// SPDX-License-Identifier: BSD-2-Clause-Views /* * Copyright (c) 2019-2023 The Regents of the University of California */ #include #include #include #include static void usage(char *name) { fprintf(stderr, "usage: %s [options]\n" " -d name device to open (/dev/mqnic0)\n" " -i number interface\n" " -P number port\n" " -v verbose output\n", name); } int main(int argc, char *argv[]) { char *name; int opt; int ret = 0; char *device = NULL; struct mqnic *dev; int interface = 0; int port = 0; int sched_block = 0; int verbose = 0; name = strrchr(argv[0], '/'); name = name ? 1+name : argv[0]; while ((opt = getopt(argc, argv, "d:i:P:vh?")) != EOF) { switch (opt) { case 'd': device = optarg; break; case 'i': interface = atoi(optarg); break; case 'P': port = atoi(optarg); break; case 'v': verbose++; break; case 'h': case '?': usage(name); return 0; default: usage(name); return -1; } } if (!device) { fprintf(stderr, "Device not specified\n"); usage(name); return -1; } dev = mqnic_open(device); if (!dev) { fprintf(stderr, "Failed to open device\n"); return -1; } if (dev->pci_device_path[0]) { char *ptr = strrchr(dev->pci_device_path, '/'); if (ptr) printf("PCIe ID: %s\n", ptr+1); } printf("Control region size: %lu\n", dev->regs_size); if (dev->app_regs_size) printf("Application region size: %lu\n", dev->app_regs_size); if (dev->ram_size) printf("RAM region size: %lu\n", dev->ram_size); printf("Device-level register blocks:\n"); for (struct mqnic_reg_block *rb = dev->rb_list; rb->regs; rb++) printf(" type 0x%08x (v %d.%d.%d.%d)\n", rb->type, rb->version >> 24, (rb->version >> 16) & 0xff, (rb->version >> 8) & 0xff, rb->version & 0xff); mqnic_print_fw_id(dev); printf("IF offset: 0x%08x\n", dev->if_offset); printf("IF count: %d\n", dev->if_count); printf("IF stride: 0x%08x\n", dev->if_stride); printf("IF CSR offset: 0x%08x\n", dev->if_csr_offset); if (dev->phc_rb) { int ch; uint32_t ns; uint32_t fns; printf("PHC ctrl: 0x%08x\n", mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_CTRL)); printf("PHC time (ToD): %ld.%09d s\n", mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_CUR_TOD_SEC_L) + (((int64_t)mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_CUR_TOD_SEC_H)) << 32), mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_CUR_TOD_NS)); printf("PHC time (rel): %ld ns\n", mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_CUR_REL_NS_L) + (((int64_t)mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_CUR_REL_NS_H)) << 32)); ns = mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_PERIOD_NS); fns = mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_PERIOD_FNS); printf("PHC period: %d.%09ld ns (raw 0x%x ns 0x%08x fns)\n", ns, ((uint64_t)fns * 1000000000) >> 32, ns, fns); ns = mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_NOM_PERIOD_NS); fns = mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_NOM_PERIOD_FNS); printf("PHC nom period: %d.%09ld ns (raw 0x%x ns 0x%08x fns)\n", ns, ((uint64_t)fns * 1000000000) >> 32, ns, fns); ch = 0; for (struct mqnic_reg_block *rb = dev->rb_list; rb->regs; rb++) { if (rb->type == MQNIC_RB_PHC_PEROUT_TYPE && rb->version == MQNIC_RB_PHC_PEROUT_VER) { printf("PHC perout ch %d ctrl: 0x%08x\n", ch, mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_CTRL)); printf("PHC perout ch %d start: %ld.%09d s\n", ch, mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_START_SEC_L) + (((int64_t)mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_START_SEC_H)) << 32), mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_START_NS)); printf("PHC perout ch %d period: %ld.%09d s\n", ch, mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_PERIOD_SEC_L) + (((int64_t)mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_PERIOD_SEC_H)) << 32), mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_PERIOD_NS)); printf("PHC perout ch %d width: %ld.%09d s\n", ch, mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_WIDTH_SEC_L) + (((int64_t)mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_WIDTH_SEC_H)) << 32), mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_WIDTH_NS)); ch++; } } } if (dev->clk_info_rb) { uint32_t num; uint32_t denom; uint32_t ns; uint32_t fns; uint32_t mhz; uint32_t hz; num = dev->ref_clk_nom_per_ns_num; denom = dev->ref_clk_nom_per_ns_denom; ns = num/denom; fns = ((num-ns*denom)*1000000000ull)/denom; printf("Ref clock nominal period: %d.%09d ns (raw %d/%d ns)\n", ns, fns, num, denom); hz = mqnic_get_ref_clk_nom_freq_hz(dev); mhz = hz / 1000000; hz = hz - (mhz * 1000000); printf("Ref clock nominal freq: %d.%06d MHz\n", mhz, hz); num = dev->core_clk_nom_per_ns_num; denom = dev->core_clk_nom_per_ns_denom; ns = num/denom; fns = ((num-ns*denom)*1000000000ull)/denom; printf("Core clock nominal period: %d.%09d ns (raw %d/%d ns)\n", ns, fns, num, denom); hz = mqnic_get_core_clk_nom_freq_hz(dev); mhz = hz / 1000000; hz = hz - (mhz * 1000000); printf("Core clock nominal freq: %d.%06d MHz\n", mhz, hz); hz = mqnic_get_core_clk_freq_hz(dev); mhz = hz / 1000000; hz = hz - (mhz * 1000000); printf("Core clock freq: %d.%06d MHz\n", mhz, hz); for (int ch = 0; ch < dev->clk_info_channels; ch++) { hz = mqnic_get_clk_freq_hz(dev, ch); mhz = hz / 1000000; hz = hz - (mhz * 1000000); printf("CH%d: clock freq: %d.%06d MHz\n", ch, mhz, hz); } } if (interface < 0 || interface >= dev->if_count) { fprintf(stderr, "Interface out of range\n"); ret = -1; goto err; } struct mqnic_if *dev_interface = dev->interfaces[interface]; if (!dev_interface) { fprintf(stderr, "Invalid interface\n"); ret = -1; goto err; } printf("Interface-level register blocks:\n"); for (struct mqnic_reg_block *rb = dev_interface->rb_list; rb->regs; rb++) printf(" type 0x%08x (v %d.%d.%d.%d)\n", rb->type, rb->version >> 24, (rb->version >> 16) & 0xff, (rb->version >> 8) & 0xff, rb->version & 0xff); printf("IF features: 0x%08x\n", dev_interface->if_features); printf("Port count: %d\n", dev_interface->port_count); printf("Scheduler block count: %d\n", dev_interface->sched_block_count); printf("Max TX MTU: %d B\n", dev_interface->max_tx_mtu); printf("Max RX MTU: %d B\n", dev_interface->max_rx_mtu); printf("TX MTU: %d B\n", mqnic_interface_get_tx_mtu(dev_interface)); printf("RX MTU: %d B\n", mqnic_interface_get_rx_mtu(dev_interface)); printf("TX FIFO depth: %d B\n", dev_interface->tx_fifo_depth); printf("RX FIFO depth: %d B\n", dev_interface->rx_fifo_depth); printf("EQ offset: 0x%08lx\n", dev_interface->eq_res->base - dev_interface->regs); printf("EQ count: %d\n", mqnic_res_get_count(dev_interface->eq_res)); printf("EQ stride: 0x%08x\n", dev_interface->eq_res->stride); printf("CQ offset: 0x%08lx\n", dev_interface->cq_res->base - dev_interface->regs); printf("CQ count: %d\n", mqnic_res_get_count(dev_interface->cq_res)); printf("CQ stride: 0x%08x\n", dev_interface->cq_res->stride); printf("TXQ offset: 0x%08lx\n", dev_interface->txq_res->base - dev_interface->regs); printf("TXQ count: %d\n", mqnic_res_get_count(dev_interface->txq_res)); printf("TXQ stride: 0x%08x\n", dev_interface->txq_res->stride); printf("RXQ offset: 0x%08lx\n", dev_interface->rxq_res->base - dev_interface->regs); printf("RXQ count: %d\n", mqnic_res_get_count(dev_interface->rxq_res)); printf("RXQ stride: 0x%08x\n", dev_interface->rxq_res->stride); for (int p = 0; p < dev_interface->port_count; p++) { printf("Port %d RX queue map RSS mask: 0x%08x\n", p, mqnic_interface_get_rx_queue_map_rss_mask(dev_interface, p)); printf("Port %d RX queue map app mask: 0x%08x\n", p, mqnic_interface_get_rx_queue_map_app_mask(dev_interface, p)); printf("Port %d RX indirection table size: %d\n", p, dev_interface->rx_queue_map_indir_table_size); printf("Port %d RX indirection table:\n", p); for (int k = 0; k < dev_interface->rx_queue_map_indir_table_size; k += 8) { printf("%04x:", k); for (int l = 0; l < 8; l++) { printf(" %04x", mqnic_interface_get_rx_queue_map_indir_table(dev_interface, p, k+l)); } printf("\n"); } } if (port < 0 || port >= dev_interface->port_count) { fprintf(stderr, "Port out of range\n"); ret = -1; goto err; } struct mqnic_port *dev_port = dev_interface->ports[port]; if (!dev_port) { fprintf(stderr, "Invalid port\n"); ret = -1; goto err; } printf("Port-level register blocks:\n"); for (struct mqnic_reg_block *rb = dev_port->rb_list; rb->regs; rb++) printf(" type 0x%08x (v %d.%d.%d.%d)\n", rb->type, rb->version >> 24, (rb->version >> 16) & 0xff, (rb->version >> 8) & 0xff, rb->version & 0xff); printf("Port features: 0x%08x\n", dev_port->port_features); printf("Port TX ctrl: 0x%08x\n", mqnic_port_get_tx_ctrl(dev_port)); printf("Port RX ctrl: 0x%08x\n", mqnic_port_get_rx_ctrl(dev_port)); printf("Port FC ctrl: 0x%08x\n", mqnic_port_get_fc_ctrl(dev_port)); printf("Port LFC ctrl: 0x%08x\n", mqnic_port_get_lfc_ctrl(dev_port)); for (int k = 0; k < 8; k++) printf("Port PFC ctrl %d: 0x%08x\n", k, mqnic_port_get_pfc_ctrl(dev_port, k)); sched_block = port; if (sched_block < 0 || sched_block >= dev_interface->sched_block_count) { fprintf(stderr, "Scheduler block out of range\n"); ret = -1; goto err; } struct mqnic_sched_block *dev_sched_block = dev_interface->sched_blocks[sched_block]; if (!dev_sched_block) { fprintf(stderr, "Invalid scheduler block\n"); ret = -1; goto err; } printf("Scheduler block-level register blocks:\n"); for (struct mqnic_reg_block *rb = dev_sched_block->rb_list; rb->regs; rb++) printf(" type 0x%08x (v %d.%d.%d.%d)\n", rb->type, rb->version >> 24, (rb->version >> 16) & 0xff, (rb->version >> 8) & 0xff, rb->version & 0xff); printf("Sched count: %d\n", dev_sched_block->sched_count); for (struct mqnic_reg_block *rb = dev_sched_block->rb_list; rb->regs; rb++) { if (rb->type == MQNIC_RB_SCHED_RR_TYPE && rb->version == MQNIC_RB_SCHED_RR_VER) { printf("Round-robin scheduler\n"); printf("Sched channel count: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_RR_REG_CH_COUNT)); printf("Sched channel stride: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_RR_REG_CH_STRIDE)); printf("Sched control: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_RR_REG_CTRL)); printf("Sched dest: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_RR_REG_DEST)); } else if (rb->type == MQNIC_RB_SCHED_CTRL_TDMA_TYPE && rb->version == MQNIC_RB_SCHED_CTRL_TDMA_VER) { printf("TDMA scheduler controller\n"); printf("Sched channel count: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_CTRL_TDMA_REG_CH_COUNT)); printf("Sched channel stride: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_CTRL_TDMA_REG_CH_STRIDE)); printf("Sched control: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_CTRL_TDMA_REG_CTRL)); printf("Sched timeslot count: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_CTRL_TDMA_REG_TS_COUNT)); } else if (rb->type == MQNIC_RB_TDMA_SCH_TYPE && rb->version == MQNIC_RB_TDMA_SCH_VER) { printf("TDMA scheduler\n"); printf("TDMA timeslot count: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_TS_COUNT)); printf("TDMA control: 0x%08x\n", mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_CTRL)); printf("TDMA status: 0x%08x\n", mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_STATUS)); printf("TDMA schedule start: %ld.%09d s\n", mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_SCH_START_SEC_L) + (((int64_t)mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_SCH_START_SEC_H)) << 32), mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_SCH_START_NS)); printf("TDMA schedule period: %ld.%09d s\n", mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_SCH_PERIOD_SEC_L) + (((int64_t)mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_SCH_PERIOD_SEC_H)) << 32), mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_SCH_PERIOD_NS)); printf("TDMA timeslot period: %ld.%09d s\n", mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_TS_PERIOD_SEC_L) + (((int64_t)mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_TS_PERIOD_SEC_H)) << 32), mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_TS_PERIOD_NS)); printf("TDMA active period: %ld.%09d s\n", mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_ACTIVE_PERIOD_SEC_L) + (((int64_t)mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_ACTIVE_PERIOD_SEC_H)) << 32), mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_ACTIVE_PERIOD_NS)); } } printf("EQ info\n"); printf(" Queue Base Address En A LS A IRQ Prod Cons Len\n"); for (int k = 0; k < mqnic_res_get_count(dev_interface->eq_res); k++) { uint32_t val; volatile uint8_t *base = mqnic_res_get_addr(dev_interface->eq_res, k); val = mqnic_reg_read32(base, MQNIC_EQ_CTRL_STATUS_REG); uint32_t irq = val & 0xffff; uint8_t enable = (val & MQNIC_EQ_ENABLE_MASK) != 0; uint8_t armed = (val & MQNIC_EQ_ARM_MASK) != 0; uint8_t active = (val & MQNIC_EQ_ACTIVE_MASK) != 0; uint8_t log_queue_size = (val >> 28) & 0xf; if (!enable && !verbose) continue; uint64_t base_addr = (uint64_t)mqnic_reg_read32(base, MQNIC_EQ_BASE_ADDR_VF_REG) + ((uint64_t)mqnic_reg_read32(base, MQNIC_EQ_BASE_ADDR_VF_REG+4) << 32); base_addr &= 0xfffffffffffff000; val = mqnic_reg_read32(base, MQNIC_EQ_PTR_REG); uint32_t prod_ptr = val & MQNIC_EQ_PTR_MASK; uint32_t cons_ptr = (val >> 16) & MQNIC_EQ_PTR_MASK; uint32_t occupancy = (prod_ptr - cons_ptr) & MQNIC_EQ_PTR_MASK; printf("EQ %4d 0x%016lx %d %d %2d %d %4d %6d %6d %6d\n", k, base_addr, enable, active, log_queue_size, armed, irq, prod_ptr, cons_ptr, occupancy); } printf("CQ info\n"); printf(" Queue Base Address En A LS A EQN Prod Cons Len\n"); for (int k = 0; k < mqnic_res_get_count(dev_interface->cq_res); k++) { uint32_t val; volatile uint8_t *base = mqnic_res_get_addr(dev_interface->cq_res, k); val = mqnic_reg_read32(base, MQNIC_CQ_CTRL_STATUS_REG); uint32_t eqn = val & 0xffff; uint8_t enable = (val & MQNIC_CQ_ENABLE_MASK) != 0; uint8_t armed = (val & MQNIC_CQ_ARM_MASK) != 0; uint8_t active = (val & MQNIC_CQ_ACTIVE_MASK) != 0; uint8_t log_queue_size = (val >> 28) & 0xf; if (!enable && !verbose) continue; uint64_t base_addr = (uint64_t)mqnic_reg_read32(base, MQNIC_CQ_BASE_ADDR_VF_REG) + ((uint64_t)mqnic_reg_read32(base, MQNIC_CQ_BASE_ADDR_VF_REG+4) << 32); base_addr &= 0xfffffffffffff000; val = mqnic_reg_read32(base, MQNIC_CQ_PTR_REG); uint32_t prod_ptr = val & MQNIC_CQ_PTR_MASK; uint32_t cons_ptr = (val >> 16) & MQNIC_CQ_PTR_MASK; uint32_t occupancy = (prod_ptr - cons_ptr) & MQNIC_CQ_PTR_MASK; printf("CQ %4d 0x%016lx %d %d %2d %d %4d %6d %6d %6d\n", k, base_addr, enable, active, log_queue_size, armed, eqn, prod_ptr, cons_ptr, occupancy); } printf("TXQ info\n"); printf(" Queue Base Address En A B LS CQN Prod Cons Len\n"); for (int k = 0; k < mqnic_res_get_count(dev_interface->txq_res); k++) { uint32_t val; volatile uint8_t *base = mqnic_res_get_addr(dev_interface->txq_res, k); val = mqnic_reg_read32(base, MQNIC_QUEUE_CTRL_STATUS_REG); uint8_t enable = (val & MQNIC_QUEUE_ENABLE_MASK) != 0; uint8_t active = (val & MQNIC_QUEUE_ACTIVE_MASK) != 0; if (!enable && !verbose) continue; uint64_t base_addr = (uint64_t)mqnic_reg_read32(base, MQNIC_QUEUE_BASE_ADDR_VF_REG) + ((uint64_t)mqnic_reg_read32(base, MQNIC_QUEUE_BASE_ADDR_VF_REG+4) << 32); base_addr &= 0xfffffffffffff000; val = mqnic_reg_read32(base, MQNIC_QUEUE_SIZE_CQN_REG); uint32_t cqn = val & 0xffffff; uint8_t log_queue_size = (val >> 24) & 0xf; uint8_t log_desc_block_size = (val >> 28) & 0xf; val = mqnic_reg_read32(base, MQNIC_QUEUE_PTR_REG); uint32_t prod_ptr = val & MQNIC_QUEUE_PTR_MASK; uint32_t cons_ptr = (val >> 16) & MQNIC_QUEUE_PTR_MASK; uint32_t occupancy = (prod_ptr - cons_ptr) & MQNIC_QUEUE_PTR_MASK; printf("TXQ %4d 0x%016lx %d %d %d %2d %4d %6d %6d %6d\n", k, base_addr, enable, active, log_desc_block_size, log_queue_size, cqn, prod_ptr, cons_ptr, occupancy); } printf("RXQ info\n"); printf(" Queue Base Address En A B LS CQN Prod Cons Len\n"); for (int k = 0; k < mqnic_res_get_count(dev_interface->rxq_res); k++) { uint32_t val; volatile uint8_t *base = mqnic_res_get_addr(dev_interface->rxq_res, k); val = mqnic_reg_read32(base, MQNIC_QUEUE_CTRL_STATUS_REG); uint8_t enable = (val & MQNIC_QUEUE_ENABLE_MASK) != 0; uint8_t active = (val & MQNIC_QUEUE_ACTIVE_MASK) != 0; if (!enable && !verbose) continue; uint64_t base_addr = (uint64_t)mqnic_reg_read32(base, MQNIC_QUEUE_BASE_ADDR_VF_REG) + ((uint64_t)mqnic_reg_read32(base, MQNIC_QUEUE_BASE_ADDR_VF_REG+4) << 32); base_addr &= 0xfffffffffffff000; val = mqnic_reg_read32(base, MQNIC_QUEUE_SIZE_CQN_REG); uint32_t cqn = val & 0xffffff; uint8_t log_queue_size = (val >> 24) & 0xf; uint8_t log_desc_block_size = (val >> 28) & 0xf; val = mqnic_reg_read32(base, MQNIC_QUEUE_PTR_REG); uint32_t prod_ptr = val & MQNIC_QUEUE_PTR_MASK; uint32_t cons_ptr = (val >> 16) & MQNIC_QUEUE_PTR_MASK; uint32_t occupancy = (prod_ptr - cons_ptr) & MQNIC_QUEUE_PTR_MASK; printf("RXQ %4d 0x%016lx %d %d %d %2d %4d %6d %6d %6d\n", k, base_addr, enable, active, log_desc_block_size, log_queue_size, cqn, prod_ptr, cons_ptr, occupancy); } if (verbose) { for (int k = 0; k < dev_sched_block->sched_count; k++) { printf("Scheduler block %d scheduler %d\n", sched_block, k); for (int l = 0; l < mqnic_res_get_count(dev_interface->txq_res); l++) { printf("Sched %2d queue %4d state: 0x%08x\n", k, l, mqnic_reg_read32(dev_sched_block->sched[k]->regs, l*4)); } } } if (dev->stats_rb) { printf("Statistics counters\n"); for (int k = 0; k < dev->stats_count; k++) { uint64_t val = mqnic_stats_read(dev, k); if (val || verbose) printf("Index %d: %lu\n", k, mqnic_stats_read(dev, k)); } } err: mqnic_close(dev); return ret; }