!out_fifo_full && seg_ctrl_rd_resp_valid_int) begin
|
||||
out_fifo_rd_resp_data[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= seg_ctrl_rd_resp_data_int;
|
||||
out_fifo_wr_ptr_reg <= out_fifo_wr_ptr_reg + 1;
|
||||
end
|
||||
|
||||
if (!out_fifo_empty && (!seg_ctrl_rd_resp_valid_reg || seg_ctrl_rd_resp_ready)) begin
|
||||
seg_ctrl_rd_resp_data_reg <= out_fifo_rd_resp_data[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
|
||||
seg_ctrl_rd_resp_valid_reg <= 1'b1;
|
||||
out_fifo_rd_ptr_reg <= out_fifo_rd_ptr_reg + 1;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
out_fifo_wr_ptr_reg <= 0;
|
||||
out_fifo_rd_ptr_reg <= 0;
|
||||
seg_ctrl_rd_resp_valid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
endgenerate
|
||||
|
||||
endmodule
|
315
fpga/lib/pcie/rtl/dma_ram_demux_wr.v
Normal file
315
fpga/lib/pcie/rtl/dma_ram_demux_wr.v
Normal file
@ -0,0 +1,315 @@
|
||||
/*
|
||||
|
||||
Copyright (c) 2019-2021 Alex Forencich
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
|
||||
*/
|
||||
|
||||
// Language: Verilog 2001
|
||||
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
/*
|
||||
* DMA RAM demux (write)
|
||||
*/
|
||||
module dma_ram_demux_wr #
|
||||
(
|
||||
// Number of ports
|
||||
parameter PORTS = 2,
|
||||
// RAM segment count
|
||||
parameter SEG_COUNT = 2,
|
||||
// RAM segment data width
|
||||
parameter SEG_DATA_WIDTH = 64,
|
||||
// RAM segment address width
|
||||
parameter SEG_ADDR_WIDTH = 8,
|
||||
// RAM segment byte enable width
|
||||
parameter SEG_BE_WIDTH = SEG_DATA_WIDTH/8,
|
||||
// Input RAM segment select width
|
||||
parameter S_RAM_SEL_WIDTH = 2,
|
||||
// Output RAM segment select width
|
||||
// Additional bits required for response routing
|
||||
parameter M_RAM_SEL_WIDTH = S_RAM_SEL_WIDTH+$clog2(PORTS)
|
||||
)
|
||||
(
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
|
||||
/*
|
||||
* RAM interface (from DMA interface)
|
||||
*/
|
||||
input wire [SEG_COUNT*M_RAM_SEL_WIDTH-1:0] ctrl_wr_cmd_sel,
|
||||
input wire [SEG_COUNT*SEG_BE_WIDTH-1:0] ctrl_wr_cmd_be,
|
||||
input wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ctrl_wr_cmd_addr,
|
||||
input wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] ctrl_wr_cmd_data,
|
||||
input wire [SEG_COUNT-1:0] ctrl_wr_cmd_valid,
|
||||
output wire [SEG_COUNT-1:0] ctrl_wr_cmd_ready,
|
||||
output wire [SEG_COUNT-1:0] ctrl_wr_done,
|
||||
|
||||
/*
|
||||
* RAM interface (towards RAM)
|
||||
*/
|
||||
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_wr_cmd_sel,
|
||||
output wire [PORTS*SEG_COUNT*SEG_BE_WIDTH-1:0] ram_wr_cmd_be,
|
||||
output wire [PORTS*SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_wr_cmd_addr,
|
||||
output wire [PORTS*SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_wr_cmd_data,
|
||||
output wire [PORTS*SEG_COUNT-1:0] ram_wr_cmd_valid,
|
||||
input wire [PORTS*SEG_COUNT-1:0] ram_wr_cmd_ready,
|
||||
input wire [PORTS*SEG_COUNT-1:0] ram_wr_done
|
||||
);
|
||||
|
||||
parameter CL_PORTS = $clog2(PORTS);
|
||||
|
||||
parameter S_RAM_SEL_WIDTH_INT = S_RAM_SEL_WIDTH > 0 ? S_RAM_SEL_WIDTH : 1;
|
||||
|
||||
parameter FIFO_ADDR_WIDTH = 5;
|
||||
|
||||
// check configuration
|
||||
initial begin
|
||||
if (M_RAM_SEL_WIDTH < S_RAM_SEL_WIDTH+$clog2(PORTS)) begin
|
||||
$error("Error: M_RAM_SEL_WIDTH must be at least $clog2(PORTS) larger than S_RAM_SEL_WIDTH (instance %m)");
|
||||
$finish;
|
||||
end
|
||||
end
|
||||
|
||||
generate
|
||||
|
||||
genvar n, p;
|
||||
|
||||
for (n = 0; n < SEG_COUNT; n = n + 1) begin
|
||||
|
||||
// FIFO to maintain response ordering
|
||||
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_wr_ptr_reg = 0;
|
||||
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_rd_ptr_reg = 0;
|
||||
reg [CL_PORTS-1:0] fifo_sel[(2**FIFO_ADDR_WIDTH)-1:0];
|
||||
|
||||
wire fifo_empty = fifo_wr_ptr_reg == fifo_rd_ptr_reg;
|
||||
wire fifo_full = fifo_wr_ptr_reg == (fifo_rd_ptr_reg ^ (1 << FIFO_ADDR_WIDTH));
|
||||
|
||||
integer i;
|
||||
|
||||
initial begin
|
||||
for (i = 0; i < 2**FIFO_ADDR_WIDTH; i = i + 1) begin
|
||||
fifo_sel[i] = 0;
|
||||
end
|
||||
end
|
||||
|
||||
// RAM write command demux
|
||||
|
||||
wire [M_RAM_SEL_WIDTH-1:0] seg_ctrl_wr_cmd_sel = ctrl_wr_cmd_sel[M_RAM_SEL_WIDTH*n +: M_RAM_SEL_WIDTH];
|
||||
wire [SEG_BE_WIDTH-1:0] seg_ctrl_wr_cmd_be = ctrl_wr_cmd_be[SEG_BE_WIDTH*n +: SEG_BE_WIDTH];
|
||||
wire [SEG_ADDR_WIDTH-1:0] seg_ctrl_wr_cmd_addr = ctrl_wr_cmd_addr[SEG_ADDR_WIDTH*n +: SEG_ADDR_WIDTH];
|
||||
wire [SEG_DATA_WIDTH-1:0] seg_ctrl_wr_cmd_data = ctrl_wr_cmd_data[SEG_DATA_WIDTH*n +: SEG_DATA_WIDTH];
|
||||
wire seg_ctrl_wr_cmd_valid = ctrl_wr_cmd_valid[n];
|
||||
wire seg_ctrl_wr_cmd_ready;
|
||||
|
||||
assign ctrl_wr_cmd_ready[n] = seg_ctrl_wr_cmd_ready;
|
||||
|
||||
wire [PORTS*S_RAM_SEL_WIDTH-1:0] seg_ram_wr_cmd_sel;
|
||||
wire [PORTS*SEG_BE_WIDTH-1:0] seg_ram_wr_cmd_be;
|
||||
wire [PORTS*SEG_ADDR_WIDTH-1:0] seg_ram_wr_cmd_addr;
|
||||
wire [PORTS*SEG_DATA_WIDTH-1:0] seg_ram_wr_cmd_data;
|
||||
wire [PORTS-1:0] seg_ram_wr_cmd_valid;
|
||||
wire [PORTS-1:0] seg_ram_wr_cmd_ready;
|
||||
|
||||
for (p = 0; p < PORTS; p = p + 1) begin
|
||||
assign ram_wr_cmd_sel[(p*SEG_COUNT+n)*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT] = seg_ram_wr_cmd_sel[p*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
|
||||
assign ram_wr_cmd_be[(p*SEG_COUNT+n)*SEG_BE_WIDTH +: SEG_BE_WIDTH] = seg_ram_wr_cmd_be[p*SEG_BE_WIDTH +: SEG_BE_WIDTH];
|
||||
assign ram_wr_cmd_addr[(p*SEG_COUNT+n)*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = seg_ram_wr_cmd_addr[p*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH];
|
||||
assign ram_wr_cmd_data[(p*SEG_COUNT+n)*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = seg_ram_wr_cmd_data[p*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
|
||||
assign ram_wr_cmd_valid[p*SEG_COUNT+n] = seg_ram_wr_cmd_valid[p];
|
||||
assign seg_ram_wr_cmd_ready[p] = ram_wr_cmd_ready[p*SEG_COUNT+n];
|
||||
end
|
||||
|
||||
// internal datapath
|
||||
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_wr_cmd_sel_int;
|
||||
reg [SEG_BE_WIDTH-1:0] seg_ram_wr_cmd_be_int;
|
||||
reg [SEG_ADDR_WIDTH-1:0] seg_ram_wr_cmd_addr_int;
|
||||
reg [SEG_DATA_WIDTH-1:0] seg_ram_wr_cmd_data_int;
|
||||
reg [PORTS-1:0] seg_ram_wr_cmd_valid_int;
|
||||
reg seg_ram_wr_cmd_ready_int_reg = 1'b0;
|
||||
wire seg_ram_wr_cmd_ready_int_early;
|
||||
|
||||
assign seg_ctrl_wr_cmd_ready = seg_ram_wr_cmd_ready_int_reg && !fifo_full;
|
||||
|
||||
wire [CL_PORTS-1:0] select_cmd = PORTS > 1 ? (seg_ctrl_wr_cmd_sel >> (M_RAM_SEL_WIDTH - CL_PORTS)) : 0;
|
||||
|
||||
always @* begin
|
||||
seg_ram_wr_cmd_sel_int = seg_ctrl_wr_cmd_sel;
|
||||
seg_ram_wr_cmd_be_int = seg_ctrl_wr_cmd_be;
|
||||
seg_ram_wr_cmd_addr_int = seg_ctrl_wr_cmd_addr;
|
||||
seg_ram_wr_cmd_data_int = seg_ctrl_wr_cmd_data;
|
||||
seg_ram_wr_cmd_valid_int = (seg_ctrl_wr_cmd_valid && seg_ctrl_wr_cmd_ready) << select_cmd;
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (seg_ctrl_wr_cmd_valid && seg_ctrl_wr_cmd_ready) begin
|
||||
fifo_sel[fifo_wr_ptr_reg[FIFO_ADDR_WIDTH-1:0]] <= select_cmd;
|
||||
fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
fifo_wr_ptr_reg <= 0;
|
||||
end
|
||||
end
|
||||
|
||||
// output datapath logic
|
||||
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_wr_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
|
||||
reg [SEG_BE_WIDTH-1:0] seg_ram_wr_cmd_be_reg = {SEG_BE_WIDTH{1'b0}};
|
||||
reg [SEG_ADDR_WIDTH-1:0] seg_ram_wr_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
|
||||
reg [SEG_DATA_WIDTH-1:0] seg_ram_wr_cmd_data_reg = {SEG_DATA_WIDTH{1'b0}};
|
||||
reg [PORTS-1:0] seg_ram_wr_cmd_valid_reg = {PORTS{1'b0}}, seg_ram_wr_cmd_valid_next;
|
||||
|
||||
reg [S_RAM_SEL_WIDTH-1:0] temp_seg_ram_wr_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
|
||||
reg [SEG_BE_WIDTH-1:0] temp_seg_ram_wr_cmd_be_reg = {SEG_BE_WIDTH{1'b0}};
|
||||
reg [SEG_ADDR_WIDTH-1:0] temp_seg_ram_wr_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
|
||||
reg [SEG_DATA_WIDTH-1:0] temp_seg_ram_wr_cmd_data_reg = {SEG_DATA_WIDTH{1'b0}};
|
||||
reg [PORTS-1:0] temp_seg_ram_wr_cmd_valid_reg = {PORTS{1'b0}}, temp_seg_ram_wr_cmd_valid_next;
|
||||
|
||||
// datapath control
|
||||
reg store_axis_resp_int_to_output;
|
||||
reg store_axis_resp_int_to_temp;
|
||||
reg store_axis_resp_temp_to_output;
|
||||
|
||||
assign seg_ram_wr_cmd_sel = {PORTS{seg_ram_wr_cmd_sel_reg}};
|
||||
assign seg_ram_wr_cmd_be = {PORTS{seg_ram_wr_cmd_be_reg}};
|
||||
assign seg_ram_wr_cmd_addr = {PORTS{seg_ram_wr_cmd_addr_reg}};
|
||||
assign seg_ram_wr_cmd_data = {PORTS{seg_ram_wr_cmd_data_reg}};
|
||||
assign seg_ram_wr_cmd_valid = seg_ram_wr_cmd_valid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
assign seg_ram_wr_cmd_ready_int_early = (seg_ram_wr_cmd_ready & seg_ram_wr_cmd_valid_reg) || (!temp_seg_ram_wr_cmd_valid_reg && (!seg_ram_wr_cmd_valid_reg || !seg_ram_wr_cmd_valid_int));
|
||||
|
||||
always @* begin
|
||||
// transfer sink ready state to source
|
||||
seg_ram_wr_cmd_valid_next = seg_ram_wr_cmd_valid_reg;
|
||||
temp_seg_ram_wr_cmd_valid_next = temp_seg_ram_wr_cmd_valid_reg;
|
||||
|
||||
store_axis_resp_int_to_output = 1'b0;
|
||||
store_axis_resp_int_to_temp = 1'b0;
|
||||
store_axis_resp_temp_to_output = 1'b0;
|
||||
|
||||
if (seg_ram_wr_cmd_ready_int_reg) begin
|
||||
// input is ready
|
||||
if ((seg_ram_wr_cmd_ready & seg_ram_wr_cmd_valid_reg) || !seg_ram_wr_cmd_valid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
seg_ram_wr_cmd_valid_next = seg_ram_wr_cmd_valid_int;
|
||||
store_axis_resp_int_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_seg_ram_wr_cmd_valid_next = seg_ram_wr_cmd_valid_int;
|
||||
store_axis_resp_int_to_temp = 1'b1;
|
||||
end
|
||||
end else if (seg_ram_wr_cmd_ready & seg_ram_wr_cmd_valid_reg) begin
|
||||
// input is not ready, but output is ready
|
||||
seg_ram_wr_cmd_valid_next = temp_seg_ram_wr_cmd_valid_reg;
|
||||
temp_seg_ram_wr_cmd_valid_next = {PORTS{1'b0}};
|
||||
store_axis_resp_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (rst) begin
|
||||
seg_ram_wr_cmd_valid_reg <= {PORTS{1'b0}};
|
||||
seg_ram_wr_cmd_ready_int_reg <= 1'b0;
|
||||
temp_seg_ram_wr_cmd_valid_reg <= {PORTS{1'b0}};
|
||||
end else begin
|
||||
seg_ram_wr_cmd_valid_reg <= seg_ram_wr_cmd_valid_next;
|
||||
seg_ram_wr_cmd_ready_int_reg <= seg_ram_wr_cmd_ready_int_early;
|
||||
temp_seg_ram_wr_cmd_valid_reg <= temp_seg_ram_wr_cmd_valid_next;
|
||||
end
|
||||
|
||||
// datapath
|
||||
if (store_axis_resp_int_to_output) begin
|
||||
seg_ram_wr_cmd_sel_reg <= seg_ram_wr_cmd_sel_int;
|
||||
seg_ram_wr_cmd_be_reg <= seg_ram_wr_cmd_be_int;
|
||||
seg_ram_wr_cmd_addr_reg <= seg_ram_wr_cmd_addr_int;
|
||||
seg_ram_wr_cmd_data_reg <= seg_ram_wr_cmd_data_int;
|
||||
end else if (store_axis_resp_temp_to_output) begin
|
||||
seg_ram_wr_cmd_sel_reg <= temp_seg_ram_wr_cmd_sel_reg;
|
||||
seg_ram_wr_cmd_be_reg <= temp_seg_ram_wr_cmd_be_reg;
|
||||
seg_ram_wr_cmd_addr_reg <= temp_seg_ram_wr_cmd_addr_reg;
|
||||
seg_ram_wr_cmd_data_reg <= temp_seg_ram_wr_cmd_data_reg;
|
||||
end
|
||||
|
||||
if (store_axis_resp_int_to_temp) begin
|
||||
temp_seg_ram_wr_cmd_sel_reg <= seg_ram_wr_cmd_sel_int;
|
||||
temp_seg_ram_wr_cmd_be_reg <= seg_ram_wr_cmd_be_int;
|
||||
temp_seg_ram_wr_cmd_addr_reg <= seg_ram_wr_cmd_addr_int;
|
||||
temp_seg_ram_wr_cmd_data_reg <= seg_ram_wr_cmd_data_int;
|
||||
end
|
||||
end
|
||||
|
||||
// RAM write done mux
|
||||
|
||||
wire [PORTS-1:0] seg_ram_wr_done;
|
||||
wire [PORTS-1:0] seg_ram_wr_done_sel;
|
||||
wire seg_ctrl_wr_done;
|
||||
|
||||
for (p = 0; p < PORTS; p = p + 1) begin
|
||||
assign seg_ram_wr_done[p] = ram_wr_done[p*SEG_COUNT+n];
|
||||
end
|
||||
|
||||
assign ctrl_wr_done[n] = seg_ctrl_wr_done;
|
||||
|
||||
wire [CL_PORTS-1:0] select_resp = fifo_sel[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]];
|
||||
|
||||
for (p = 0; p < PORTS; p = p + 1) begin
|
||||
reg [FIFO_ADDR_WIDTH+1-1:0] done_count_reg = 0;
|
||||
reg done_reg = 1'b0;
|
||||
|
||||
assign seg_ram_wr_done_sel[p] = done_reg;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (select_resp == p && (done_count_reg != 0 || seg_ram_wr_done[p])) begin
|
||||
done_reg <= 1'b1;
|
||||
if (!seg_ram_wr_done[p]) begin
|
||||
done_count_reg <= done_count_reg - 1;
|
||||
end
|
||||
end else begin
|
||||
done_reg <= 1'b0;
|
||||
if (seg_ram_wr_done[p]) begin
|
||||
done_count_reg <= done_count_reg + 1;
|
||||
end
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
done_count_reg <= 0;
|
||||
done_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
assign seg_ctrl_wr_done = seg_ram_wr_done_sel != 0;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (seg_ctrl_wr_done && !fifo_empty) begin
|
||||
fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
fifo_rd_ptr_reg <= 0;
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
endgenerate
|
||||
|
||||
endmodule
|
Loading…
x
Reference in New Issue
Block a user