/* Copyright (c) 2014-2016 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream rate limiter */ module axis_rate_limit # ( parameter DATA_WIDTH = 8 ) ( input wire clk, input wire rst, /* * AXI input */ input wire [DATA_WIDTH-1:0] input_axis_tdata, input wire input_axis_tvalid, output wire input_axis_tready, input wire input_axis_tlast, input wire input_axis_tuser, /* * AXI output */ output wire [DATA_WIDTH-1:0] output_axis_tdata, output wire output_axis_tvalid, input wire output_axis_tready, output wire output_axis_tlast, output wire output_axis_tuser, /* * Configuration */ input wire [7:0] rate_num, input wire [7:0] rate_denom, input wire rate_by_frame ); // internal datapath reg [DATA_WIDTH-1:0] output_axis_tdata_int; reg output_axis_tvalid_int; reg output_axis_tready_int_reg = 1'b0; reg output_axis_tlast_int; reg output_axis_tuser_int; wire output_axis_tready_int_early; reg [23:0] acc_reg = 24'd0, acc_next; reg pause; reg frame_reg = 1'b0, frame_next; reg input_axis_tready_reg = 1'b0, input_axis_tready_next; assign input_axis_tready = input_axis_tready_reg; always @* begin acc_next = acc_reg; pause = 1'b0; frame_next = frame_reg; if (acc_reg >= rate_num) begin acc_next = acc_reg - rate_num; end if (input_axis_tready & input_axis_tvalid) begin // read input frame_next = ~input_axis_tlast; acc_next = acc_reg + (rate_denom - rate_num); end if (acc_next >= rate_num) begin if (rate_by_frame) begin pause = ~frame_next; end else begin pause = 1'b1; end end input_axis_tready_next = output_axis_tready_int_early & ~pause; output_axis_tdata_int = input_axis_tdata; output_axis_tvalid_int = input_axis_tvalid & input_axis_tready; output_axis_tlast_int = input_axis_tlast; output_axis_tuser_int = input_axis_tuser; end always @(posedge clk) begin if (rst) begin acc_reg <= 24'd0; frame_reg <= 1'b0; input_axis_tready_reg <= 1'b0; end else begin acc_reg <= acc_next; frame_reg <= frame_next; input_axis_tready_reg <= input_axis_tready_next; end end // output datapath logic reg [DATA_WIDTH-1:0] output_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next; reg output_axis_tlast_reg = 1'b0; reg output_axis_tuser_reg = 1'b0; reg [DATA_WIDTH-1:0] temp_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg temp_axis_tvalid_reg = 1'b0, temp_axis_tvalid_next; reg temp_axis_tlast_reg = 1'b0; reg temp_axis_tuser_reg = 1'b0; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_temp_to_output; assign output_axis_tdata = output_axis_tdata_reg; assign output_axis_tvalid = output_axis_tvalid_reg; assign output_axis_tlast = output_axis_tlast_reg; assign output_axis_tuser = output_axis_tuser_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign output_axis_tready_int_early = output_axis_tready | (~temp_axis_tvalid_reg & (~output_axis_tvalid_reg | ~output_axis_tvalid_int)); always @* begin // transfer sink ready state to source output_axis_tvalid_next = output_axis_tvalid_reg; temp_axis_tvalid_next = temp_axis_tvalid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (output_axis_tready_int_reg) begin // input is ready if (output_axis_tready | ~output_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output output_axis_tvalid_next = output_axis_tvalid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_axis_tvalid_next = output_axis_tvalid_int; store_axis_int_to_temp = 1'b1; end end else if (output_axis_tready) begin // input is not ready, but output is ready output_axis_tvalid_next = temp_axis_tvalid_reg; temp_axis_tvalid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin output_axis_tvalid_reg <= 1'b0; output_axis_tready_int_reg <= 1'b0; temp_axis_tvalid_reg <= 1'b0; end else begin output_axis_tvalid_reg <= output_axis_tvalid_next; output_axis_tready_int_reg <= output_axis_tready_int_early; temp_axis_tvalid_reg <= temp_axis_tvalid_next; end // datapath if (store_axis_int_to_output) begin output_axis_tdata_reg <= output_axis_tdata_int; output_axis_tlast_reg <= output_axis_tlast_int; output_axis_tuser_reg <= output_axis_tuser_int; end else if (store_axis_temp_to_output) begin output_axis_tdata_reg <= temp_axis_tdata_reg; output_axis_tlast_reg <= temp_axis_tlast_reg; output_axis_tuser_reg <= temp_axis_tuser_reg; end if (store_axis_int_to_temp) begin temp_axis_tdata_reg <= output_axis_tdata_int; temp_axis_tlast_reg <= output_axis_tlast_int; temp_axis_tuser_reg <= output_axis_tuser_int; end end endmodule